Commentationes Mathematicae Universitatis Caroline

Ladislav Bican
A splitting criterion for Abelian groups

Commentationes Mathematicae Universitatis Carolinae, Vol. 19 (1978), No. 4, 763--774

Persistent URL: http://dml.cz/dmlcz/105891

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz
19,4 (1978)

A SPLItting CRITERION FOR ABELIAN GROUPS

Ladislav BICAN, Praha

Abstract: The purpose of this paper is to present some necesary and sufficient conditions for splitting of an ar bitrary mixed abelian group. An example of a non-splitting abelian group G with the torsion part T such that every pure subgroup of finite rank of G containing T splits is given.

Key words: Splitting group, generalized p-height, increasing p-height ordering, basis, generalized p-sequence.

AMS: 20K25

1. Introduction. The splitting problem is one of the most important and serious problems in abelian group theory. Numerous authors have studied several aspects of this problem. In 1974, an interesting result of Stratton [10] has appeared. Stratton's theorem concerning the groups of finite rank generalizes the previous criteria for aplitting of mixed groups of rank one discoverd independently by A.E. Stratton [9] and the author [2] in 1970. The general criterion for splitting presented here can be used for the characterization of factor-splitting torsionfree groups. The results of this kind will appear elsewhere (see [5]).

By the word "group" we shall always mean an additively written abelien group. If A. is t subse: of a grcuo G then $\langle M\rangle$ denotes the subsroup of G generated by i.. A. in
[2], we shall deal with the notions "characteristic" and "type" in mixed groups. In this paper we shall denote by $h_{p}^{G}(g), \tau^{G}(g), \hat{\tau}^{G}(g)$ the p-height, the characteristic and the type of the element g in the group G, respectively. The rank of a mixed group G with the maximal torsion subgroup T is the $r a n k$ of the factor-group G / T.

In what follows we shall deal with a mixed group G with maximal torsion subgroup T and \bar{G} will denote the factorgroup G / T. The bar over the elements will denote the elements from \bar{G}. For the sake of simplicity we shall write briefly $\tau(g), \tau(\bar{g}), \quad \hat{\boldsymbol{\tau}}(\mathrm{g})$ etc. in place of $\tau^{G}(g), \tau^{\bar{G}}(\bar{g})$, $\hat{\boldsymbol{\tau}}^{G}(\boldsymbol{g})$ etc. We say that a set $M=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ of elements of G is a basis of G if the subset $\bar{M}=\left\{\bar{a}_{\lambda} \mid \lambda \in \Lambda\right\}$ is a basis of \bar{G}, i.e. a maximal linearly independent subset of elements of \bar{G}. A sequence $\varepsilon_{0}, g_{1}, \ldots$ of elements of a mixed group G is said to be a p-sequence of g_{0} if $p g_{i+1}=\varepsilon_{i}$, $i=$ $=1, \ldots$. If M is a subset of a torsionfree group G then $\langle M\rangle_{*}$ is the pure closure of M in G, i.e. the largest subgroup of G such that $\langle M\rangle_{\mathcal{N}} /\langle M\rangle$ is torsion.

All the results stated below can be formula ted for modules over an associative and commutative principal ideal domain. However, this generalization seems to be rather formal and consequently we restrict ourselves to the abelian group case only.

2. Main results.

Definition 1: Let $M=\left\{a_{\alpha} \mid \alpha<\mu\right\}, \mu$ being an ordinal number, be a well-ordered basis of a group G. We define the generalized p-height $H_{p}\left(a_{\alpha}\right)$ of the element a_{α} as
the p-height of $a_{\alpha}+\sum_{\beta<\alpha}\left\langle a_{\beta}\right\rangle$ in the group $G / \sum_{\beta<\alpha}\left\langle a_{\beta}\right\rangle$. The well-ordering on M is said to be an increasing p-height ordering if $H_{p}\left(a_{\alpha}\right) \leqslant H_{p}\left(a_{\beta}\right)$ whenever $\alpha \leqslant \beta<\mu$.

Definition 2: Let U be a torsionfree subgroup of a mixed group G and le $t g \in G \backslash U$ be an element of infinite order. If $h_{p}^{G / U}(g+U)=\infty$ then every sequence $g=x_{0}, x_{1}, \ldots$ of elements of G such that $p\left(x_{i+1}+U\right)=x_{i}+U, i=0,1, \ldots$, is called a generalized p-sequence of g with respect to U.

