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C0MMENTATI0N1S MAffllMATICAl UNIVIBSITATIS CAH0IINAE 

19,4 (1978) 

AN EXISTENCE THEOREM VIA AN INTUITIVE IDEA AND FIXED POINT 

THEOHEM5 

CHEJG-MING LEE, Milwaukee 

Abstract: An abstract existence theorem is formulat
ed via a simple intuitive idea

f
 and then various fixed 

point theorems are deduced to illustrate the concept of 
abstraction in mathematics. 

Keywords: Existence theorem, metric space, Haus-
dorff metric, fixed point theorem, common fixed point theo
rem. 
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1. Introduction and main results. A system of inte

rest in sciences usually can be considered as a mapping S 

from the space X of input into the space X of output. One 

of the main concerns in the study of a system is t* know 

whether a particular desired output can be obtained in the 

system. The study usually starts with doing some experi

ments or observations about the system. A certain mean is 

used to measure the "distances" from the output obtained 

in the exoeriments or observations to the nerticular out

put one desires to have. Doing enough experiments or obser

vations, one may conclude that the system should behave or 

can be controller to behave in a certain manner. Suppose 

that the fystem S concerned behaves in the following manner: 
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for each input x and the corresponding output S(x)f there 

always exists in a certain way (cf. the condition (1) be-

lew) a new input ^ x such that the corresponding output 

S(jix) is somehow "closer* to a dwaired particular output 

than the given ©utput S(x) is (cf. the condition (2) below). 

Then intuitively one would conclude that the desired parti

cular output should be obtainable by a certain approxima

tion process. This intuitive idea leads us to the formula

tion ©f the following fundamental result. 

Theorem 1. Let (X$m) be a (n©n-empty) metric spacef 

I a non-empty set, S a mapping from X into I, and let e be 

a function from S(X) into the non-negative real numbers 

[Of+*9D). Suppose that for each xeX there exists an element 

A xcX sueh that the following inequalities hold? 

(1) f(x9Ax) £ ot(S(x))e(S(x))f 

(g) e(S(Ax)) 4 Ll(e(S(x))e(S(x))f 

where eo ia a bounded real-valued function defined on S(X) 

and A is a monotone increasing function from C0f+€O) into 

[0 fD. Then starting from any x^6 Xf a Cauchy sequence 4x^1 

in X can be constructed such that 

(3) lim e(S(xn)) = 0. 

Suppose furthermore that the space (X$m ) is complete and 

the mapping e(S{ • )) is continuous on X. Then for each x-jg, X 

there exists uCX such that 

(4) ^(x1,u)AMe(S(x1))/Cl- (3 (e(S(x1))>3 f 

and 

(5) e(S(u)) = 0f 

where M is a bound for the function oc * 
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Here, the function e can be thought as a certain eva

luation for the output of the system S so that He(S(u)) s 0W 

means that S(u) is a desired particular output. 

As an application of theorem 1, we give the following 

theorem 2, of which the proof will show a way how to apply 

theorem 1 by suitably defining an evaluation function. An

other direct application of theorem 1 will be given at the 

end of the last section, where some fixed point theorems as 

simple consequences of theorem 2 are also given. 

Theorem 2. Let (X,p ) be a (non-empty) complete met

ric space, (lfd) a (non-empty) metric space, and let P(I) 

denote the collection of all non-empty bounded closed sub

sets of I, D the Hausdorff metric generated by the metric d 

and d** the distance function defined by 

d*(b,A) « inf (d(b,aha6.A)f 

where bcl and Ai,P(l). Let f be a continuous mapping from 

(Xf̂ ? ) into (P(I),D) and g a continuous mapping from (Xfp ) 

into (E,d). Suppose that for each x€X there exists .Ai€X 

such that the following inequalities hold: 

(6) ^(x, Ax) 4 oC(f(x)fg(x))d* (g(x),f(x))f 

(7) d*(g(Ax),f(Ax))A|l(d*(g(x)lf(x))(l*(g(x)lf(x))l 

where eC is a bounded function from g(X)*cf(X) into £0f-t-«3) 

and & is a monotone increasing function from £of+^0) into 

10,1). Then for each x^il there exists an element u€X such 

that 

(8) CO(x1>u)^Md
l|,(g(x1)ff(x1))/Cl -/Kd*(g(x1)ff(x1))3 

and 

(9) g(u)Cflu), 
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where M is a bound for the function cC • 

We end this section by remarking that theorem 2 is an 

analogue of some interesting results by Fan in C4Jt where 

conditions involving certain convex structures were consi

dered, 

2. Proof of theorem 1. Let x,fiX be fixed. Then, in

ductively, one constructs a sequence Axn}£sX such that 

(10) §5»(xn,xn+1) **aC(S(xn))e(S(xn)) 

and 

(11) e(S(xn+1))*/S(e(S(xn)))e(S(xn)) 

for n = 1,2,3,... . 

