Commentationes Mathematicae Universitatis Caroline

David Preiss
Gaussian measures and covering theorems

Commentationes Mathematicae Universitatis Carolinae, Vol. 20 (1979), No. 1, 95--99

Persistent URL: http://dml.cz/dmlcz/105904

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

GAUSSIAN MEASURES AND COVERING THEOREMS D. PREISS

Abstract: It is shown that Vitali type covering theorem does not hold for (centered) families of balls in Hilbert spaces and Gaussian measures.
Key words: Vitali type covering theorem, Gaussian measures in Hilbert spaces.
AMS: 28A15, 28A40

Vitali type covering theorems in finite dimensional Banach spaces hold not only for the Lebesgue measure but also (under some regularity assumptions on the considered covers) for arbitrary (locally finite) measures (see [B], [M], [F; . p. 147-150], [TI for more details). If we drop the assumption of finite dimensionality the situation becomes different. By a result of Roy O. Davies [D] there exist distinct probability measures on metric space which agree on all balls. This particular behaviour is not possible in the case of Hilbert spaces. Indeed, if μ, ν are positive finite measures on a Hilbert space H which agree on balls then $\int \exp \left(\frac{1}{2}\|x+y\|^{2}\right) d \mu(x)=\int \exp \left(\frac{1}{2}\|x+y\|^{2}\right) d \nu(x)$ for every $y \in H$, consequently $\int \exp (i(x, y)) \exp \left(\frac{1}{2}(x, x)\right) d \mu(x)=$ $\int \exp (i(x, y)) \exp \left(\frac{1}{2}(x, x)\right) d \nu(x)$. This implies that the Fourier transform of $\exp \left(\frac{1}{2}(x, x)\right) \mu$ and $\exp \left(\frac{1}{2}(x, x)\right) \nu$ coincide, hence $\mu=\nu$.

However, in this note we prove that Vitali type theoren does not hold (even in a restricted sense, i.e. for the Vitali system $1 \mathcal{F}_{0}$ © [T]) for Gaussian measures in infinitely dimensional meparable Hilbert spaces.

Recall that a measure of in \mathbb{R}^{n} is called Gaussian if there is a pesitive quadratic form $A(x, y)$ on \mathbb{R}^{n} such that $\gamma(M)=$ $=\frac{1}{[} \int_{M} \exp (-\mathbb{A}(x, x)) d \mathscr{L}^{n_{x}}$ (where \mathscr{L}^{n} is the Lebesgue measure in \mathbb{R}^{n}); the normalizing factor N is chesen se that $\gamma\left(\mathbb{R}^{n}\right)=1$. A measure y^{\prime} on a separable Hilbert space is called Gaussian if $\pi\lceil\gamma]$ is Gaussian whenever π is a continuous linear map of H onte R^{n}.

We shazl construct our example in $H=\ell_{2}$; the clesed ball in H with the center x and radius r will be denoted $B(x, r)$ and the closed ball in R^{n} (considered here with the $\boldsymbol{\ell}_{\mathbf{2}}^{\mathbf{n}}$-norm) with the center in x and radius r will be denoted $B_{n}(x, r)$.

Lemma 1. There is a sequence (a_{n}) of positive real numbers with $\sum a_{n}<\infty$ such that $\mathscr{L}^{n}\left(\cup_{t \in T} B_{n}\left(x_{t}, r\right)\right) \leq a_{n} \mathscr{L}^{n}(C)$ whenever C is an open cube in R^{n} (with its sides parallel to the coordinate axes), $r>0, B_{n}\left(x_{t}, r\right) \subset C$ for every $t \in T$ and the family $\left\{B_{n}\left(x_{t}, r\right), t \in T\right\}$ is disjoint.

Proof. Let ($\mathbf{a}_{\mathbf{n}}$) be the sequence of packing densities of balls in \mathbb{R}^{n} (see [R, p. 24] for the definitions). The convergence of $\sum a_{n}$ follows from [R, Theorem 7.1] and Daniels's asymptotic formula [R, p. 90, formula (1)]. The inequality $\mathscr{L}^{n}\left(\bigcup_{t \in T} B_{n}\left(x_{t}, r\right)\right) \leqslant a_{n} \mathscr{L}^{n}(C)$ follows from $[R$, Theorem 1.5].

