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COMMINTATIONBS MATH1MATICA1 UNIVIKSITATIS CA10LINA1 

19,4 (1978) 

A SPLITTING CRITIKCON FOEABIHAN GROUPS 

Ladislav BICAN, Praha 

Abstract: The purpose of this paper is to present so­
me necesary and sufficient conditions for splitting of an 
arbitrary mixed abelian group. An example of a non-split­
ting abelian group 0 with the torsion part T such that eve­
ry pure subgroup of finite rank of Q containing T splits 
is given. 

Key words; Splitting group, generalized p-height, in-
creasing p-height ordering, basis, generalized p-sequence. 

AMS; 20K25 

1* Introduction. The splitting problem is one of the 

most important and serious problems in abelian group theory. 

Numerous authors have studied several aspects of this pro­

blem. In 1974, an interesting result of Stratton tlO] has 

appeared. Stratton's theorem concerning the groups of fini­

te rank generalizes the previous criteria for splitting of 

mixed groups of rank one discoverd independently by A.I. 

Stratton f93 and the author £2] in 1970. The general crite­

rion for splitting presented here can be used for the cha­

racterization of factor-splitting torsionfree groups. The 

results of this kind will appear elsewhere (see C^l). 

By the word "group" we shall always near *n additive-

ly written abelien group. If tt ir« H subset of a grcuo G 

then <M>denotds the subsmup of G generated by I... P«- in 
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[2] 9 we shall deal with the .notions "characteristic** and 

"type" in mixed groups. In this paper we shall denote by 

nl(g)$ V (g)f X (g) the p-hei#it, the characteristic and 

the type of the element g in the group G, respectively. The 

rank of a mixed group G with the maximal torsion subgroup 

T is the rank of the factor-group G/T. 

In whprt follows we shall deal with a mixed group G with 

maximal torsion subgroup T and G will denote the factor-

group G/T. The bar over the elements will denote the ele­

ments from G. For the sake of simplicity we shall write bri­

efly ^(g), <r(I)» £(g) etc. in place of T GCg) f t^Cg), 
JL C* 

% (g) etc. We say that a set M =^[a, \X c A I of elements 

of G is a basis of 0 if the subset M=fa\|4,*-A? is a ba­

sis of G, i.e. a maximal linear3y independent subset of ele­

ments of G. A sequence g0,g-,,».# of elements of a mixed 

group G is said to be a p-sequence of gQ if Mi+i
 = g±$ i = 

* lf... . If M is a subset of a torsionfree group G then 

<M># is the pure closure of M in G, i.e. the largest sub­

group of G such that <M>J||/<M> is torsion. 

All the results stated below can be formula ted for mo­

dules over an associative and commutative principal ideal 

domain. However, this generalization seems to be rather for­

mal and consequently we restrict ourselves to the abelian 

group case only. 

2. Main results. 

Definition 1: Let M - { a^ [o6*< fd,\ , (** being an ordi­

nal mmber, be a well-ordered basis of a group G. We defi­

ne the generalized p-height ^ ( a ^ ) of the element a , as 
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the p-height of a^ +*2El ( a* ) in the group G/ ;g < a„> . 

The well-ordering on M is said to be an increasing p-height 

ordering i f H <a^ )^H (a* ) whenever GC it fi> < ft # 

Definition 2: Let U be a torsionfree subgroup of a 

mixed group G and l e t g c G \ U be an element of inf in i te or-

d I-p h Q / U 

p (g + U) = oo then every sequence g s x ,x-,f... 

of elements of <U such that pCx*.-, + U) = x. + U, i = 0flf...f 

is called a generalized p-sequence of g with respect to U. 

