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COMMENTAÏIONIS MkTÏÏEMkTIQàM UNIViœiTAfIS CAROLINAl 

19,4 (1978) 

IXPANSIVB COLLECTIONS OP CONTINUA 

D.l. BSNNITT, Murray 

Abstract: Let X be a continuum. A collection ^ f of 
proper subcontinua of X is said to be expansive provided 
that if F § T and Q is a proper subcontinuum of X such that 
Wc Qf thai Q e V .In this paper such collections of sub­
continua are studied. In particular, if X is the union of 
the members of f then conditions are given which imply that 
X can be written as the union of two members of &', 

Key words and phrases: Continuum, expansive collections, 
indecomposable, irreduciblef non-separating subcontinua. 

AMS: Primary 54F20 

Secondary 54F15 

In this paper certain collections of proper subconti­

nua of a continuum X are studied• In particular, those col­

lections which wexpan* with respect to set inclusion are in­

vestigated and properties of such collections are developed. 

If X is the union of the subcontinua from such a collection, 

then conditions are given which imply that X is the union of 

exactly two subcontinua from the collection. 

Throughout this paper the continuum X is a compact con­

nected metric space. The continuum X is said to be decompo­

sable if it is the union of two proper subcontinuaj other­

wise, the continuum is indecomposable. If K is a proper sub-

continuum of X, then K is non-separating in X means that 

- 689 



X - K ie connected* The continuum X is irreducible if the­

re are two points p and q in X such that no proper subeon-

tinuum of X contains both p and q. If it is a subset of Xf 

th«i the eleeure ef A in X will be denoted by I. For terms 

and notation uoed but not defined herein, the reader is re­

ferred to C3J« 

Definition: A collection, & , ©f proper subcontinua 

of X ie ©aid to be expaneive provided if F e P and 0 is a 

proper subcontinuum ef X such that fc 0, then Q e P* 

Let ScXf S # # t and P be the collection of all pro­

per subcontinua of X that contain S« Then & is an expansive 

collection. 

A proper subcontinuum K ef X is said to be a terminal 

continuum provided if A and fiare proper subcontinua of X 

such that X « Aw B and An X4. $ + Bn £ then X « Jku K or X * 
8 B M K CI], fhe terminal subcontinua of X form an expansive 

collection ©f non-separating subcontinua of X. 

If IT is an expansive collection of oubcontinua of Xf 

then we shall let f* * u4f| T * W i . 

It is easily seen that W* is dense in X and is non-se­

parating in X. Moreover, if X - %M is a non-empty subconti­

nuum then X -> J** does not separate any subcontinuum of X. 

But when is X - £** a continuumf The following theorem pro­

vides an answer. 

Theorem 1. Suppose $* is an .expansive eolle etion of 

proper subcontinua of X. Then X - 3** is a continuum if and 

only if the only subcontinua that intersect both W* and 

X - f * are decomposable. 
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Proof; Assume that X - ̂ * is not a continuum. Then 

X - 9s* j| X - r* • Thus X - &** is a continuum which inter­

sects both &** and X - $?** f hence is decomposable . Let A 

and B be proper subcontinua such that X - &** = AuB. It fol­

lows that X -'$* jz A and X - ̂ * $ B. Now either A or B in­

tersects 2 ^ so without loss of generality assume that A n 

A y * + 41 • Le t F € ^ Sttcn t n a t A A F + 4> * a e n A u P i s 

a continuum. 

If AuF = X, then X - &*<• c X - F. Since X - Fc A this 

would imply that X - ^ * c A which is not the case. Thus AuF 

must be a proper subcontinuum of X. Since Fc AuF then AuF € 

e & and it follows that k c T* . This implies that X -

- V* c B which is a contradiction. Therefore X - &** is f in 

factf a continuum. 

Now suppose that X - W*" is a continuum but that K is 

an indecomposable subcontinuum which intersects W and X -

- f ** . Let F^ e & such that K A F ^ + ^ > t h e n KuFd£ i s 

a subcontinuum of X which contains f^. . Since K yb &*t it 

follows that Ku F^ £ f which implies that X = Ku ̂  . No­

te that X - f * e X - l^e K. Let C be the composant of K 

which contains X - JP* . Since X - &* jp Cf there is a % 6 

C ̂  such that CnF* 4s 4* • ̂ ^ I be a subcontinuum con­

tained in C such that I n (X - ̂ * ) + $ + ***/j • Now IuF^ 

is a subcontinuum which contains F^ but IaF» $ W . Sin­

ce & - is an expansive collection of proper subcontinua of X, 

it follows that X = !uF« . Thus K - IcF^ which implies 

that Kc F* . Since X - f * c Kf then X - ST* c F^| which is 

a contradiction. Therefore the only subcontinua that inter­

sect both y* and X - y* are decomposable. 
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Obviously f X - ̂ * is a continuum if the continuum X is 

hereditarily decomposable. It also holds with a somewhat we­

aker condition on X. 