For convenience, write en
 s e(S(xn)) and fi n * (l(e ) 

for n « 1,2,3,... . Then it follows from (11) that e n is a 

monotone decreasing sequence of non-negative numbers and hen

ce e converges to a non-negative number, say e • Then eh e 

for n = 1,2,3,... • Furthermore, since /J is monotone incre

asing, it follows from (10) and (11) that one has 

(12) P<-„.W-',l|8l~lel 

and 

(13) • 0*.e n + 1*/3 ne n*/3 1e n. 

It is clear that (12) implies that 4x n| is a Cauehy sequen

ce and (13) implies that ê 4r /3-,ê  so that e^ = 0 and hence 
0 * 1 0 o 

(3) holds. 

In case that (X,j» ) is complete, the Cauehy sequence 

«(x | converges to an element, say u, in X. Then it follows 

from (12) that 

£(xlfu) 6 f (x1,x2)+^(x2,x3)+...+ ̂ (xn,xn+1)+^(xn+1,u) 
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A(l* (&!+ (&?+...+ P i " 1 ) ^ + fCx^^u) 

^ M e / d - | J i ) + f Cxn+1,u) 

for a l l n = 1 , 2 , 3 , . . . . Hence (4) holds since l im^(3en 4 , f 

u) = 0 . The equality (5) follows from the equality (3) and 

the assumption that e(S( • )) is continuous. 

3 . Proof of theorem 2. To prove theorem 2, we f i r s t 

prove the following elementary lemma concerning the metric 

d, the Hausdorff metric D and the distance function d** as g i 

ven in the theorem. 

Lemma. Let u , ? e l and A,BeP(E). Then 

(i) &* (u fB)£d(u fy) + d*(v ,B) f 

( i i ) a* (u f A)*d*(u ,B) + D(A,B), 

( i i i ) d*(u fA) - d* (v ,B)*a(u,v) + D(A,B). 

Proof of the lemma. ( I ) . To prove ( i ) , choose b c B such 

that a* (vfB) = lim d(v ,b n ) . Then a* (u,B)i d(u»bn)-rdU>f) + 

+ d(v,b ) for a l l n, so that ( i ) hold. 

( I I ) . To Drove ( i i ) , choose b CB such that d**(u,B) = 

= lim d(u,b ) . Then for a given £ > 0, there exis t a €. A 

such that 

d(an,bn).4D(AfB) + e 

for n = 1 , 2 , 3 , . . . . Then 

d*(u ,A)4d(u f a n )£d(u ,b n ) + d(a n ,b n ) 

*d (u ,b n ) + D(A,B) + e 

for a l l n = 1 , 2 , 3 , . . . . Hence 

d*(ufA)*d*(ufB) + D(A,B) + e « 

Then ( i i ) holds since £, --s a rb i t ra ry . 
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(III). The inequality (iii) follows immediately from 

(i) and (ii). 

Nowf we come to the proof of theorem 2. To apply theo

rem lf let I » IxP(l) and define S and e as follows: 

S(x) * (g(x)ff(x))fe(SCx)) « d*{gCx)ff(Jc)) 

for a l l xe X. Note that by ( i i i ) in the lemma one has , for 

a l l xf yg X, 

e(S(x))-e(S(y))#d(g(x) fg(y))+D(f(x) f f (y)) . 

The above inequality remains true when x and y are interchan

ged. Hence for all xfyfX one has v 

|e(SCx)-eCS(y))Ud(g(x)fg(y))i-D(f(x)>f(y))f 

and from which one concludes that the function e(S(» )) is 

continuous on X. Therefore, by theorem 1 for each x-̂ g X the

re exists u«X such that (8) holds and also 

d*(g(u)ff(u)) * eCSCu)) * 0, 

from which one sees that (9) holds since f(u) is closed. 

4. Fixed point theorems. In theorem 2f if the space X 

happens to be a subspace of 1. taking g to be the identity 

mapping on X,we have the following fixed point theorem. 

Theorem 3* , I«et (Efd) be a metric space, X a non-empty 

complete and closed subspace of S, f a continuous mapping 

from (Xfd) into (P(E)fD). Suppose that for each x«X f there 

exis ts A-ceXauch that 

(14) d(xf Ax) *<*(xtf(x))&*(xtf(x))t 

(15) a*(Axtt(&x))£fi(&*(xtt(x)))&*(xft(x))t 

where eut ft are as given in theorem 2. Then for each x^« Xf 

there exis ts an element u#X such that 
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anđ 

or 

(16) d(x1,u)séMd*'(x1,f(x1))/tl-/3(d*(x1,f(x1)))J 

uef(u) 

u = f(u) provided that f is single-valued. 

Theorem 3 seems to be interesting since the mapping f 
i 

is not required to be a contraction or an inner mapping 

(i.e. a mapping with images lying in its domain or the po* 

wer set of its domain). Fixed point theorems for mappings 

which are not necessarily inner date back to E91, and re

cently many new results related to the concept of inward

ness have appeared (see Cl3f£23,E53ft63fC7j,£8l). Note that 

theorem 3 does not involve any of the known inwardness con

ditions, and is clearly a generalization of the existence 

portion of the well-known Banach contraction principle. For 

inner mappings, we list the following result, which is a va

riant of Sehgal's result ElO]. 