Definition 3: We say that a basis M = i&~\A e A ? of 
n "p* 

a mixed group G has the property (S) if t (a) = % (a) for 

every element a 6 < a * |A t> A ) . If p is a prime then M is 

said to have the property (Sp) if for every subset Nip M the­

re is an essential p-pure torsionfree extension U of<N) in 

G such that every element at M \ N with h|/<N^(a + <N>) = Oo 

has a generalized p-sequence with respect to U. Further, M 

is said to have the property (Sp) if there is a subset N£ M 

having an essential p-pure torsionfree extension U in G such 

that every element at- MSN has a generalized p-sequence with 

resoect to U. An increasingly p-height ordered basas M = 

= { a^ | ct -< pu | , where H:J(a^ ) = n^ < cO if and only if oc < 

«c >? f is said to have the property (Sp) if for every oo «s V 

there is x^e 0 such that p^°(x^ + ^ < « ^ > ) = a^ + ^ (a^) 

and every element a^ f i> & f < ,44 , has a generalized p-se­

quence with respect to U = ( x^ j ©t -s *>) . In this case we al­

so say that the well-ordering on M has the property (Sp). 

Theorem: Let G be a mixed group with the torsion part 

T. Then the following conditions are equivalent: 

(1) G splits, 
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(2) for every oasis M *-f a^ \X m A J of G there exist 

non-zero integers m* , X a A , such that the basis M * 

= Cm* a x (% mA\ has the property (S) and for each prime p 

every increasing p-height ordering on M has the property (Sp)f 

(3) for every basis M *-fa^|4 € A ? there exist non­

zero integers m% f X c A such that the basis M =^i* a, ) 

[AfAfhas the property (S) and, for each prime pf there ex­

ists an increasing p-height ordering on M having the property 

csp) , 

(4) there i s a basis M ~ { a ^ | A s A ? of G having the 

property (S)f and, for each prime p, every increasing p-height 

ordering on M has the property (Sp), 

(5) there i s a basis U={m^\X$Al of 6 having the 

property (S) and, for each prime p, there exis ts an increas­

ing p-height ordering on M having the property (Sp), 

(6) for every basis M « fa^ |A *A J there exist non­

zero integers m, , A i A such that the basis M = { B * a« ( 

(A,§Af has the properties- (S) and (Sp) for each prime p, 

(7) there i s a basis M 5 { a ^ | ^ i A i pf G having the 

properties (S) and (Sp) for each prime pf 

(8) for every basis M; a-f a^ | X §Al of G there exist 

non-zero integers m- , X a A such that the basis M s { i , a J 

| X % A | has the properties (S) and (Sp) for each prime pf 

(9) there i s a basis M = ( aA | .4 i A } of G having the 

properties (S) and (Sp) for each prime p. 

Corollary: Let G be a mixed .gwi* of f i n i t e rank. Then 

the followinr renditions are equivalent: 

(1 C) G so lit.4' f 

C"1!) for wer:: ^ s i s H = 4a^fa0 f . . . ,a. ? rf :i trw*-e ex-



ists a non-zero integer m such that the basis M * { map1-*®^- •*• 

...,018̂ 1 has the property (S) and for each prime p every in-
/"V 

creasing p-height ordering on M has the property (Sp)f 

(12) for every basis M =4 a-^ag, ...faB} of G there ex-

ists a non-zero integer m such that the basis M « (ma^ma^, 

...fma ) has the property (S) and for each prime p there ex-

ists an increasing p-height ordering on M having the proper­

ty (Sp), 

(13) for every basis M = ^a-j-ag,... fa f of G there ex­

ists a non-zero integer m such that the basis H *i ma, fmagi 

...,ma 1 has the properties (S) and (Sp) for each prime p, 

(14) for every basis M = {a^,^,*.. ̂a^f of G there ex-
#%•> 

ists a non-zero integer m such that the basis M « {aa-i i-nâ * 
...fma | has the properties (S) and (Sp) for each prime p. 

Proof: It follows immediately from Theorem. 

Remark: The preceding Corollary generalizes the result 

of Stratton [10]. 

3. Some auxiliary results. 

Lemma 1: Let U be a pure torsionfree subgroup of a mix­

ed group G. If G/U splits then G splits, too. 

