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EXPANSIVE COLILECTIONS OF CONTINUA

D.E. BENNETT, Murray

Abstract: Let X be a continuum. A collectien % , of
proper subcontinua ef X is said te be expansive provided
that if Fe 3 and G is a preper subcentinuum ef X such that
Pc G, thew G € ¥ . In this paper such collections ef sub-
continua are studied. In particular, if X is the union ef
the members of 4 then conditiens are given which imply that
X can be written as the unien ef twe members of 7,
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In this paper certain collectiens of proper subconti-
nua ef a continuum X are studied. In particular, those col-
lections which "expan" with respect to set inclusion are in-
vestigated and properties of 'such collections are developed.
If X is the union of the subcontinua from such a collection,
then conditions are given which imply that X is the union of
exactly twe subcontinua from the collection.

Throughout this paper the continuum X is a cempact con-
nected metric space. The continuum X is said to be decompo-
sable if it is the union of twe proper subcontinua; other-
wise, the continuum is indecomposable. If K is a proper sub-

continuum ef X, then K is non-separating in X means that
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X - K is connected. The continuum X is irreducible if the-
re are two peints p and q in X such that ne proper subcon-
tinuum of X contains both p and q. If A is a subset of X,

then the clesure of A in X will be denoted by A. For terms
and netation used but not defined herein, the reader is re-

ferred to [ 3].

Definition: A cellection, & , of proper subcontinua
of X is said to be expansive provided if Fe¢ ¥ and G is a

proper subcentinuum ef X such that Pc G, then G € #.

Let ScX, S4# ¢ , and & be the cellection of all pro-
per subcontinua of X that contain S. Then % is an expansive
collection.

A proper subcontinuum K of X is said to be a termjnal
continuum previded if A and B are proper subcontinua of X
such that X = AuB and AnK4 ¢ # BnK then X = AuK or X =
= BuK [ 1]. The terminal subcontinua of X form an expansive
collection of nen-separating subcontinua of K.

If 9 is an expansive collection of subcontinua of X,
then we shall let #% = u{r| P ec &3,

It is easily seen that F¥ is dense in X and is non-se-
parating in X, Mereover, if X - 3% is a non-empty subconti-
nuum then X - F% dolea not separate any subcontinuum of X.
But when is X - 8% a continuum? The following theorem pro-

vides an gnswer.

Theorem 1. Suppese J  is an .expamsive collection of
proper subcontinua of X, Then X -~ 2% is a continuum if and
only if the only subcontinua that intersect both F* and

X - #* are decomposable.
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Proof: Assume that X - 4% is net a continuum. Then
X-F%g X-#% . Thus X - % is a continuum which inter-
sects both F* and X - #* , hence is decomposable. Let A
and B be preper subcontinua such that X = 3% = AuB. It fol-
lows that X ="F* ¢ A end X - §* ¢ B. Now either A or B in-
tersects #* so without less of generality assume that A N
NF*H ¢ . Let FeF such that AnNF £ ¢ . Then AUF is
a continuum.

If AUF = X, then X - % ¢ X - F. Since X - Fc A this
would imply that X - &* c A which is not the case. Thus Aul
must be a proper subcontinuum of X. Since Fc AUF then AuF e
e 3 and it follows that A ¢ F* ., This implies that X -

- ## c B which is a contradiction. Therefore X - &% is, in
fact, a continuum,

Now suppose that X - 8“% is a continuum but that K is
an indecomposable subcontinuum which intersects F*and X -

- %, Let F & & such that KnF % $ , then KuF, is

a subcontinuum of X which contains E_ . Since K ¢ F* it

¢

follows that KUF ¢ 3 which implies that X = KuF_ .

No-
te that X - % c X - E_c K. Let C be the composant of K
which contains X - &% ., Since X - F* & C, there is & Re
€ # such that CnFp % $ . Let I be a subcontinuum con-
tained in C such that In (X - #¥)% @ & INFy . Now IuFg
is & subcontinuum which contains Fz but IuFp ¢ ¥ . Sin-
ce 3 -is an expansive collection of proper subcontinua of X,
it follows that X = Iu Fﬂ . Thus K - IcFﬁ which implies
that Kc Fg . Since X - F¥*c K, then X - F* c Fp which is

a contradiction. Therefore the only subcontinua that inter-

sect both ¥ and X - F* are decomposable.
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Obviously, X - &% is a continuum if the continuum X is
hereditarily decompesable. It also holds with a somewhat we-

aker conditien en X.