Theorem 4. Let (X,d) be a non-empty complete metric 

space, f a continuous mapping from X into X. Suppose that 

for each x#Xf there exists a positive integer n = n(x) such 

that 

d(x,fn(x)) £ cO(x,f(x))d(x,f(x)) 

and 

d ( f n ( x ) i f ^ + 1 ( x ) ) A ( 3 ( d ( x f f ( x ) ) ) d ( x , f ( x ) ) , 

where oc and (i a r e as g iven i n theorem 3« Then for each 

x«,e X, t he r e e x i s t s u c X such t h a t the i n e q u a l i t y (16) holds 

and u = f ( u ) . 

Proof. Take A x = f ^ x ) and apply theorem 3 . 

- 721 -



Viewing theorem 3 in a slight different angle, we have 

the following common fixed point theorem. 

Theorem 5* Let (Bfd) be a metric space, X a non-empty 

complete and closed subspaee of 1, f a continuous mapping 

from X into 1 and A a mapping (not necessarily continuous) 

from X into X. Suppose that the following inequalities hold 

for all x | X: 

(17) d(xf Ax)4«6(d(xff(x)))d(xff(x))t 

(18) d(f(Ax), Ax) ^/Kd(xff(x))d(x,f(x)). 

Then both f and A have the same non-empty set of fixed points. 

Proof. % theorem 3» f has fixed points in X. Let u be 

a fixed point of f. Then (17) implies that d(u, du) - 0 so 

that u is a fixed point of A # Let v be a fixed point of A . 

Then by (18) one has 

d(f(v)fv)*/J(d(vff(v)))d(vff(v))f 

which implies that d(f(v)fv) * 0, and hence v is a fixed point 

of f, completing the proof. 

For common fixed points of a family of commuting inner 

mappings, we give the following result. 

theorem 6. Let (Xfd) be a non-empty complete metric spa

ce, and 9 a family of commuting mappings from X into X. Sup

pose that there exists a mapping f # 9 satisfying all the 

conditions listed in theorem 4 and suppose furthermore that 

the mapping f is contractive (i.e. d(f(x),f(y))-ed(x,y) for 

all x fy«X with x+y)- Then the family 9 h«s a unique common 

fixed point. 

We remark that the notion of contractive mappings rela

ted to fixed point theory has been initially studied by Bdel-
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stein in £3], where many other interesting notions have been 

introduced. 

Proof of Theorem 6. By theorem 4f the mapping f has a 

fixed point and hence f has a unique fixed point since f is 

contract ire. Let u be the unique fixed point of f and let 

g m f . Then if u were not a fixed point of g, one would ha-

Te 

d(g(u)fu) « d(g(f(u))ff(u)) 

* d(f(g(u)),f(u))<d(g(u)fu)f 

which is impossible. Hence u is the unique common fixed point 

of the family 9 • 

Various types of results concerned common fixed points 

ean be obtained by directly applying the fundamental resultf 

theorem 1. As an example, we give the following results con

cerning a family of finitely many mappings which are not ne

cessarily inner or single-valued. Here P(l)fDf and d* are 

the same as those given in theorem 2. 

Theorem ?. Let (I,d) be a metric space, X a non-empty 

complete closed subspace of Ef f^ a continuous mapping from 

(Xfd) into (P(I)fD) for i = lf2f3f...fnf and let p be a func

tion defined on X by either 

f (x) » 3Sd*(xffi(x)) 

or 

y(x) « max d*(xffi(x))f 

where both 2Sj and max are taking for i « lf2f3f... n. 

Suppose that for each x«Xf there exists hxmX aueh t h a t t h e 

following hold; 

(19) &(xf&x)*«,(x)f(x)t 
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(20) f (ii)^|J(9(x))f(x), 

where 06 is a bounded real-valued function defined on JC and 

(J is a monotone increasing function from £0,+4») into 

fOfl). Then there exists an element uiX such that 

u€f|(u) for all i = lt2f3f...,n. 

Proof. Similar to the proof of theorem 2, one shows 

tha t d#( • tt* ( • )) i s continuous on X and hence so i s the 

function Cf . Define 

I « XKCP(K)Jn
f 

S(x) » ( 3 c f f i ( i : ) f f 2 ( x ) f . . . f f I l ( x ) ) f 

e ( S ( x ) ) M 9{X) 

for all x|X and apply theorem 1 to obtain an ucX such* that 

jp(u) = 0. Then 

d*(u,f.. (u)) » 0 so that u£f^(u) for i = l,2,3».«.,n. 

We end this note by remarking that the recent book by 

Stoart CllJ gave a rerf good introduction to various fixed 

point theorems and to their applications in analysis. 
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