Commentationes Mathematicae Universitatis Caroline

Beloslav Riečan
 A note on Lebesgue spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 19 (1978), No. 4, 783--788
Persistent URL: http://dml.cz/dmlcz/105893

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$$
19,4 \text { (1978) }
$$

A NOTE ON LEBESGUE SPACES

B. RIEČAN, Bratislava

Abstract: A simple proof of the isomorphism theorem for Lebesgue spaces is presented and the restriction of the Lebesgue measure to Borel sets is characterized.

Key words: Lebesgue space, isomorphism of probability spaces.

AMS: 28A65

In this note we present a simple proof of the isomorphism theorem for Le besgue spaces. Simultaneously we characterize the restriction of the Lebesgue measure to Borel sets.

First some fixed notations. By I we denote the unit interval on the line, B or L resp. the family of all Borel subsets of I or all Lebesgue measurable subsets of I resp., λ the Lebesgue measure on $L, \mathcal{\nu}$ its restriction to B. Further put $Y=\{0,1\}^{N}$, where N is the set of all positive integers and denote by T the σ-algebra generated by the family of all cylinders in Y.

A basic step in our proof gives the following lemma.
Lemma. Let μ be a non-atomic probability measure on T. Then (Y, T, μ) and (I, B, ν) are isomorphic.

Proof. Put $B_{n}=\left\{y \in Y ; y_{n}=1\right\}$. We construct $C_{n} \in I$,
C_{n} being union of finite number of intervals such that

$$
\mu\left(B_{1}{ }^{i_{1}} \cap B_{2}{ }^{i_{2}} \cap \ldots \cap B_{n}^{i_{n}}\right)=\nu\left(C_{1}{ }^{i_{1}} \cap c_{2}^{i_{2}} \cap \ldots \cap C_{n}^{i_{n}}\right)
$$

for every sequence (i_{1}, \ldots, i_{n}) of 0 and 1. (Here $B_{k}{ }^{1}=B_{k}$, $B_{k}{ }^{0}=Y-B_{k}$ and similarly for $C_{k}{ }^{i}$.) It can be easily constructed by

$$
\begin{aligned}
& \left.C_{1}=<0, \mu\left(B_{1}\right)\right), \\
& \left.C_{2}=<0, \mu\left(B_{1} \cap B_{2}\right)\right) v<\mu\left(B_{1}\right), \mu\left(B_{1}\right)+ \\
&
\end{aligned}
$$

etc. The sets B_{1}, \ldots, B_{n} generate a decomposition $\xi_{i_{n}}$ conlisting of all nonempty intersections $B_{1}{ }^{i_{1}} \cap B_{2}{ }^{i}{ }_{2} \ldots \ldots B_{n}{ }^{i_{n}}$ $\left(i_{k} \in\{0,1\}, k=1, \ldots, n\right)$. Similarly let η_{n} be the decomposition generated by C_{1}, \ldots, c_{n}. If we put

$$
\|\xi\|=\max _{C \in \xi} \mu(C)
$$

then evidently $\left\|\xi_{n}\right\|=\left\|\eta_{n}\right\|(n=1,2, \ldots)$. Since $\left(\xi_{n}\right)_{n=1}^{\infty}$ generates T and μ is non-atomic, we obtain

$$
\lim _{n \rightarrow \infty}\left\|\xi_{n}\right\|=0
$$

(see [3], § 41, Theorem A). Let K be the set of end-points of all η_{n}. Then the relation $\lim _{n \rightarrow \infty}\left\|\eta_{n}\right\|=\lim _{n \rightarrow \infty}\left\|\xi_{n}\right\|=0$ implies that K is a dense subset of I (see [3], §41, therem B).