Corollary 1: Suppose X is a continuum such that each 

indecomposable subcontinuum has void interior and & is an 

expansive collection of proper subcontinua of X. Then X -

- 3̂ ** is a continuum. 

Proof: Let K be a continuum which intersects both <£"* 

and X - f* . Let F 6 3* such that KftT%* $ . fhen KuF is 

a continuum which contains F but KuF ̂  $* . Thus X = Ku F 

and X - F is an open set contained in K. By hypothesis K is 

decomposable and the corollary follows from the previous 

theorem. 

Continua which satisfy the hypothesis ©f the following 

theorem are equivalent to the "type A* continua of Thomas 

E23. 

Theorem 2. Let X be an irreducible continuum such that 

each indecomposable subcontinuum has void interior. If X a 

28 f*> , then there exists Tw e & and f« 6 f such that 

Proof: Suppose 4p,qj c X such that X is irreducible 

between p and q. Let f * «CF & 31 j pmf$ and 

$n «=*CF e S01 qsF? • Then gT and 3n are non-empty expan-
H V P S . 

sive collections of subcontinua and, according to Corollary 

1, X - ^ * and X - 3** are continua. Note timt p gX - «F* 

and q€X - T* • 

Case 1. If ? J n f* H i l e t yoc c ^ p a n d F / l € 

c 3* such that F^ A F- 4- $ . Since T^ u F« is a subeon-
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tirmum containing ip,qf» i t follows that X * J^ a F^ . 

Case 2. If ^ * A y * s ^ . Then X » (X - &* ) u 

V (X - 3^*). M f i f such that p c F . Then F n &* = # 

whir-h implies that Fc X - &*-• Since X - 9* i s a proper 

subcontinuum ©f X i t follows that X - 9* m 9 • 

Likewise X - 9* ft 9 . So X = P. u F* where 1 = 
p 0y /* QQ 

« X - ^ * and fV « X - 3** . 

In the remaining portion of this paper we shall assume 

that the expansive collection 9 ©f subcontinua of X has the 

property that if W^ € 9 and W»e9 then ̂ n F« #. $ • 

Lemma 1: There is a countable subcollection Sg# , of 

9 such that 9* m C * . 

Proof; Case 1: If there exist ^ e 9 and Fg # .T such 

that X » f ^ f j , let $£ »-fflff2). Then f * = fxu F2 = 9f • 

Case 2. Suppose that X is not the union of two members 

©f 9 * Choose a 3^ e 9 and let -fV.jlftj b® a countable ba­

sis for X - W^ • F©r each positive integer if let L. be the 

component ©f X - ?. which contains ̂  . Since 9 is an ex­

pansive collection then each hs.m 9 . Let 9# = 4 %.ii=i* 

Then 9^ c 9 which implies that 9* c 3** . 

Suppose x £ ̂ * . Let 1» m 9 such that xeF* . Now by 

hypothesis 3^ U F* is a subcontinuum ©f X. Since I^u P*s)s 

4» Xf then W « X - (^ u F. ) is an ©pen subset of X - F^ . 

There is a positive integer i such that V. c W which implies 

that T^ u F c X - ¥i. Thus f^ U ? . c 1^ so u L c 1̂  c 

c &Jf • Therefore 9* c 9? ^^ *•* follows that 9* m 9** 

Theorem 3s Let JT be an expansive collection of non-

separating subcontinua of X. If 9* s -*t then there are 

- 693 -



Proof: Suppose to the contrary that ^* = X but X is 

not the union of any tw® numbers of $f . Then it follows 

that X is not the union of any finite subcollection ©f W * 

Let $g s^^iJi=i ^e a countable subcollection of S* such 

that &g = &* • For each positive integer n let W^ « 
a # U . F-. Then «fN.} ..^ is an increasing sequence ©f proper 

subcontinua of X with iQ. N. = X. 

Assertion.: For each integer i, there is a j> i such 

that X - N. % X - N.. For if not, then there is an i such 

that for all j>i X - NT = X - N-. Thus |X - N. | j>i} is 

a countable collection of ©pen sets, each dense in X -' M. • 

According to the Baire Category Theorem, there is a poiiat 

p €.0,(X - N.) « X ~#kA E.. But this would imply that 

PCX - #W^ N. which is a contradiction. Therefore the asser-

tion holds. 

Thus we may obtain a subsequence 4N-J . -. of the sequ­

ence N such that for each i, N/ c Nr+- while X - N.+-. |r 

£ X - N.'. Clearly X « • & N4
#. Since 4X - NT}f* is a dec-

reasing sequence of compact sets, there is an x ( *^M 

(X - N.#). Let j be a positive integer such that xc N^. Then 

xcX - NL-I and CNtuX - NL_ j is a proper subcontinuum of 

X. Since [NtuX - N.^-3 does not separate Xf it must be a 

member ©f y . Thus NL- and CNtuX - N.., 3 are two members 

of y whose union is X. This contradiction establishes the 

theorem. 

Theorem 3 was suggested by J.B. Fugate. 
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