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COMMENTÀTIONЖS MATИІMATICAI ÜЩIГIШITATIS CAШШfÄl 

1 9 , 4 (1978) 

A NOTl ON ШBЋSQШ SPACIS 

B. BIEðAN, Bratislava 

Abstract: A simple proof of the isomorphism theorem 
for Lebesguespaces is presented and the restriction of the 
Lebesgue measure to Borel sets is characterized. 

Key words: Lebesgue space, isomorphism of probability 
spaces. 

AMS: 28A65 

In this note we present a simple proof of the isomorph

ism theorem for Lebesgue spaces. Simultaneously we characte

rize the restriction of the Lebesgue measure to Borel sets. 

First some fixed notations. By I we denote the unit in

terval on the line, B or L resp. the family of all Borel sub

sets of 1 or all Lebesgue measurable subsets of I resp., X 

the Lebesgue measure on Lf *> its restriction to B. Further 

put I = 40,11 f where N is the set of all positive integers 

and denote by T the &-algebra generated by the family of 

all cylinders in I. 

A basic step in our proof gives the following lemma. 

Lemma. Let ^ be a non-atomic probability measure on 

T. Then (IfTf^) and (IfB,i> ) are isomorphic. 

Proof. Put B n = -fy €1; yB = 1} . We construct C^c If 
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C being union of finite number of intervals such that 

§4,(B1
%1f%B2

 %2f% ..*f*\ n) * ^(C-, Xf% C2
 Zn.*.nQn

 n) 

for every sequence (i^,...,^) of 0 and 1. (Here B^1 = B^, 

B^0 « I - B^ and similarly for Ck .) It can be easily con

structed by 

c1 - < 0 , <«->(%», 

C2 a < 0, ^ ( B ^ B2)) u < ^ ( B 1 ) l ^UB%) + 

+ ^(B^ABg)) 

etc. The sets B.,,...,Bn generate a decomposition | n con

sisting of all non-empty intersections B^ r% B 2 n»».f% 13̂  n 

(i^^CO,!?, k = l,...,n). Similarly let ^ n be the decom-

oosition generated by ^^•••t^n» If we put 

i l f I = max ^ ( C ) , 5 C c | ^ 

then evidently I f n i = B^ n I (n = 1 , 2 , . . . ) . Since i$n)*9l 

generates T and (U* i s non-atomic, we obtain 

lim I f ^ l = 0 

(see C3J, § 41, Theorem A) # Let K be the set of end-points 

of all 4* . Then the relation lim 11)m It = lim IC^Il = 0 
*n m»>+oo * n m,~¥M Jn 

implies that K is a dense subset of 1 (see C3J, § 41, theo

rem B). 

Now we can construct a mapping tjf ;1 - K — * t by the 

following way: 

( 1, if zвC
n 

n
 l 0, if ẑ C,, 
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Denote by 2^) the union of all intersections B-̂  A ... 

nBfc k, where fjui\ XA ...A^ K) = 0. Further let Z ( o ) 

be the set of all y€Y, for which yn = 0 for only finitely 

many indices n and all yel for which yn = 1 for only fini

tely many indices n. Since ^ is non-atomic, every single

ton has measure zero.j hence also ( & U Z ) = 0. Therefore, 

if we put Z a 4,VoZ » then (̂ z* = °* 

We now prove that t|f :I ~ K—i* Y is a bisection between 

I - K and I - Z. 

Evidently if/* is infective, since z~,+ z2 imPlies the 

existence of such n that e.g. z-,€C and --2^^ n (
K *s a*6-1"* 

se and therefore (C n) n = 1 separates points), hence df(
zi^n = 

= 1, (Y(z2))n
 = ° and therefore y (z-^ 4* y(z 2). 

Let ye Y - 2. Since y^Z C k ), we have i> (^4 Qn
 n) = 

* /y,( 0 . BL n)>0 and hence 0 # O , C n c TV Q*n. Since 

( f""^ C " n ) . _ , is a sequence of non-empty closed sets, whose 

diameters converge to 0, there is exactly one z€l, for 

which 
co y 

z в O C
n

n
. 

The point z is not an end-point for any C
n
. Namely, if zeK, 

then either y = 0 for almost all n, or y
n
 = 1 for almost 

all n, i.e. ycZ*°^CZ, what is impossible. Since z is rot 
y "" y y 

an end-point for C
n

 n
, but z e C

r

 n
, we obtain z € Cn

 n (n = 

= 1,2,...). But it means that (f (z))n = 1, if yn = 1, 

(y(z))n = 0, if yn = 0, hence tff(z) = y and f :I - K — > 

— ¥ 1 - Z is surjective. 

Take zeC - K. The relation holds iff z is not an end-
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point of C and lies in the left part under the n-th parti

tion. But it holds iff (f (z))n = lf y(z)#Z« We have pro

ved f(®n ~ K' s \ " Z* ^^etA179 (*&&) " C^Bn " z) s 

« ^(0 - K) -» ̂ (C^)* Since these relations hold also for 

the sets belonging to the rings generated by (\^Ts:i 0T 

^Cn^n=l rtsP#» w e Bee that Y anfl T are measurable and 

measure preserving. Hence f is an invertible transforma

tion, (X,T f^) f (IfB,^) are isomorphic. 

Definition 1. A sequence (A )„-.-# of measurable sub

sets of a measurable space (XfS) is called separaiiag, if 

to every x,yeXf x + y there is n such that A^ contains ex

actly one of the points. A. separating sequence is called m 

separating base, if it generates S. 

<Q0 

Definition 2. for any separating base (^n)n=i define 

i:X*—^1 by the formula (i(x))n = lf if x#A f (i(x))n = 0, 

if x^A^. We say that U ^ ) ^ is a quasicomplete base, if 
i(X)€f. 

Theorem 1. Let (XfSfP) be a non-atomic probability 

space having a separating quasicomplete base. Then (XfSfP) 

is isomorphic with (I yB tv)* 

Proof. Let (An)JJL* be a separating quasicomplete base, 

i:X—»X be the imbedding induced ty the base. Put <u = 

= Pi"*1, i.e. ̂ (2) • PCi" 1^)), 2*T. Since i(X)#Tf 

$4,(1 - i(X)) =5 0, evidently (XfSfP) is isomorphic with 

(Y,T,^c). But Lemma states the isomorphism between (Y,TlCo,) 

and (IfBf v K 
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Definition 3. Denote by Pi the measure defined on 

T by the formula Pi^Cl) = P(i"1(I)) and by Tc the family 

of all (Pi ) * -measurable subsets of X. A separating se

quence is called an almost complete base, if i(X)cT and 

S is the & -algebra generated by this base and the family 

-tlcX| P*(!) = Of • 

Theorem 2« Let (XfSfP) be a complete non-atomic pro

bability space having a separating almost complete base. 

Then (XfSfP) and (I,L,&) are isomorphic. 

Proof. As before, i is one-to-one, i:X—i*i(X). Let 

(U,c be the restriction of (Pi ) * to the S -algebra Tc of 

all measurable sets. We see that ((**(? - i(X)) - 0, i maps 

A on 4y| yn = li n i(X) and these sets generate (after com

pletions) €-algebras in their spaces. Therefore (XfSfP) 

and (lfTc> ^Q) are isomorphic. Put $L » Pi-1;T—p 1. Then 

by Lemma (IfTf(U») is isomorphic with (I,B,<»?)'• Evidently 

their completions (IfTcf (*Q) t (I,BC, >>c) = (IfL,^) are 

isomorphic, too. Therefore (XfSfP) is isomorphic with 

(IfLf X). 
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