Definition 3: We say that a basis $M=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ of a mixed group G has the property (S) if $\tau^{G}(a)=\tau^{\bar{G}}(\bar{a})$ for every element $a \in\left\langle a_{\lambda} \mid \lambda \epsilon \mathcal{\Lambda}\right\rangle$. If p is a prime then M is said to have the property ($\widetilde{\mathrm{Sp}}$) if for every subset $N \subset M$ there is an essential p-pure torsionfree extension U of $\langle N\rangle$ in G such that every element $a \in M \backslash N$ with $h_{p}^{G /\langle N\rangle}(a+\langle N\rangle)=\infty$ has a generalized p-sequence with respect to U. Further, M is said to have the property ($\widetilde{\mathrm{Sp}}$) if there is a subset $N \subseteq M$ having an essential p-pure torsionfree extension U in G such that every element $a \in M \backslash N$ has a generalized p-sequence with respect to U. An increasingly p-height ordered basis $M=$ $=\left\{a_{\alpha} \mid \propto<\mu\right\}$, where $H_{p}^{G}\left(a_{\alpha}\right)=n_{\alpha}<\infty$ if and only if $\alpha<$ $<\nu$, is said to have the property (Sp) if for every $\propto<\nu$ there is $x_{\alpha} \in G$ such that $p^{n}\left(x_{\alpha}+\sum_{\beta} \sum_{\alpha}\left\langle a_{\beta}\right\rangle\right)=a_{\alpha}+\sum_{\beta<\alpha}\left(a_{\beta}\right)$ and every element $a_{\gamma}, \nu \leq \gamma<\mu$, has a generalized p-sequence with respect to $U=\left\langle x_{\alpha} \mid \propto<2\right\rangle$. In this case we also say that the well-ordering on M has the property ($S p$).

Theorem: Let G be a mixed group with the torsion part T. Then the following conditions are equivalent:
(I) G splits,
(2) for every basis $M=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ of G there exist non-zero integers $m_{\lambda}, \lambda \in \Lambda$, such that the basis $\tilde{\mathbf{M}}=$ $=\left\{m_{\lambda} a_{\lambda} \mid \lambda \in \mathcal{\Lambda}\right\}$ has the property (S) and for each prime p every increasing p-height ordering on \widetilde{M} has the property (Sp),
(3) for every basis $M=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ there exist nonzero integers $m_{\lambda}, \lambda \in \Lambda$ such that the basis $\tilde{M}=\left\{m_{\lambda} a_{\lambda}\right\}$ $\mid \lambda \in \Lambda\}$ has the property (S) and, for each prime p, there exists an increasing p-height ordering on M having the property (Sp),
(4) there is a basis $M=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ of G having the property (S), and, for each prime p, every increasing p-height ordering on M has the property (Sp),
(5) there is a basis $M=\left\{a_{\lambda} \mid \lambda \in \Omega\right\}$ of G having the property (S) and, for each prime p, there exists an increasing p-height ordering on M having the property (Sp),
(6) for every basis $M=\left\{a_{\Omega} \mid \lambda \in \Lambda\right\}$ there exist nonzero integers $m_{\lambda}, \lambda \in \Lambda$ such that the basis $\tilde{M}=\left\{n_{\lambda} a_{\lambda} \mid\right.$ $\mid \lambda \in \Lambda\}$ has the properties (S) and ($\widetilde{\mathrm{Sp}}$) for each prime p,
(7) there is a basis $M=\left\{a_{\Omega} \mid \lambda \in \Lambda\right\}$ of G having the properties (S) and ($\widetilde{\mathrm{Sp}}$) for each prime p,
(8) for every basis $M=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ of G there exist non-zero integers $m_{\lambda}, \lambda \in \Lambda$ such that the basis $\widetilde{M}=\left\{m_{\lambda} a_{\lambda} \mid\right.$ $\mid \lambda \in \Lambda\}$ has the properties (S) and ($\widetilde{(\mathrm{Sp}}$) for each prime p,
(9) there is a basis $M=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ of G having the properties (S) and ($\widetilde{\mathrm{Sp}}$) for each prime p .