Proof; First, let us show that<TuU> /U22 is the tor­

sion part of G/U. If g • U is a torsion element of G/U then 

mgiU for some non-zero integer m. Since U is pure in Gf the­

re is ui U with mu = mg% Thus g » u • tf t § T, as desirei. 

Now suppose thai 3AT splits, G/U = < T u U > / U © ¥/U. Then 

( f u V ) = < T u U w V ) » G and f n V i < T u U ) n VgU yields T A Vg 

S T A V T n ana o s T 0 V splits. 
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Lemma 2; Let M ** {m^\& € A} be a basis of a mixed 

group G such that tf(a^ ) * *t (a"̂  ) for every X «. A .If 

G is divisible and every element a^ f & e A , has a p-se-

quence in G then G splits, G » T © Vf and V can be chosen 

such that MgV. 

Proof: It follows immediately from the proof of Theo­

rem 1 in C33• 

a) Z ® G x' splits for each prime p, Z ® G * T*p/® 

Lemma 3: A mixed group G splits if and only if 

a) 

© H(P) and 

b) there is a basis M of G such that Z p® <M>fiH
{p) for 

each prime p. 

Proof: See f.103, Proposition 5.2. 

Lemma 4: Let M * {m^ |©e -<{U.j be an increasingly p-

height ordered basis of a mixed group G such that H (a^) * 
n Co6) 

* nfiC< oo for each « < ^ . I f p ^Cx^ ) = a^ + - 3 ^ pjl a P 

( f in i te sum) then the subgroup U s <x^ |oc -*- ^c> i s p-pure in 

G. 

Proof; It clearly suffices to show that the equation 

px = 2 ?. JU is solvable in G if and only if p f r* for 

all (&<<!*. .Let pg = 4S^ v±xfi , (3 ̂  0 2 <. ..< |3 k, n± « 

88 HpC^.)! i = lf2f...fkf and suppose that (i^ is the small­

est ordinal number such that this equality does not imply 

p| rif i = lf2f..,.fk. Then obviously (rkfp) = 1 and we have 

x) R is the ring of rationals with denominators prime to 

p and Z is its additive group. 
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tradiction finishing the proof. 

Lemma g; Let G be a mixe$ IL-module and le t M s{a^ | 

I ©C < (Ĉ  } be an increasingly p-height ordered basis of GK If 

M has the property (S) and H (aoC) is finite for every o c < ^ 

then G splits, G » T ® U, and U can be chosen to contain M. 

Proof; By hypothesis there are elements %^ , oo < ^ -
n, ^ ẑ ) 

such that p °*x̂  * a, + 2B rA afl where the last sum is fi-

nite and n^ « H (a^ ). The subgroup U - ( x ^ | < » < ^ > obvious­

ly contains If. 

If gCG is an arbitrary element then prf s 2 - ) | a. (fi­

nite sum) for some non-negative integer r. Since M has the 

property (S)f G contains an element h such that p h » 25 rw % 

and consequently there is u e U with pru =2S r* a- f U being 

pure in G by Lemma 4. However, prg »IS r* a- + t » pru *** tf 

t€ T, hence g - utT and G * < Ty U> . 

Let O4.U "^26^ 8ix4.C ToU, (ti<Pz< •••* @ k» sl82*#* 

...8^4*0. Denoting n^ = H (a^ ), we have n^4 ng fe •• • i?nk by 

hypothesis, and 

p *u «.X. s,p k 1(a/| ) + 25- r * a., « < M > n T • 0. 

Thus a. s 0 , which contradicts the choice of u. Hence Tf% U = 

= 0 and G = T © U as desired. 

4. Proof of Theorem. The implications (2)«#(3)» (2)*-^ 

-*>(4)f (3)—»(5)» (4>-->(5)t (6)—M7) and (8)-*(9) ax»e 

obvious and it is easily seen that it suffices to prove the 
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implications (D—M6), ( i ) - ^ ( 8 ) , (5)^=^(1), (6)m**(%)f 

(7)—M4) and ( 9 W C D . 