Now we can construct a mapping $\psi: I-K \longrightarrow Y$ by the following way:

$$
(\psi(z))_{n}=\left\{\begin{array}{l}
1, \text { if } z \in C_{n} \\
0, \text { if } z \notin C_{n}
\end{array} .\right.
$$

Denote by $Z^{(k)}$ the union of all intersections $B_{1}{ }^{i_{1}} \cap \ldots$ $\cap B_{k}^{i_{k}}$, where $\mu\left(B_{1}{ }^{i_{1}} \cap \ldots \cap B_{k}{ }^{i_{k}}\right)=0$. Further let $Z^{(0)}$ be the set of all $\mathrm{y} \in \mathrm{Y}$, for which $\mathrm{y}_{\mathrm{n}}=0$ for only finitely many indices n and all $y \in Y$ for which $y_{n}=1$ for only finitely many indices n. Since μ is non-atomic, every singleton has measure zero; hence also $\mu\left(z^{(0)}\right)=0$. Therefore, if we put $Z={ }_{i}^{\infty} \bigcup_{0}^{(i)}$, then $\mu(Z)=0$.

We now prove that $\psi: I-K \longrightarrow Y$ is a bijection between $\mathrm{I}-\mathrm{K}$ and $\mathrm{Y}-\mathrm{Z}$.

Evidently ψ is injective, since $z_{1} \neq z_{2}$ implies the existence of such n that e.g. $z_{1} \in C_{n}$ and $z_{2} \notin C_{n}$ (K is dense and therefore $\left(C_{n}\right)_{n=1}^{\infty}$ separates points), hence $\left(\psi\left(z_{1}\right)\right)_{n}=$ $=1,\left(\psi\left(z_{2}\right)\right)_{n}=0$ and therefore $\psi\left(z_{1}\right) \neq \psi\left(z_{2}\right)$.

Let $y \in Y-z$. Since $y \notin Z^{(k)}$, we have $\mu(\overbrace{n} \overbrace{1} C_{n} y_{n})=$ $=\mu(\overbrace{n=1}^{n} B_{n}^{y_{n}})>0$ and hence $\varnothing \neq \overbrace{n=1}^{n} C_{n}^{y_{n}} c_{n=1}^{k_{n}^{n}} C_{n}^{y_{n}}$. Since $(\overbrace{n=1}^{k} \overline{C_{n}^{y n}})_{k=1}^{\infty}$ is a sequence of non-empty closed sets, whose diameters converge to 0 , there is exactly one $z \in I$, for which

$$
z \in \stackrel{\infty}{\infty} \underset{n=1}{\infty} \overline{C_{n}} \overline{\bar{y}_{n}} .
$$

The point z is not an end-point for any C_{n}. Namely, if $z \in K$, then either $y_{n}=0$ for almost all n, or $y_{n}=1$ for almost all n, i.e. $y \in Z^{(0)} C Z$, what is impossible. Since z is not an end-point for $C_{n}{ }^{y_{n}}$, but $z \in C_{n}{ }^{y_{n}}$, we obtain $z \in C_{n}{ }^{y_{n}}$ in $=$ $=1,2, \ldots)$. But it means that $(\psi(z))_{n}=1$, if $y_{n}=1$, $(\psi(z))_{n}=0$, if $y_{n}=0$, hence $\psi(z)=y$ and $\psi: I-K \longrightarrow$ $\rightarrow Y-Z$ is surjective.

Take $z \in C_{n}-K$. The relation holds iff z is not an end-
point of C_{n} and lies in the left part under the n-th partition. But it holds iff $(\psi(z))_{n}=1, \psi(z) \notin Z$. We have proved $\psi\left(C_{n}-K\right)=B_{n}-Z$. Evidently, $\mu\left(B_{n}\right)=\mu\left(B_{n}-Z\right)=$ $=\nu\left(C_{n}-K\right)=\nu\left(C_{n}\right)$. Since these relations hold also for the sets belonging to the rings generated by $\left(B_{n}\right)_{n=1}^{\infty}$ or $\left(C_{n}\right)_{n=1}^{\infty}$ resp., we see that ψ and ψ^{-1} are measurable and measure preserving. Hence $\boldsymbol{\psi}$ is an invertible transformation, $(Y, T, \mu),(I, B, \nu)$ are isomorphic.