Corollary: Let G be a mixd froun of finite rank. Then the followine concitions are ecuivalent:
(IV) (solity,

ists a non－zero integer m such that the basis $\boldsymbol{K}=\left\{m a_{1}, m a_{2}, \ldots\right.$ $\left.\ldots, m a_{n}\right\}$ has the property（ S ）and for each prime p every in－ creasing p－height ordering on \tilde{M} has the property（ Sp ），
（12）for every basis $M=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of G there ex－ ists a non－zero integer m such that the basis $\tilde{M}=\left(m_{1}, m a_{2}\right.$ ， ．．．，$m a_{n}$ ）has the property（ S ）and for each prime p there ex－ ists an increasing p－height ordering on \tilde{M} having the proper－ ty（ Sp ），
（13）for every basis $M=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of G there ex－ ists a non－zero integer m such that the basis $\tilde{K}=\left\{\mathrm{ma}_{1}, \mathrm{ma}_{2}\right.$ ， $\left.\ldots, \mathrm{ma}_{n}\right\}$ has the properties (S) and $(\widetilde{S p})$ for each prime p ，
（14）for every basis $M=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of G there ex－ ists a non－zero integer m such that the basi $s \tilde{M}=\left\{m a_{1}, m a_{2}\right.$ ， $\left.\ldots, m a_{n}\right\}$ has the properties (S) and $\left(\widetilde{S}_{p}\right)$ for each prime p ．

Proof：It follows immediately from Theorem．
Remark：The preceding Corollary generalizes the result of Stratton［10］．

3．Some auxiliary results．

Lemma 1：Let U be a pure torsionfree subgroup of a mix－ ed group G．If G / J splits then G splits，too．

Proof：First，let us show that〈TUU〉／UミT is the tor－ sion part of G / U ．If $g+U$ is a torsion element of G / U then $m g \in U$ for some non－zero integer m ．Since U is pure in G ，the－ re is $u \in U$ with $m u=m g$ ．Thus $g=u+t, t \in T$ ，as desired．

Lemma 2: Let $M=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ be a basis of a mixed group G such that $\tau\left(a_{\lambda}\right)=\tau\left(\bar{a}_{\lambda}\right)$ for every $\lambda \in \Lambda$. If \bar{G} is divisible and every element $a_{\lambda}, \lambda \in \Lambda$, has a p-sequence in G then G splits, $G=T \oplus V$, and V can be chosen such that Mcis.

Proof: It follows immediately from the proof of Theorem 1 in [3].

Lemma 3: A mixed group G splits if and only if
a) $z_{p} \otimes G^{x}$) splits for each prime $p, z_{p} \otimes G=T^{(p)} \oplus$ $\oplus H^{(p)}$ and
b) there is a basis M of G such that $Z_{p} \otimes\langle M\rangle \sum_{H}(p)$ for each prime p.

Proof: See [10], Proposition 5.2.
Lemma 4: Let $M=\left\{a_{\alpha} \mid \alpha<\mu\right\}$ be an increasingly $p-$ height ordered basis of a mixed group G such that $H_{p}^{G}\left(a_{\alpha}\right)=$ $=n_{\alpha}<\infty$ for each $\alpha<\mu$. If $p^{n_{\alpha}}\left(x_{\alpha}\right)=a_{\alpha}+\sum_{\beta \propto} r_{\beta}^{(\alpha)} a_{\beta}$ (finite sum) then the subgroup $U=\left\langle x_{\alpha} \mid \propto<\mu\right\rangle$ is p-pure in G.

Proof: It clearly suffices to show that the equation $p x=\Sigma r_{\beta} x_{\beta}$ is solvable in G if and only if $p \mid r_{\beta}$ for all $\beta<\mu$. Let $p g=\sum_{i=1}^{\ldots} r_{i} x_{\beta_{i}}, \beta_{1}<\beta_{2}<\cdots<\beta_{k}, n_{i}=$ $=H_{p}^{G}\left(a_{\beta_{i}}\right), i=1,2, \ldots, k$, and suppose that β_{k} is the smallest ordinal number such that this equality does not imply $p \mid r_{i}, i=1,2, \ldots, k$. Then obviously $\left(r_{k}, p\right)=1$ and we have
x) R_{p} is the ring of rationals with denominators prime to
p and Z_{p} is its additive group.
$p^{n_{k}+1} g=\sum_{i=1}^{k_{1}} p^{n_{k}-n_{i}} r_{i}\left(a_{\beta_{i}}+\sum_{\gamma<\beta_{i}} r_{\gamma}^{\left(\beta_{i}\right)} a_{\gamma}\right)=r_{k} \beta_{k}+$ $+\sum_{\gamma<\beta \beta_{k}} r_{\gamma}^{\prime} a_{\gamma}=h . \quad$ Now $n_{k}+1 \leqslant h_{p}^{G}(h) \leq H_{p}^{G}\left(a_{\beta_{k}}\right)=n_{k}-a$ contradiction finishing the proof.

