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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
20, 1 (1979) 

GAUSSIAN MEASURES AND COVERING THEOREMS 
D. PREISS 

Abstract; I t i s shown that V i t a l i type covering theo
rem does not hold for (centered) famil ies of ba l l s in H i l -
bert spaces and Gaussian measures. 

Key words: V i ta l i type covering theorem, Gaussian measu
res in Hilbert spaces. 

AMS: 28A15, 28A40 

Vitali type covering theorems in finite dimensional Ba-

nach spaces hold not only for the Lebesgue measure but also 

(under some regularity assumptions on the considered covers) 

for arbitrary (locally finite) measures (see [BJf [Ml, C F̂  , 

p. 147-150]f [T] for more details). If we drop the assump

tion of finite dimensionality the situation becomes differ

ent. By a result of Roy 0. Davies [ DJ there exist distinct 

probability measures on a metric space which agree on all 

balls. This particular behaviour is not possible in the case 

of Hilbert spaces. Indeed, if (A,^ )> are positive finite me

asures on a Hilbert space H which agree on balls then 

/ exp(| II x + y H 2) d^(x) = / exp(| II x + y R 2) d V (x) for 

every ycH, consequently / exp(i(xfy)) exp(^(xfx)) d^(x) * 

/ exp(i(x,y)) exp(^(xfx)) d>>(x). This implies that the 

Fourier transform of exp(fyxtx))(* and exp(^(x,x))v coin

cide, hence (jv « >> • 
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However, in this note we prove that Vitali type theo

rem does not hold (even in a restricted sense, i.e. for the 

Vitali system *f •£ CT3) for Gaussian measures in infini

tely dimensional aeparable Hilbert spaces. 

Recall that a measure tf in 1Rn is called Gaussian if the

re is a positive quadratic form A.(x,y) on R n such that y (M) = 

* g L exp(-A(x,x))d#nx (where i£n is the Lebeague measure in 

R n ) | the normalising factor N is chosen so that ^ ( R n ) = 1. 

A measure p on a separable Hilbert space is called Gaussian 

if Vflyl is Gaussian whenever x is a continuous linear map 

of H onto R n. 

We shall construct our example in H *^2f
 t n e closed ball 

in H with the center x and radius r will be denoted B(x,r) and 

the closed ball in R n (considered here with the Z n-norm) 

with the center in x and radius r will be denoted BM(x,r). 
n f 

Lemma 1. There is a sequence (an) of positive real num

bers with 2 an-c a> such that #">( iUTBn(xt,r))^an#*V(C) 

whenever C is an open cube in R11 (with its sides parallel to 

the coordinate axes), r>0, Bn(xt,r)cC for every tcT and 

the family 4Bn(xt,r),t 6 Tf is disjoint. 

Proof. Let (an) be the sequence of packing densities 

of tells in R n (see CR, p. 243 for the definitions). The 

convergence of 5S an follows from CRt Theorem 7.13 and Da

niels's asymptotic formula C R, fr. 90, formula (1)3 . The in

equality S6n(iOtrBn(xt,r))^an £
n(C) follows from rR, Theo

rem 1.5]. 

Lemma 2. Lot (an) bo the sequence from the preceding 

Lemma and let ^ be a Gaussian measure in BLn. Then there is 

«f > 0 such that y ^ ^ C Bn<*t»r>)6 5 o^ whenever 0*r<ccT 
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and the family {Bn(xtfr){t €T} to disjoint. 