Lemman 2. Let ($\mathbf{a}_{\mathbf{n}}$) be the sequence from the preceding Lemma and let γ be Gaussian measure in \mathbb{R}^{n}. Then there is $\sigma>0$ such that $\gamma\left(\bigcup_{t} \in B_{n}\left(x_{t}, r\right)\right) \leq 5 a_{n}$ whenever $0<r<\sigma^{\circ}$
and the family $\left\{B_{n}\left(x_{t}, r\right) ; t \in T\right\}$ to disjoint.
Proof. Let C_{0} be a cube in R^{n} such that $\gamma\left(R^{n}-C_{0}\right) \leqslant$ $\leqslant a_{n}$. There is a partition of c_{0} into cubes c_{i} ($i=1,2, \ldots$ $\ldots, N)$ and positive numbers z_{i} such that $s_{i} \mathscr{Q}^{n}(M) \leq \gamma(M) \leqslant$ $\leq 2 z_{i} \mathscr{L}^{n}(M)$ whenever $M \subset C_{i}$ (consider any partition of C_{0} into sufficiently small cubes). Choose $\sigma>0$ such that $1-(1-2 \delta)^{n} \leqslant a_{n}$. Then, using Lemma 1 , we obtain $\gamma\left(\bigcup_{t \in T} B_{n}\left(x_{t}, r\right)\right) \leqslant \sum_{i=1}^{N} 2 z_{i}\left[\mathscr{L}^{n}\left(B_{n}\left(x_{t}, n\right) \subset C_{i} B_{n}\left(x_{t}, r\right)\right)+\right.$ $\left.+\left(1-(1-2 \sigma)^{n}\right) \mathscr{L}^{n}\left(c_{i}\right)\right]+a_{n} \leqslant \sum_{i}^{N} \sum_{n} 4 a_{n} z_{i} \mathscr{E}^{n}\left(c_{i}\right)+a_{n} \leqslant$ $\leq 4 a_{n} \gamma\left(c_{e}\right)+a_{n} \leqslant 5 a_{n}$.

Theorem. There exist a Gaussian measure γ in ℓ_{2}, a subset M of l_{2} and a subset S of $(0,+\infty)$ such that
(i) M is γ-measurable and $\gamma(\mathbf{M})>0$
(ii) $S \cap(0, h) \neq \varnothing$ for each $h>0$
 balls in ℓ_{2} with centers in M and radii belonging te $S \cap(0, h)\}]=0$.

Proof. Let (a_{n}) be the sequence from Lemma 1. We shall construct sequences $R_{i}, r_{i}, \varepsilon_{i}$ of real numbers and sequences $\boldsymbol{\gamma}_{i}$ of Gaussian mesaures in \mathbf{R}^{i} and ν_{i} of Gaussian measures in R such that
(1) $0<\varepsilon_{i}<r_{i}<R_{i} \leqslant 1 / i$
(2) $R_{i} \leq 2^{-i}$ min $\left\{\varepsilon_{j}, 1 \leqslant j<i\right\}$ for $i=2,3, \ldots$
(3) $\nu_{i}\left(B_{1}\left(0, R_{i}\right)\right) \geq 1-2^{-1-1}$
(4) $\gamma_{i}=\prod_{j=1}^{i} \nu_{j}$
(5) $r_{i}\left({ }_{t} Y_{T} B_{i}\left(x_{t}, r_{i}\right)\right) \leqslant 5 a_{i}$ whenever the family
$\left\{B_{i}\left(x_{t}, r_{i}\right) ; t \in T\right\}$ is disjoint
(6) $\quad \boldsymbol{\gamma}_{i}\left(B_{i}\left(x, r_{i}+e_{i}\right)\right) \leqslant 2 \gamma_{i}\left(B_{i}\left(x ; r_{i}\right)\right)$ whenever $x \in B_{i}\left(0, \sum_{k}^{i}{ }_{i} R_{k}\right)$.

For $i=1$ we can put $R_{1}=1$, choose a Gaussian measure $\nu_{1}=\gamma_{1}$ such that (3) holds, then choese $r_{1}<R_{1}$ fulfilling (5) according to the preceding Lemma; the condition (6) clearly holds for sufficiently small positive $\varepsilon_{1}<r_{1}$.

The induction step is also easy. We may first choose $R_{i} \leqslant 1 / i$ such that (2) holds, then find a Gaussian measure
ν_{i} fulfilling (3) and then choose $r_{i}<R_{i}$ according to Lemma 2; the condition (6) again holds for all sufficiently small $\varepsilon_{i}<r_{i}$.