Lemma 5: Let G be a mixed R_{p}-module and let $M=\left\{a_{\infty} \mid\right.$ $\mid \alpha<\mu\}$ be an increasingly p-height ordered basis of G_{2} If M has the property (S) and $H_{p}^{G}\left(a_{\alpha}\right)$ is finite for every $\propto<\mu$ then G splits, $G=T \oplus U$, and U can be chosen to contain M.

Proof: By hypothesis there are elements $x_{\propto}, \propto<\mu$, such that $p^{n}{ }^{n} x_{\alpha}=a_{\alpha}+\sum_{\beta<\alpha} r_{\beta}^{(\alpha)} a_{\beta}$ where the last sum is finite and $n_{\infty}=H_{p}\left(a_{\alpha}\right)$. The subgroup $U=\left\langle x_{\alpha}\right| \propto\langle\mu\rangle$ obviousy contains M.

If $g \in G$ is an arbitrary element then $p^{r} \bar{g}=\Sigma r_{\beta} \bar{a}_{\beta}$ (finite sum) for some non-negative integer r. Since M has the property (S), G contains an element h such that $p^{r} h=\Sigma r_{\beta} a_{\beta}$ and consequently there is $u \in U$ with $p^{r} u=\Sigma r_{\beta} a_{\beta}$, U being pure in G by Lemma 4. However, $p^{r} g=\Sigma r_{\beta} a_{\beta}+t=p^{r} u+t$, $t \in T$, hence $g-u \in T$ and $G=\langle T \cup U\rangle$.