CD—H6). Let G s p l i t , G * f © ¥ and M « { a ^ ) A c .Aj \ 

an arbi t rary basis of G. If a* « t^ • v^ f t ^ c Tf v^ g V̂  

?l c A , and m^ i s the order i f t^ tjien the basis M * 

= - f i u a ^ fA € AJ clearly has the property (S). Let p P^ 

a prime, NJpM an# a€M\ N be an element with nl' Ha + * H» = 
s CD . If U i s the p-pure closure of N in ¥ then h ^ U ( a * U)= 
s^D.Henee there are elements x-c G, u-€ U such that px$\ = 
s a + Ui, i = 1 ,2 , , , , . Since ¥ i s a direct summand of 0 mnd 

a + UJ ft ¥f we can assume that x*e V. Further, p1(pXj+] **• 

- x^) « w4+ i • u i a n d p 1 ^ = u^+ 1 - u^ for some u^fiU, i a. 

= l , 2 f . . . f U being p-pure in ¥. Thus px^+1
 = x i + u£ a r i^ 

a * x f x , f . . » i s a generalized p-sequence of a with respect 

to U. 

(D—i»(8). Let G s p l i t , G * T ® ¥ and M = f a^ | A # A? be 

an arbi t rary basis of G. If a^ = t* + v^ , t^ £ f, v^ c v , 

% % A a»d m* i s the order of t* then the basis M = 

- | i - a^ )t& € AJ clearly has the property (S). Let p be a 

prime andl i iy a^Jcc -c ^ f be an increasingly p-height order­

ing on M. I f N s *C%g a^j ^ ( a ^ )*<*oi and U i s the p-pure 
fs,*> r% fit 

closure of N in ¥ then for each atMVN we have h ' (a + U) s 

* €D by the defini t ion of increasing p-height ordering. S i ­

milarly as in the above part one can show that a has a gene­

ra l i sed p-sequence with respect to U. 
(5)"m£(l)« In view of Lemma 3, i t suffices to show that the 

R -module Z # G s p l i t s , Z © G « f ( p ) # H ( p ) = G ( p ) and 

Z • < M > S H ^ P ' for each prime p . Suppose that «CaflCJoc<(aJ 
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is an increasing p-height ordering on M hairing the proper­

ty (Sp) and le t lOa . ) - n < co if and on^ if oc <-= *> • 

If K is a subgroup of G s uch that K/T • < 1 ^ | o& < «.U ̂  > then 

Z @ K splits by Lemma 5, Z ® K » f ( p )® U ( p )
f where U

( p ) 

can be chosen to contain Z 0 < a ^ |a£< *l ̂  . It is easi­

ly seen that every element 10 B, % & & tf «C M, f has a ge­

neralized p-sequence with respect to U^p , so that G^PVU^P' 

splits by Lemma 2. Hence G^°' splits by Lemma lf G^
p' » 

= T ( p )© HCp), and Z p ® < M > g H C p ) . 

(6)---^(2}. Since we shall treat the basis M, we can aeeume 

that m* - 1 for all A € A • Suppose that <{a^ | oc ̂  ^4 J is 

any increasing p-height ordering on U such that H (a^ ) » 
s I L < O) if and only if o& «< %> .By hypothesis, there is 

a p-pure .torsion free subgroup U of G such that 4&bg\oc< %*}£ 

j= U and every element a- f ̂  *# A -< ̂ C4 9 has a generalized 

p-sequence with respect to U. ®iere are elements 3^ §, Uf a&< 

« » , in G such that P *(** + fl« < mfi> * = a « #
/ S ^

< a / l > » 

U being p-pure in 0. Setting ?-<xec|tac»<^> , we are go­

ing to show that every element a * f $ £ /$ < x^ f has a ge­

neralized p-sequence with respect to ?. 