Corollary 1: Suppese X is a continuum such that each
indecomposable subcontinuum has veid interier amd % is an
expansive cellection of proper subcontinua ef X. Then X =~
- ¥* is a centinuum,

Proof: Let K be a continuum which intersects both g*
and X - #* ., let F 6 § such that KnF4 ¢ . Then KuF is
a continuum which contains F but KuF ¢ 3° . Thus X = Ku F
and X - F is an open set contained in K. By hypothesis K is
decomposable and the corollary follows from the previous

theerem,

Continua which satisfy the hypothesis ef the fellewing
theorem are equivalent te the "type A" continua of Themas
L2].

Theorem 2. Let X be an irreducible continuum such that
each indecompesable subcontinuum has void interier. If X =
= 4% | then there exists FE e 4 and F[l 6 & such that
X = th U F{l .

Proof: Suppese {p,q% ¢ X such that X is irreducible
between p and q. Let 9"p ={Fe | peF} and
fq ={F e ?Ilqer} . Then 3'p and 3'q are nen-empty expan-
sive collections of subcontinua and, according to Corollary
1, X - F% end X - F%

q &Te continua. Note tat peX - ?*q
and g€X - '3-'*p.

* *
Case 1. If ?pn?q+¢,letrxs3'pandl‘pe
€ 9'q such that Foanﬂ"' $ . Since E U F{, is a subcon-
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tiruum containing {p,q¥, it follows that X = Eu F,.
* * = = - gk
Case 2, If gpn?q ¢ . Then X = (X ?p)u

v (X - 9”2)- let F € ¥ such that pe F. Then F n 9”‘; = ¢
whish implies that Fc X - ?’*q. Since X - 3’*(1 is a proper
subcontinuum of X it fellows that X - 3'*q e &F.

Iikewise X - ?’*p €eF .SeX=EFu Fy where E_ =
=X - G"Zamrp=x- Fh-

In the remaining pertion of this paper we shall assume

that the expansive collection & of subcontinua of X has the

preperty that if £, € ¥ and Fpe¥ thenE.nFy4é.

Lemma 1: There is a countable subcollection & , of
3 such that F¥ = 3‘6‘* .

Preof: Case 1: If there exist F; e 3’ and FZ e 3 such
that X = F;uT,, let %y ={F,F,}. Then F*=F,uF, = Z*.

Case 2. Suppese that X is net the unien of twe members
of ¥ . Choose a R, € & and let 'iwi}?;L be a countable ba-
sis for X - F, . For each positive integer i, let L; be the
cempenent of X - V. which contains ¥ . Since ¥ is an ex-
pansive collection then each L & F . let Fe ={Iii?=l'
Then Fy € F which implies that 3;,* c T* .,

Suppese x € F* . Let Fp e F° such that xe Fg . Now by

4
% X, then W = X - (B v Fy ) is an epen subset of X - F_ .

hypethesis F_uU Fﬂ is a subcontinuum of X. Since Ex v F(s %

There is a pesitive integer i such that Vie W which implies
that F_v 1",’ cX-v,. Thus.rx ”Frs c L so x"Fp cL c
c 3'6.* . Therefore F*c ?g‘ and it follows that 9;*: 3*,

Theorem 3: 1

separating subcontinua of X, If F#* = X, then there are

Let 3 be an expansive collection of non-
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F . e3 and Fg e & such that X =E v F[,.

Proof: Suppese to the contrary that F* = X but X is
not the union of any twoe numbers of F ., Then it follows
that X is not the union of any finite subcollection of F .
Let F =4 "13?:1 be a countable subcollection of § such
that 3’6 #* . For each positive integer n let R =
-.U1 F . Then 4N, } =1 is an increasing sequence ef proper

subcontinua of X with , \.)'1 Nl = X.

Assertion: Fer each integer i, there is a j>i such
that T-"ﬁ; $ i_—_'N_i. For if not, then there is an i such
that for all j»i :T':"N‘jL = T-_ﬂs Thus {X - "j‘ j>13 is
a countable collection of open sets, each dense in X - N..
According to the Baire Category Thecrem, there is a peimt
P e. f'\ (X - N ) = -'U- . But this would imply that

J
pe,x .\_J4 Nl whlch is a contradiction. Therefore the asser-

tion holds.

Thus we may obtain a subsequence {N{S‘;l of the sequ-
. . ’ . . o
ence N such that for each i, Ny ¢ N, while X - N;., §
§ X- N}.'_ Clearly X -.U R . Since {X - N. } = is a dec-
0
reasing sequence of compact sets, there is an x e LO‘I
(X - N-'). Let j be a positive integer such that xe Naf. Then
xeX - Na+l and [N vX - NJ+11 is a proper subcontinuum of
X. Since [N uX - NJ+11 does not separate X, it must be a
member of 3" . Thus N;j+1 and [N ux - J+1] are two members
of ¥ whose union is X. This contradlctmn establishes the

theorem.

1 Theorem 3 was suggested by J.B, Fugate.
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