Let $0 \neq u=\sum_{i=1}^{k} s_{i} x_{\beta_{i}} \in T \cap U, \beta_{1}<\beta_{2}<\ldots<\beta_{k}, s_{1} s_{2} \ldots$ $\ldots s_{k} \neq 0$. Denoting $n_{i}=H_{p}\left(a_{\beta_{i}}\right)$, we have $n_{1} \leqslant n_{2} \leqslant \ldots \leqslant n_{k}$ by hypothesis, and
$p^{n_{k}}{ }_{u}=\sum_{i=1}^{k}{ }_{i=1} p^{n_{k}-n_{i}}\left(a_{\beta_{i}}\right)+\sum_{\gamma<\beta_{i}}{ }^{r}{ }^{\left(\beta_{i}\right)} a_{\gamma} \in\langle M\rangle \cap T=0$.
Thus $a_{k}=0$, which contradicts the choice of u. Hence $T \cap U=$ $=0$ and $G=T \oplus U$ as desired.
4. Proof of Theorem. The implications (2) $\Rightarrow(3),(2) \Rightarrow$ $\Rightarrow(4),(3) \rightarrow(5),(4) \Rightarrow(5),(6) \Longrightarrow(7)$ and $(8) \Longrightarrow(9)$ are obvious and it is easily seen that it suffices to prove the
implications $(1) \Longrightarrow(6),(1) \Longrightarrow(8),(5) \Longrightarrow(1),(6) \Longrightarrow(2)$,
$(7) \Rightarrow(4)$ and $(9) \Rightarrow(1)$.
(1) \Rightarrow (6). Let G split, $G=T \oplus V$ and $M=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\} b_{e}$ an arbitrary basis of G. If $a_{\lambda}=t_{\lambda}+v_{\lambda}, t_{\lambda} \in T, v_{\lambda} \in V$, $\lambda \in \Lambda$, and m_{λ} is the order if t_{λ} then the basis $\tilde{m}=$ $=\left\{m_{\lambda} a_{\lambda}, \lambda \in \Lambda\right\}$ clearly has the property (S). Let p pe a prime, $N \not \subset \tilde{M}$ and $a \in \tilde{M} \backslash N$ be an element with $h_{p}^{G /\langle N\rangle}(a+\langle N\rangle)=$ $=\infty$. If U is the p-pure closure of N in V then $h_{p}^{G / U}(a+U)=$ $=\infty$. Hence there are elements $x_{i} \in G, u_{i} \in U$ such that $p^{i} x_{i}=$ $=a+u_{i}, i=1,2, \ldots$. Since V is a direct summand of G and $a+u_{i} \in V$, we can assume that $x_{i} \in V$. Further, $p^{i}\left(p x_{i+1}\right.$ -$\left.-x_{i}\right)=u_{i+1}-u_{i}$ and $p^{i} u_{i}^{\prime}=u_{i+1}-u_{i}$ for some $u_{i}^{\prime} \in U, i=$ $=1,2, \ldots$, U being p-pure in V. Thus $p x_{i+1}=x_{i}+u_{i}^{\prime}$ and $a=x_{0}, x_{1}, \ldots$ is a generalized p-sequence of a with respect to U.
(1) \rightarrow (8). Let G split, $G=T \oplus V$ and $M=\left\{a_{\lambda} \mid \lambda \in \Lambda\right\}$ be an arbitrary basis of G. If $a_{\lambda}=t_{\lambda}+v_{\lambda}, t_{\lambda} \in T, v_{\lambda} \in \mathrm{V}$, $\lambda \in \Lambda$ and m_{λ} is the order of t_{λ} then the basis $\widetilde{M}=$ $=\left\{m_{\lambda} a_{\lambda} \mid \lambda \in \Lambda\right\}$ clearly has the property (S). Let p be a prime and $\left\{m_{\propto} a_{\alpha} \mid \propto \lll\right\}$ be an increasingly p-height ordering on \tilde{M}. If $N=\left\{m_{\infty} a_{\infty} \mid H_{p}^{G}\left(a_{\infty}\right)<\infty\right\}$ and U is the p-pure closure of N in V then for each $a \in \tilde{M} \backslash N$ we have $h_{p}^{G / U}(a+U)=$ $=\infty$ by the definition of increasing p-height ordering. Similarly as in the above part one can show that a has a generalized p-sequence with respect to U.
$(5) \rightarrow(1)$. In view of Lemma 3, it suffices to show that the R_{p}-module $Z_{p} \otimes G$ splits, $Z_{p} \otimes G=T^{(p)} \oplus H^{(p)}=G^{(p)}$ and $Z_{p} \odot\langle\mu\rangle E H^{(p)}$ for each prime p. Suppose that $\left\{a_{\alpha} \mid \alpha<\mu\right\}$
is an increasing p-height ordering on Maving the property (Sp) and le $\mathrm{t} \mathrm{H}_{\mathrm{p}}^{\mathrm{G}}\left(\mathrm{a}_{\alpha}\right)=n_{\alpha}<\infty$ if and only if $\alpha<v$: If K is a subgroup of G such that $\left.K / T=\left\langle\bar{a}_{\alpha} \mid \propto<\nu\right\rangle\right\rangle_{k}^{\bar{G}}$, then $Z_{p}\left(\mathbb{Z}\right.$ splits by Lemma $5, Z_{p} \otimes K=T^{(p)} \oplus U^{(p)}$, where $U^{(p)}$ can be chosen to contain $Z_{p} \otimes\left\langle a_{\alpha} \mid \propto<2\right\rangle$. It is easily seen that every element $1 \otimes a_{\gamma}, \nu \leqslant \gamma<\mu$, has a generalized p-sequence with respect to $U^{(p)}$, so that $G^{(p)} / U^{(p)}$ splits by Lemma 2. Hence $G(0)$ splits by Lemma $1, G(p)=$

$(6) \Rightarrow(2)$. Since we shall treat the basis \tilde{M}, we can assume that $m_{\lambda}=1$ for all $\lambda \in \Lambda$. Suppose that $\left\{a_{\alpha} \mid \propto<\mu\right\}$ is any increasing p-height ordering on M such that $H_{p}^{O}\left(a_{\infty}\right)=$ $=n_{\alpha}<\infty$ if and only if $\alpha<2$. By hypothesis, there is a p-pure torsion free subgroup U of G such that $\left\langle a_{\alpha} \mid \propto<\omega\right\rangle E$ $E U$ and every element $a_{\beta}, \nu \leqslant \beta<\mu$, has a generalized $p-s e q u e n c e$ with respect to U. There are elements $x_{\alpha} \in U, \propto<$ $\left\langle\nu\right.$, in G such that $p^{n} \alpha^{n}\left(x_{\alpha}+\sum_{\beta \alpha}\left\langle a_{\beta}\right\rangle\right)=a_{\alpha}+\sum_{\beta} \sum_{\alpha \infty}^{1}\left\langle a_{\beta}\right\rangle$, U being p-pure in 0. Setting $\mathrm{V}=\left\langle\mathrm{x}_{\alpha}\right| \propto\langle\nu\rangle$, we are going to show that every element $a_{\beta}, \nu \leq \beta<\mu$, has a generalized p-sequence with respect to V.

