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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

19,4 (1978)

A SPLITTING CRITERION FOR ABELIAN '‘GROUPS

ladislav BICAN, Praha

Abstract: The purpose of this paper is to present so-
me necesary and sufficient conditions for splitting of an
arbitrary mixed abelian group. An example of a non-split-
ting abelian group G with the torsion part T such that eve-
ry pure subgroup of finite rank of G containing T splits
is given.

Key words: Splitting group, generalized p-height, in-
creasing p-height ordering, basis, generalized p-sequence.

AMS: 20K25

1. Introduction. The splitting problem is one of the
most important and serious problems in abelian group theory.
Numerous authors have studied several aspects of this pro-
blem. In 1974, an interesting result of Stratton ([10] has
appeared. Stratton’s theorem concerning the groups of fini-
te rank generalizes the previous criterié for aplitting of
mixed groups of rank one discoverd independently by A.EB.
Stratton [ 9] and the authar [2] in 1970. The general crite-
rion for splitting presented here can be used for the cha-
racterization of factor-splitting torsionfree groups. The
results of this kind will appear elsewhere (see [51).

By the word "group" we shall always mear an additive-
ly written abelien group. If B is 2 subset of & grcuo G

then { MY denotes the subsrrup of G generated by it. ?+ in
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[2], we shall deal with the mtiors "characteristic" and
"type" in mixed groups. In this paper we shall denote by
hg(g), ‘t’G(c), %G(g) the p-height, the characteristic and
the type of the element g in the group G, respectively. The
rank of a mixed group G with the maximal torsion subgroup
T is the rank of the factor-group G/T.

In what follows we shall deal with a mixed group G with
maximal torsion subgroup T and G will denote the factor-
group G/T. The bar over the elements will denote the ele-
ments from G. For the sake of simplicity we shall write bri-
efly x(g), =(8), =(g) etc. in place of 'r:G(g), ‘ua(é),
%G(g) etc. We say that a set M ={a, |A € A} of elements
of G is a basis of G if the subset M = fﬁal-lc./\.f is a ba-
8is of -(-‘;, i.e. a maximal linearly independent subset of ele -
ments of G. A sequence [ #9Y SERRR: of elements of a mixed
group G is said to be a p-sequence of &, if 841 < &5 is=
=1l,... « If M is a subset of a torsionfree group G then
(M), is the pure closure of M in G, i.e. the largest sub-
group of G such that (ll>*/( M) is torsion.

All the results stated below can be formulated for mo-
dules over an associative and commutative principal ideal
domain. However, this generalization seems to be rather for-
mal and consequently we restrict ourselves to the abelian

group case only.

2. Main results.

Definition 1: Let M ={g, |oc < w?, wbeing an ordi-
nal number, be a well-ordered basis of a group G. We defi-

ne the generalized p-height Hp(aa) of the element a, as
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the p-height of + i .
p-height of a_ ﬁ‘::‘.x,(aﬂ) in the group c/ﬂ‘z‘uﬂ)
The well-ordering on M is said to be an increasing p-height
ordering if Hp(ax )£ Hp(a/3 ) whenever o & 8 < « .
Definition 2: Let U be a torsionfree subgroup of a
mixed group G and let ge G\U be an element of infinite or-

G/U
der. I hp (g + U) = co then every sequence g = X ,Xp,eee

of elements of @& such that p(xi+1 +U) =x; +U, i=0,1,...,
is called aygeneralized p-sequence of g with respect to U.
Definition 3: We say that a basis M = {aA)A eAN} of
a mixed group G has the property (S) if 't:G(a) = 'UE(E) for
every element a € (a_a' I.& €AY . If p is a prime then M is
said to have the property (Sp) if for every subset NE M the-
re is an essential p-pure torsionfree extension U of (N) in
G such that every element ae¢ M\ N with hg/<N)(a +{N>)= oo
has a generalized p-sequence with respect to U. Further, M
is said to have the property (SNp) if there is a subset NEM
having an essential p-pure torsionfree extension U in G such
that every element ae€ M\ N has a generalized p-sequence with
respect to U, An increasingly p-height ordered basis M =
={ay |x <}, where Hg(a“ ) = ng< o0 if and only if x <
< ¥, is said to have the property (Sp) if for every oc « »
there is x € G such that p%"(x +/32 <a ) =a,+ S (a/_,'
and every element ay V& y< mu , has a generalized p-se-
quence with respect to U =(x°"cc< 2> . In this case we al-

so say that the well-ordering on M has the property (Sp).