Let $\mathscr{e}_{i}: \ell_{2} \rightarrow \mathbb{R}$ be the $i-t h$ coordinate and let
$\pi_{i}: \ell_{2} \rightarrow \mathbb{R}^{i}$ be the projection inte the first i coordinates. From (1) and (3) we infer that there is a unique (necessarily Gaussian) measure γ on ℓ_{2} such that $\int E\left(\sigma_{i} z\right) d y(z)=$ $=\int g(x) d \gamma_{i}(x)$ for $i=1, \ldots$ and any bounded Borel function E on \mathbb{R}^{i} (cff [G]). Put $M={ }_{i} \bigcap_{1}^{\infty} \epsilon_{i}^{-1}\left(B_{1}\left(0, R_{i}\right)\right)$; then (3) implies $\gamma^{\prime}(\mathbb{M}) \geqslant 1 / 2-$ Let S be the set of all numbers $r_{i}+\varepsilon_{i}$.

If \mathscr{S} is a disjoint family of balls in ℓ_{2} with radii in $\operatorname{S\cap }\left(0, r_{k}+\varepsilon_{k}\right)$ put $\mathscr{f}_{i}=\left\{B(x, r) \in \mathscr{S} ; r=r_{i}+\varepsilon_{i}\right\}$ for $i=$ $=k+1, \ldots$.

Whenever $B\left(x, r_{i}+\varepsilon_{i}\right), B\left(y, r_{i}+\varepsilon_{i}\right)$ belong to y_{i} and $x \neq y$ we have $4\left(r_{i}+\varepsilon_{i}\right)^{2}<\|x-y\|^{2} \leqslant\left\|\pi_{i} x-\pi_{i} y\right\|^{2}+$ $+4 \sum_{j} \sum_{i} R_{i}^{2} \leqslant\left\|\pi_{i} x-\pi_{i} y\right\|^{2}+4 \varepsilon \varepsilon_{i}^{2}$ according to (2), hence the family $\left\{B_{i}\left(\pi_{i} x, r_{i}\right) ; B\left(x, r_{i}+\varepsilon_{i}\right) \in \mathscr{Y}_{i}\right.$ of balls in \mathbb{R}^{i} is disjoint. Using (6) and (5) we obtain $\gamma\left(U\left\{B ; B \in \mathscr{S}_{i}\right\}\right) \leqslant$
$\leqslant \sum\left\{\gamma\left(\pi_{i}^{-1}\left(B_{i}\left(\pi_{i} x, r_{i}+\varepsilon_{i}\right)\right) ; B\left(x, r_{i}+\varepsilon_{i}\right) \in \varphi_{i}\right\} \leqslant\right.$
$\Leftrightarrow \Sigma\left\{\gamma_{i}\left(B_{i}\left(\pi_{i} x, r_{i}+\varepsilon_{i}\right)\right) ; B\left(x, r_{i}+\varepsilon_{i}\right) \in \mathscr{Y}_{i}\right\} \leqslant$
$\leqslant 2 \sum\left\{\gamma_{i}\left(B_{i}\left(\sigma_{i} x_{i} r_{i}\right)\right) ; B\left(x, r_{i}+\varepsilon_{i}\right) \in \mathcal{Y}_{i}\right\} \leqslant 10 a_{i}$.
Hence $\gamma(U\{B, B \in \mathcal{Y}\}) \in 10{ }_{i} \sum_{\lambda / h} a_{i}$ 。

```
                                    References
[B] BESICOVITCH A.S.: A general form of the covering prin-
    ciple and relative differentiation of additive
    functions, Proc. Cambridge Philos. Soc. 41(1945),
    103-110
[D] DAVIES R.O.: Measures not approximable or not specifi-
        able by means of balls, Mathematika 18(1971),
        157-160
[F] FEDERER H.: Geometric measure theory, Springer-Verlag
        1969
[G] GELFAND I.M., VILENKIN N.J.: Generalized functions 4,
        Moscow 1961
[M] MORSE A.P.: Perfect blankets, Trans. Amer. Math. Soc. 6l
        (1947), 418-442
[R] ROGERS C.A.: Packing and covering, Cambridge University
        Press }196
[T] TOPSØE F.: Packinfe and coverings with balls in finite di-
    mensional normed spaces, in Measure Theory, Lec-
    ture Notes in Mathematics, Springer-Verlag 1976,
    197-199
Matematicko-fyzikalni fakulta
Universita Karlova
Sokolovská 83, 18600 Praha }
Ceskoslovensko
```

(Oblatum 30.10.1978)