Let $a_{\beta}=y_{0}, y_{1}, \ldots$ be a generalized p-sequence of a_{β} with respect to U. Then $p y_{i+1}=y_{i}+u_{i}$, where $u_{i} \in U$ and $m_{i} u_{i}=v_{i} \in V,\left(m_{i}, p\right)=1, i=1,2, \ldots, V$ being p-pure and essential in U by the hypothesis and Lemma 4. Hence there are integers ρ_{i}, σ_{i} with $m_{i=1} \rho_{i}+p \sigma_{i}=1, i=1,2, \ldots$. If we put $z_{i}=y_{i}-\sum_{j=0}^{i-1} \sigma{\underset{j}{i-j} u_{j}}_{i=1}^{i=1}$ $-p \sum_{j=1}^{i} \sigma_{j}^{i+1-j} u_{j}=y_{i}+u_{i}-p \sum_{j=1}^{i} \sigma{ }_{j}^{i+1-j} u_{j}=z_{i}+$ $+\sum_{j=0}^{i-1} \sigma_{j}^{i-j} u_{j}+u_{i}-\sum_{j=0}^{i} \sigma_{j}^{i-j}\left(u_{j}-m_{j} \rho_{j} u_{j}\right)=z_{i}+$
$+\sum_{j} \sum_{0} \sigma_{j}^{i-j} \rho_{j} \nabla_{j}$ and $a_{\beta}=z_{0}, z_{1}, \ldots$ is a generalized p-sequence of a_{β} with respect to V.
The implication $(7) \Longrightarrow(4)$ can be proved similarly.
$(9) \Rightarrow(1)$. Let p be a prime. Since M has properties (S) and (Sp) the factor-module $Z_{p} \otimes G / Z_{p} \otimes U$ splits by Lemma 2 and consequently $Z_{p} \otimes G$ splits by Lemma $1, z_{p} \otimes U$ being torsionfree and pure in $Z_{p} \otimes G$. Moreover, as it is easy to check, the torsionfree factor of $Z_{p} \otimes G$ can be chosen to contain Z_{p} © $\langle M\rangle$. Hence G splits by Lemma 3.
5. Example. In this final section we shall present an example of a mon-splitting group G with the torsion part T such that every rank finite pure subgroup of G containing T splits.

Let $H=\langle a\rangle \oplus_{i} \sum_{i=1}^{\infty}\left\langle a_{i}\right\rangle \oplus \oplus_{i} \sum_{i=1}^{\infty}\left\langle x_{i}\right\rangle+\sum_{i}^{\infty} \sum_{1}^{\infty}\left\langle y_{i}\right\rangle$ be a free group and $K=\left\langle a_{i}+p_{i}^{2} y_{i}, p_{i} a+p_{i}^{2} x_{i}+a \mid i=1,2, \ldots\right\rangle$, $L=\left\langle a+p_{i}\left(x_{i}-y_{i}\right), a_{i}+p_{i}^{2} y_{i} \mid i=1,2, \ldots\right\rangle$ be its subgroups. We have $p_{i}\left(a+p_{i}\left(x_{i}-y_{i}\right)\right)=p_{i} a+a_{i}+p_{i}^{2} x_{i}-$ - $\left(a_{i}+p_{i}^{2} y_{i} \mid \in K\right.$ so that $K \in L E K_{*}$. On the other hand, if $p_{j}\left(\lambda a+i \sum_{i=1}^{n}\left(\lambda_{i} a_{i}+\mu_{i} x_{i}+\nu_{i} y_{i}\right)=\sum_{i=1}^{n}\left(\rho_{i}\left(a+p_{i}\left(x_{i}-\right.\right.\right.\right.$ $\left.\left.\left.-y_{i}\right)\right)+\sigma_{i}\left(a_{i}+p_{i}^{2} y_{i}\right)\right)$ then

$$
\begin{equation*}
p_{j} \lambda=\sum_{i=1}^{n} \rho_{i}, \tag{15}
\end{equation*}
$$

$$
\begin{align*}
& p_{j} \lambda_{i}=\sigma_{i}, i=1,2, \ldots, n \tag{16}\\
& p_{j} \mu_{i}=p_{i} \rho_{i}, i=1,2, \ldots, n \tag{17}
\end{align*}
$$