Theorem: ILet G be a mixed group with the torsion part
T. Then the following conditions are equivalent:

(1) G splits,
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(2) for every basis M ={a, |A &€ A} of G there exist
non-zero integers m, , A e A, such that the basis V=
= {mh a}_[.& €A1 has the property (S) and for each prime p
every increasing p-height ordering on M has the prope rty (Sp),

(3) for every basis M ={a, |2 € A} there exist non-
zero integers m, , AeA such that the basis N ={mn a’&l
Me/\.( has the property (S) and, for each prime p, there ex-
ists an increasing p-height ordering on M having the property
(Sp),

(4) there is a basis M ={a, |1 6 A} of G having the
property (S), and, for each prime p, every increasing p-height
ordering on M has the property (Sp),

(5) there is a basis M ={a, |A €A}t of G having the
property (S) and, for each prime p, there exists an increas-
ing p-height ordering on M having the property (Sp),

(6) for every basis M = fa, | €A} there exist non-
zero integers m, , A s J\.' such that the basis le =4 m, a, !
[A €A} has the properties-(S) amd (gf)) for each prime p,

(7) there is a basis M = {a, |1 € A} of G having the
prop?rties (S) and (gi;) for each prime p,

(8) for every basis M =fa, [AeA} of G there exist
non-zero integers m, , A e A such that the basis ’17={m.1 a.«t’
| 2 € A} has the properties (S) and (?1':’)) for each prime p,

(9) there is a basis M ={a, |A € A} of G having the
properties (S) and (Swﬁ) for each prime p.

Corollary: Let G be a mixcd zrouwn of finite rank. Then
the foll-winr conditions are eguivalent:

{iv) U splite,

(1) for ever: H»318 N = -fal,a,,,...,ahi cf 3 there ex-
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ists a non-zero integer m such that the basis v = {ma,,m82,.°°
...,man} has the property (S) and for each prime p every in-
creasing p-height ordering on W has the property (Sp),

(12) for every basis M ={a,,85,...,8,} of G there ex-
ists a non-zero integer m such that the basis M = (maq,ma,,
...,man) has the property (S) and for each prime p there ex-
ists an increasing p-height ordering on 'I\llhaving the prover-
ty (Sp),

(13) for every basis M = {ay,a5,...,a,% of G there ex-
ists a non-zero integer m such that the basis M ={mal,maz,
...,man'i has the properties (S) and (Sp) for each prime p,

(14) for every basis M ={a1,32,...,an} of G there ex-
ists a non-zero integer m such that the basis V= {mal,maz,

...,man} has the properties (S) and (Sp) for each prime p.
Proof: It follows immediately from Theorem.

Remark: The preceding Corollary generalizes the result

of Stratton [10].

3. Some auxiliary results.

Iemma 1: Let U be a pure torsionfree subgroup of a mix-
ed group G. If G/U splits then G spli;ts, too.,

Proof: First, let us show that {TuU) /URT is the tor-
sion part of G/U., If g + U is a torsion element of G/Ei then
mg ¢ U for some non-zero integer m. Since U is pure in G, the-
re is u€¢ U with mu = mg» Thus g =u + t, teT, as desired.

"ow sunpose thut 3/ splits, G/U ={TuU> /U@ V/U. Then
{TuVY ={TuUUV)=0and TNVS{(TuUdn VEU yields TA VS
STNn" = and G = T@® V splits,
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Iemma 2: Let M =-(aJLM, e A} be a basis of a mixed
group G such that 2 (a, ) = @ (&, ) for every AeA . If
G is divisible and every element a, , A e A, has a p-se-
"quence in G then G splits, G = T@® V, and V can be chosen
such that MgV.

Proof: It follows immediately from the proof of Theo-
rem 1 in [3].

Lemma 3: A mixed group G splits if and only if
a) Zp® G x) splits for each prime p, Zp® G = T(p)®

® HP) gna
b) there is a basis M of G such that ZDQ (l)ﬁﬂ(p) for
each prime p.

Proof: See ({10}, Proposition 5.2.

lemma 4: Iet M = {a, lgc<(u.3 be an increasingly p-
height ordered basis of a mixed group G such that Hp(a ) =
= (<),
= n,< o0 foreachoo<(u..1fp “(Xee ) = 8y +#S. Ty ag
(finite sum) then the subgroup U ={x, |x < « > is p-pure in
G.