Let a- - y0>y-if» be a generalized p-sequence of i« 

with respect to U. Then Py^+i = yi + uit wfcere u £ # u and 

miui = Yi€ V* ^mi»p) = * » * = lf2f*» i v being p-pure and 

essential in U by the hypothesis and Lemma 4. Hence there 

are integers f^f 6^ with m. ̂  * p 0^ s lf i - lf2f..._. . 

If we put -i s y^ - ^ 0 6» j"J**j then we have pz£+1 » P^i*!" 

•*%> * r »j+ «i > 4 * r CUJ - B j fjttj) = z. + 
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i t i - 4 
+ . 2SL^1 ** m £Vj and ^ } " , o , 8 l , # # # *fl a fla^araliaad p-#e-

qo^nce of a* with respect to ? . 

The implication (7)*»>(4) can be proved s imi lar ly . 

(9)«""Ml)» Let p be a prime. Since M has properties (S) and 

(Sp) the factor-module Z © G/Z ® U s p l i t s by Leaima 2 and 

consequently Z & 0 s p l i t s by Lemma 1, Z ® 1 being tors ion-

free and pure in Z ® 0. Moreover, as i t i s easy to cheek, 

the torsionfree factor of Z 0 0 can be chosen to contain 

Z €1 < M> . Hence 0 s p l i t s by Lemma 3# 

5» Example. In tfeie f ina l section we shal l present an 

example of a non-split t ing group G with the torsion part f 

such that every rank f i n i t e pure subgroup of G containing T 

s p l i t s . 
OQ 00 90 

Let H ~ < a > ® . £ . <a 4 > © . : & , < x4> + . S L < y i > be a 

free group and K « < a i * p | y i f p^a • p ^ + a ] i = 1 , 2 , . . . > f 

L « < a • PiC-«i - ^ i ) , ®i * Pi^i I i s 1 ,2 , . . . > be i t s sub­

groups. We have p i ( a + P i ^ - yj.)) * p^a ***».£ + P r t -

- (m^ • pf^il « K so that K i L i K ^ • On the other hand, i f 

P j ( A a • . § 4 ( A r t * ^ x . • V r t > » i f * ( 9i(a * % C x i -

- y. |)) + ^ ( a . ^ + p f ^ ) ) then 

(i5) P j a - 4 ^ f i f 

(16) p j^ j^ * ffif i » 1 ,2 , . . . , n , 

(17) P j ^ * Pi f i t i * 1 ,2 , . . . , n . 

By (17) P j l f i f i s 1 ,2 , . . . ,n, i + j f and so pj | ^ by 

(15). Since by (16) P j l ^ i t i = 1 ,2 , . . . , n , L i s pure in H 

and L * K^ . 
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Now a • L * p4(x. - y.) + L so that h | / L (a • L) £ 1 . 
w w w P 4 

Let the equation p4(x + K) = ma + K be solvable in H/K. then 

p 0 U a +& ( A i a i + <"ixi + , , iy i ) = " *t$t (fi(ai + 

* pAyi) + ^(p^a • a i + pf^) ) awl so 

2 
pj^i * pi^i» i = lf 2f«tn. 

Thus p4| tf. , i « lf2f...fnf i+j- ̂ n^ hence p.| m. We have 

shown that there is no non-zero multiple ma of a such that 
r* /•tr C / T 

tr (ipa + K) = * r ' (ma + L) and consequently the factor-

group G » H/K does not spl i t . 

If X^ s^4a,a2».i#»an , x^9 . . .9xnt 7\fmmf^jjf U K / 

then i t is easy to see that the torsion part (LnX^)/K of 

Jf̂ /K is f ini te . If S/K is a pure subgroup of G of finite rank 

then S/K is contained in 3L/K for some n. Thus th^ torsion 

part of S/K is finite and S/K spl i t s . 
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