By (17) $p_{j} \mid \rho_{i}, i=1,2, \ldots, n, i \neq j$, and so $p_{j} \mid \rho_{j}$ by (15). Since by (16) $p_{j} \mid \boldsymbol{\sigma}_{i}, i=1,2, \ldots, n$, L is pure in H and $L=K_{*}$.

Now $a+L=p_{j}\left(x_{j}-y_{j}\right)+L$ so that $h_{p_{j}}^{H / L}(a+L) \geq 1$. Let the equarion $p_{j}(x+K)=m a+K$ be solvable in H / K. Then $p_{j}\left(\lambda a+i \sum_{i=1}^{n}\left(\lambda_{i} a_{i}+\mu_{i} x_{i}+\nu_{i} y_{i}\right)=m a+\sum_{i=1}^{m}\left(\rho_{i}\left(a_{i}+\right.\right.\right.$ $\left.\left.+p_{i}^{2} y_{i}\right)+\sigma_{i}\left(p_{i} a+a_{i}+p_{i}^{2} x_{i}\right)\right)$ and so

$$
\begin{aligned}
& p_{j} \lambda=m+i \sum_{i=1}^{n} p_{i} \sigma_{i} \\
& p_{j} \mu_{i}=p_{i}^{2} \sigma_{i}, \quad i=1,2, \ldots, n .
\end{aligned}
$$

Thus $p_{j} \mid \sigma_{i}, i=1,2, \ldots, n, i \neq j$, and hence $p_{j} \mid m$. We have shown that there is no non-zero multiple ma of a such that $\tau^{G / K}($ qa $+K)=\tau^{G / L}(m a+L)$ and consequently the factorgroup $G=H / K$ does not split.

$$
\text { If } x_{n}=\left\langle\left\{a, a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right\} \cup K\right\rangle
$$

then it is easy to see that the torsion part ($L \cap X_{n}$)/K of X_{n} / K is finite. If S / K is a pure subgroup of G of finite rank then S / K is contained in X_{n} / K for some n. Thus the torsion part of S / K is finite and S / K splits.

References
$[1]$ R. BAER: The subgroup of the elements of finite order of an abelian group, Annals of Math. 37(1936), 766-781.
[2] L. BICAN: Mixed abelian groups of torsionfree rank one, Czech. Math.J. 20(1970), 232-242.
[3] L. BICAN: A note on mixed abelian groups, Czech. Math. J. 21(1971), 413-417.
[4] L. BICAN: Splitting in abelian groups (to appear in Czech. Math. J.).
[5] L. BICAN: Factor-splitting abelian groups of arbitrary
rank, Comment. Math. Univ. Carolinae 19(1978), 653-672.
[6] L. FUCHS: Abelian groups, Budapest, 1958.
[7] L. FUCHS: Infinite abelian groups I, Academic Press, 1970.
[8] L. PROCHKZKA: Zametka o rasXepljaemosti smešannych abelevych grupp, Czech. Math.J. 10(1960), 479-492.
[9] A.E. STRATTON: On the splitting of rank one abelian groups, J. of Algebra 19(1971), 254-260.
[10] A.E. STRATTON: A splitting theorem for mixed abelian groups, Symposia Mathematica, Vol. XIII, Academic Press London, 1974, 104-125.
[11] V.S. ŽURAVSKIJ: 0 rasceplenii nekotorych smeảannych abelevych grupp, Mat. Sb. 48(1959), 499-508.
[12] V.S. ŽURAVSKIJ: Obobšenie nekotorych kriteriev rasčeplenija smešannych abele vych grupp, Mat. Sb. 51 (1960), 377-382.

Matematicko-fyzikálnf fakulta

Universita Karlova
Sokolovská 83, 18600 Praha 8
Ceskosl ovensko
(Oblatum 30.6. 1978)