Proof: It clearly suffices to show that the equation
px = = rﬂ xﬁ is solvable in G if and only if p] r for
all P<u . Let pg = 2 ry y B1< 2‘”"{3]:' ng =

Hp(a(!’1 » i =1,2,...,k, and suppose that (3, is the small-

est ordinal number such that this equality does not imply

plry, i =1,2,...,k. Then obviously (r,,p) = 1 and we have

-

x) R_ is the ring of rationals with denominaters prime to
p and Zp is its additive group.

.
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n, +1 . & n-n; (pi) .
PE e Ep o ey W n e
o . G - G =
+V<%,o, r?aa' =h. Nown, + 1£ hp(h)ﬂ Hp(aﬂk) =n - a con-

tradiction finishing the proof,

Lemma 5: Let G be a mixed Rp-modu]e and let M ={a_ |
|l < @3} be an increasingly p-height ordered basis of G If
M has the property (S) and Hg(a“') is finite for everyo < 4«
then G splits, G = T@ U, and U can be chosen to contain M.

Proof: By hypothesis there are elements Xe ) 0 < @,

n
such that p °‘xec = +p§x r(‘) aﬂ where the last sum is fi-

8, )
nite and n, = H (a, ). The subgroup U ={x oo <> obvious-
ly contaims M.

If g€ G is an arbitrary element then p & =3 T 3/3 (fi-
nite sum) for some non-negative integer r. Since M has the
property (S), G contains an element h such that prh =3 rp ag
and consequently there is ueU with pTu =5 Ty 85 U being
pure in G by Lemma 4. However, p g =2r¢ ag * t =pfu+t,
teT, hence g -~ u€eT and G ={ TuU.

)
Let O%u =£§4 sixﬁie TAU, Bi<Pr<eee< By 8185000
«++8, % 0. Denoting n; = Hp(a i), we have n &n, €...&n, by
hypothesis, and

ny & n, -

n.
p u=£§‘4sip 1(3/3,1)* = e (MYAT =0,

&

r, a
reB, T ¥
Thus a, = O, which contradicts the choice of u. Hence TA U =

=0and G =T® U as desired.

4. Proof of Theorem. The implications (2) = (3), (2)=>
wb (4), (3)=b(5), (4)md (5), (6)m=d (7) and (8)==>(9) are

obvious and it is easily seen that it suffices to prove the
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implications (1)==(6), (1)=(8), (5)==(1), (6)==p(2)
(7)mmp(4) and (9)mp (1).

(1)=(6). Let Geplit, G =T@ Vand M={a, [A «Aj b¢
an arbitrary basis of G. If a8, =t,+vy, tye€ T, vy ¢ V,
A €A , and m, is the order if t, then the basis V-
={m, a, ,A €A} clearly has the property (S). Let p v®

prime, NE M and ae M\ N be an element with hg/<N>(a +<N))=
G,(U(
P

¢ . If U is the p-pure closure of N in V then h a+ U=

o, Hence there are elements xX;€ G, u;€ U such that pi"i =

a +u, i=1,2,.,.. . Since V is a direct summand of G ang
a+ ue V, we can assume that x;e V. Further, pi(pxhl -
441 ~ Yy and pluj = uj,,
=1,2,..., U being p-pure in V. Thus px;,; = X; + uf and

8 = X yXqyeee is a generalized p-sequence of a with resgp€ct
to U.

(1) mmp(8). Let G split, G =T@Vand M=fa, |2 eA} be

. N
-x;) =u - u; for some u;eU, i =

an arbitrary basis of G. If ay = ta' +vy, tye T, R v,

AeA and m, is the order of t, then the basis W=

A
= .(ma a, |A € A} clearly has the property (S). Let p be a

prime and {m ax]cc < w3 be an increasingly p-height order-
ing on X, If N = -(mx axl Hg(a‘ )<e3 and U is the p-pure

closure of N in V then for each ae ¥\ N we have hgm(a + U)=
= @ by the definition of increasing p-height ordering. Si-
milarly as in the above part one can show that a has a gene-

ralized p-sequence with respect to U,

(5)== (1), In view of Lemma 3, it suffices to show that the
Rp-module Zp9 G splits, Zp@ G = T(p)@ u(P) = g(P) ana
ZpO CUYm H(p) for each prime p. Suppose that -fad_]oc<(¢3
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is an increasing p-height ordering on M having the proper-
ty (Sp) and let Hg(ad )=n, <o if and only ifec < » .
If K is a subgroup of G such that K/T ={&, Iao< 9),,5—, then
2,® K splits by lLemna 5, Z,@ K = (P @ uP), where U(P)
can be chosen to contain Zp® Cay |oc < »> . It is easi-
ly seen that every element 1® aa, MV EY < & has a ge-
neralized p-sequence with respect to U(p), so that G(p)/U(p)
eplits by Lemma 2. Hence G‘®) splits by Lemma 1, o(P) =