Proof. Let C0 be a cube in R
n such that y ( R n - C#)£ 

A a . There is a partition af C into cubes C. (i * 1.2.... n o x 

...fN) and positive numbers si such that %^ &n(U) 6 y iU) £ 

£ 2zi $6
n(M) whenever M c ^ (consider any partition ef C^ in

to sufficiently small cubes). Choose <f > 0 such that 

l-(l-2**f )**£ aR. Then, using Lemma 1, we obtain 

+ (i-(i- 2<r)n) ti-.cp:. • *n*jtf£i 4»B *i £n(c±) + - ^ A 

Theorem. There exist a Gaussian measure y in X2> * 

subset M of &2 a n d a 8uDset S of iQ9+co) such that 

(i) M is y-measurable and y(M)>Q 

(ii) Sn(O,h)4:0 for each h>0 

(iii) lim £sup{?-(U.tfBfB e tf§ ; *f is a disjoint family of 

balls in ^ 2
 w i t n c e n t e r a i n M and radii belonging te 

Sn(0,h)J] = 0. 

Proof. Let (an) be the sequence from Lemma 1. We shall 

construct sequences R^, r^f £^ of real numbers and sequences 

y i of Gaussian measures in K and i> ^ of Gaussian measu

res in R such that 

(1) 0 •* e ^ r . * ; I^tf l / i 

(2) B±6 2~l min * e . . , l* j « i j f i r i « 2 t 3 t . . . 

(3) ^ i(B1(0 f l . lL))>l - 2 - 1 ' 1 

(4) n**& *> 
( 5 ) ^ i ( t V T B i ( x t , r i J ) * 5 *4 w h*a e v« r ' tlw family 
4 B i ( x t , r i ) ; t e T J i s disjoint 

(6) 1 * i ^ B i ( x t ^ * i ) ) * 2*y i(B i(x;r1)) whenever 

x€B. (O f < | . | 4 V 
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For i =- 1 we can put R, * 1, choose a Gaussian measure 

^1 9 fl 8UCn tna<t (3) holds, then choase r,< It fulfillinf 

(5) accordinf to the precedinf Lemma; the condition (6) clear

ly holds for sufficiently small positive ^ i < r i * 

The induction step is also easy. We may first choose 

R ^ 1/i such that (2) holds, then find a Gaussian measure 

$ i fulfillinf (3) and then choose r^< R accordinf to Lem

ma 2 i the condition (6) afain holds for all sufficiently 

small e i«< ri. 

Let a ^ . : ^ 2 — • ̂  De ^ne i-^h coordinate and let 

JTi: #2 — * R x be the projection inta the first i coordi

nates. From (1) and (3) we infer that there is a unique (ne

cessarily Gaussian) measure ^ on i 2 such that J* g(af^z)d^iz)-

» J* f(x)dyi(x) for i = !,.•• and any bounded Borel function g 

an R 1 (cf> TGIi). Put M » ̂ ^ tt i
1(B1(0,Ri)); then (3) imp

lies #"(-*) 2.1/2- Let S be the set of all numbers ri + £ ^ 

It if is a disjoint family of balls in Z2 with radii in 

Sn (0,rk + e k) put tf i «-C B(x,r) € if ; r * r^ + t $} for i • 

* k+1,... . 

Whenever B(x,ri + €-i), B(y,ri + e i) belonf to if i and 

x*y we have *{r± + t±)2< l l x - y l 2 ^ |l Jr^x - Jf.jy II2 + 

+ 4 . 2 . 3? * II iff.x - iT.y fl2 + 4 e? accordinf to (2), hence 
Ai *»» <v X X X X 

the family ( B ^ 9r ix 9r i); B(x,r i
 + ^i> « ^ i of balls in R 1 

i s disjoint. Usinf (6) and (5) we obtain y ( U i B;B e ^ J )£ 

^ 2 -C^ (JTi
1(Bi(3fTix,ri+ e . i ) ) i B(x,r i+ ^ ±) e 4il ^ 

* £ t3* i (B i ( t f i x ,r i + e i ) ) ; B C x , ^ s,±) e tf±l & 

* 2 S < y i(B i(of j^x,^)); B C x , ^ £±) e tf.ji-6 10 a i . 

Hence y ( U «£ B,B e tf I ) * 1 0 ^ ^ a ^ 
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