Definition 1. A sequence $\left(A_{n}\right)_{n=1}^{\infty}$ of measurable subsets of a measurable space (X, S) is called separating, if to every $x, y \in X, x \neq y$ there is n such that A_{n} contains exactly one of the points. A separating sequence is called a separating base, if it generates S.

Definition 2. For any separating base $\left(A_{n}\right)_{n=1}^{\infty}$ define $i: X \rightarrow Y$ by the formula $(i(x))_{n}=1$, if $x \in A_{n},(i(x))_{n}=0$, if $x \neq A_{n}$. We say that $\left(A_{n}\right)_{n=1}^{\infty}$ is a quasicomplete base, if $i(X) \in T$.

Theorem 1. Let ($\mathrm{X}, \mathrm{S}, \mathrm{P}$) be a non-atomic probability space having a separating quasicomplete base. Then ($\mathrm{X}, \mathrm{s}, \mathrm{P}$) is isomorphic with (I, B, ν).

Proof. Let $\left(A_{n}\right)_{n=1}^{\infty}$ be a separating quasicomplete base, $i: X \longrightarrow Y$ be the imbedding induced by the base. Put $\mu=$ $=P i^{-1}$, i.e. $\mu(E)=P\left(i^{-1}(E)\right), E \in T$. Since $i(X) \in T$, $\mu(Y-i(X))=0$, evidently (X, S, P) is isomorphic with (Y, T, μ). But Lemma states the isomorphism between (Y, T, \mathcal{M}) and (I, B, ν).

Definition 3. Denote by Pi^{-1} the measure defined on T by the formula $\mathrm{Pi}^{-1}(\mathbb{F})=P\left(\mathrm{i}^{-1}(E)\right.$) and by T_{c} the family of all (Pi^{-1})* -measurable subsets of Y . A separating sequence is called an almost complete base, if $i(X) \in T_{c}$ and S is the σ-algebra generated by this base and the family $\left\{E \subset X ; P^{*}(E)=0\right\}$.

Theorem 2. Let (X, S, P) be a complete non-atomic probability space having a separating almost complete base. Then (X, S, P) and (I, L, λ) are isomorphic.

Proof. As before, i is one-to-one, $i: X \longrightarrow i(X)$. Let μ_{c} be the restriction of $\left(P_{i}{ }^{-1}\right)^{*}$ to the σ-algebra T_{c} of all measurable sets. We see that $\mu_{c}(Y-i(X))=0$, i maps A_{n} on $\left\{y ; y_{n}=l\right\} \cap i(X)$ and these sets generate (after completions) σ-algebras in their spaces. Therefore ($\mathrm{X}, \mathrm{S}, \mathrm{P}$) and (Y, T_{c}, μ_{c}) are isomorphic. Put $\mu=P_{i}^{-1}: T \rightarrow R$. Then by Lemma (Y, T, μ) is isomorphic with (I, B, ν). Evidently their completions $\left(Y, T_{c}, \mu_{c}\right),\left(I, B_{c}, \nu_{c}\right)=(I, L, \lambda)$ are isomorphic, too. Therefore ($\mathrm{X}, \mathrm{S}, \mathrm{P}$) is isomorphic with (I, L, λ).

References
[1] J. HAEZENDONCK: Abstract Lebesgue-Rochlin spaces, Bull. Soc. Math. Belgique 25(1973), 243-258.
[2] B.V. ROCHLIN: Ob osnornych ponjatijach teorii mery, Math. sb. 25, 67(1949), 107-150.
[3] P.R. HALMOS: Measure theory, New York 1950.

Príodovedecka fakulta
Univerzity Komenského
Mlynská dolina, 81631 Bratislava
Ceskoslovensko
(Oblatum 2.6.1978)