= (P g H(p), and Zp@ <USEHDP),

(6) =»(2), Since we shall treat the basis ’l‘d’, we can assume
that m, = 1 for all A € A . Suppose that{a, | < w3 is
any increasing p-height ordering on M such that Hg(aa&) =
=n <o if and only if ec < » . By hypothesis, there is
a p~-pure torsion free subgroup U of G such that (a,’oc< FOT I
&€ U and every element ag » & @ < @ , has a generalized
p-sequence with respect to U. There are elements X, € U, x<
n

. [°A =
< », in G such that p ®(x, +P§‘°°<al3>) a, +p§“ <‘p> ’
U being p-pure in G. Setting V =¢ X, l € < ) , we are go-
ing to show that every element aﬁ , ¥ £ {3 < @& has a ge~
neralized p-sequence with respect to V.

Let aﬂ = Yor¥yrees be a generalized p-sequence of ag
with respect to U. Then PYi41 = ¥4 + U, where uje U and
mu;, =v.eV, (m,p) =1, i=1,2,... , Vbeing p-pure and
essential in U by the hypothesis and Lemma 4. Hence there
are integers @;, €'; withm; @; +p6; =1, 1 =1,2,000

If we put z; = y. - = Git'ju- then we have pz. = py:. =
i i 50 J J i+l i+l

i . . .

- pe i+l-j = _ i+1-j -
P,Eoe'j uj yi tu pégo‘j uJ- z; +
¢=1 3 3 .

+-" 63 J u. + u, -é 6']:-'] (u; - m: E:u:) = z, +
+=0"J J i gao® J J S°J J i
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+ i ei-J v. and ag= $_,%.,... i8 a generalized p-se-
5087 pv; et agm 1gmye

quence of aﬂ with respect to V.

.The implication (7)ms=s»(4) can be proved similarly.

(9)==>(1). Let p be a prime. Since M has properties (S) and
(‘S.;,) the factor-module Zp® G/ZP®U splits by Lemma 2 and
consequently zpe G splits by Lemma 1, Zp@ U being torsion-
free and pure in Zp® G. Moreover, as it is easy to check,
the torsionfree factor of Zp8 G can be chosen to contain
ZPG <{MY. Hence G splits by lLemma 3.

5. Example. In this final section we shall present an
example of a mon-splitting group G with the torsion part T
such that every rank finite pure subgroup of G containing T
splits.

®,%, < =,
Let H ={a Qz‘q aj_)e{'vl (xi) +
2 2 .
free group and K =<{a; + p{y;, pj8 + PiX; + a)i =1,2,...),
2 : .
L=(a+p(x; =y;), a5 + piyil i=1,2,,..” be its sub-
groups. We have p;(a + pi(xi - yi)) = p;a + a; + p?ix:.l -
- (ay + piy;| € K s0 that KELSK, . On the other hand, if
m

pj(a.a +4$4 (J\.iai Xy *+ viyi) =L§4 (;ai(a + py (x5 -

- yi)) + 6':1(\&;.l + pfyi)) then
m
13) P;d =4 Ty Pi»
(16) pjai = 5'1, is= 1,2,.-.,!‘,
(17) pj((ti = pi 91’ is= l,2,...,n.

By (17) pjlgpi, i=1,2,...,n, ik j, and so P; lg"a- by
(15). Since by (16) Pj|‘i, i=1,2,...yn, Lis pure in H
and L=Ky.
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Now a + L = ps(x; - y.) + L so that /L (a + 1) 21.
J J J Pj
let the equation pj(x + K) = ma + K be solvable in H/K. Then

(aa+,z (Aja; + @3%; + Vg

) m
13) =ma + . Z (p@;(a; +

+p1y1)+ 6'(pa+a +plx))andso

m,
pjA=m+ . Fyp; 65,

2 .
pj(“i = piGi, i=1,2,..0,n.

Thus pj, 6;,i=1,2,...yn, i% j, and hence pjl m. We have
shown that there is no non-zero multiple ma of a such that
zG/K(ma + K) = 'uG/L(ma + L) and consequently the factor-
group G = H/K does not split.
If X, =({e,al,...,an, XypeeesXpy Yyseees¥p3 U KD

then it is easy to see that the torsion part (LaX,)/K of
Xh/K is finite. If S/K is a pure subgroup of G of finite rank
then S/K is contained in Xn/K for some n. Thus the torsion

part of S/K is finite and S/K splits,
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