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COMMENTATIONES MATHEMATICAE UNIVERSITATIS fcAROLINAE 

20,2 (1979) 

CONCERNING INTERIOR MAPPING THEOREM 
Marian FABIAN 

Abstract: Let X, Y be real normed linear spaces with 
scalar product and F:B(x ,r)—*-Y be a Lipschitzian mapping 

which can be approximated by a family of linear, continuous, 
"uniformly" open mappings with a certain accuracy. Then it 
is proved that Fx lies in int R(F), see Theorem 1. Further
more, additional conditions satisfying Fx e int R(F) are dis
cussed. The proof of the quoted result is carried out by de
veloping of the method of Pourciau [5, Section 93, where the 
finitely dimensional case is considered. 

Key words: Space with scalar product, Lipschitzian map
ping, convex closed set, interior(of the closure) of range, 
interior mapping theorem. 
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Introduction. The well known interior mapping theorem, 

due to Graves C3, Theorem 13, asserts that Fx € int R(F) if 

the mapping F:X—> Y does not differ much from a linear, con

tinuous, open mapping L near x and X is complete. Recently 

Pourciau [53 obtained the same conclusion provided that X 

and Y are finitely dimensional and the only mapping L is re

placed by a family of linear, surjective (i.e., open) mapp

ings . His result reads as follows: 

345 



Theorem (Pourciau [5, Theorem 6.13). I*t F : ^ — • iR > 

m*4n, be a Lipschitzian mapping, x Q€ int D(F), and let the 

Clarke subdifferential (cf. Cl, Definition 13, f4, Section 23) 

9F(xft) = co 4 lim dF(xv) I x^—-» xrt, dF(x,_) exist I 

be surjective, i.e., each L e d F C x ) is surjective. 

Then Fx € int R(F). 

It should be noted that, in the case m = n, the above re

sult is contained in Clarke's inverse function theorem [1, 

Theorem 13. 

The aim of this note is to extend, as long as we are ab

le, the Pourciau theorem to infinitely dimensional spaces, 

see Theorem 1. In the proof we follow 15, Section 93, where a 

penalty functional technique is used* But some difficulties 

are to be avoided in our situation. Nameiy, in I 5, Section 93, 

the Clarke subdifferential of some nonnegative continuous 

functional at a point of its minimum is computed with help of 

the chain rule [5, Proposition 4.83. However, in our case no 

kind of differentiability is assumed and hence no chain rule 

is available. Moreover, in an infinitely dimensional space, 

it may happen that a functional on a closed ball attains mi

nimum in no point. 

The obtained result is, unfortunately, somewhat weaker 

than what we would wish. That is we get that Fx £ int R(F) 

only. In the last section there are given some additional con

ditions under which our result becomes an interior mapping 

theorem, i.e., Fx € int R(F). 

Also the sense of the condition (2) is explained in this 

section. 
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Result. Let X, Y be real normed linear spaces with sca

lar products <.,.> and corresponding norms IV II , i.e., 

<u,u>=~ Hull . B(xQ,r) stands for the open ball of centre 

x Q e X and radius r > 0 . The closure of a set M c X is denoted 

by M, the closed convex hull of M by co M. M stands for the 

set 

4 x 6 X | < x , m > = 0 f o r a l l m 6 M l . 

Given a mapping F:X—-> Y, its domain and range are denoted 

by D(F) and R(F) respectively. The space of all continuous, 

linear mappings L:X-—> Y, with D(L) =- X, endowed with the usu

al linear structure and norm is denoted by .S£(X,Y). The norm 

HLIi of L £ £(XfY) is defined by 

HLH = sup i IlLxll | 11x11= 15 • 

L* means the adjoint mapping to L, N(L) is the space of all 

x c X satisfying Lx = 0. IR n stands for the n-dimensional Eu

clidean space. 

•theorem 1. Let X, Y be real normed linear spaces with 

scalar products and F:X—> Y be a mapping with B(x ,r)cD(F) 

for some xQe X and some r > 0 . Assume that there are numbers 

«£:>• 0, (he I 0 , ^ ) , *y -> 0, and a set E c . £ (X,Y) such that 

the following three conditions are satisfied: 

(1) V x , x6B(x0,r) (IFx - Fx II é y U x - xl 

(2) V y e X 3 0 + x e X V L eVfí <y,Lx> ž otllyll l lxll , 

(3) V x , £ e B ( x ň , г ) ЗЬйTЯ \\ Fx - Fx - L(x - x)l! é 
o 

û ßllx - x! 

Then FxQ€ int R(F); more precisely, 

,oC B(Fxof(f -ß)r)cF(B(xofr)). 
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Proof: Fix y € B ( F x Q , ( ~ - / l ) r ) , y4=Fx0, a r b i t r a r i l y . 

We s h a l l argue by con t r ad i c t i on , tha t i s , l e t the re be p > 0 

such tha t 

(4) y y x 6 B ( x 0 , r ) II Fx - yj |£ p > 0 . 

We shall consider the following functional 

«j(x) = JlFx - y» + k llx - x 0 l , x £ B ( x 0 , r j , 

where 

(5) k = | l l F x 0 - y l l . 

(We note tha t the member k II x - x II plays the role of a "pe

n a l t y " . ) Denote 

m = inf \<f{x) \ x€ B(xQ , r )£ . 

At this point the proof splits into two cases. First let us 

assume that 

(6) m-tllFx0 - yll t=^(xQ)3 . 

We remark tha t k<oC- 2t3 for fl FxQ - yl| < ( ~ - (l)r* Choose 

(7) A e ( 0 , o c - 2(1 - , k > n ( 0 , | ( HFx0 - y II - m)) 

and denote 

M a \xcB{xQfr)\ <y(x)< m + A i . 

We claim 

(8) M e 4 x e B ( x o f £ ) i II x - x J | > — — I . 
0 d l ° ^ - k 

(In the sequel we s h a l l show t h a t y - k > 0 . ) Indeed, l e t 

XdM. I f | x - xQll > ?r, i t would then follow by (4 ) , (5 ) and 

(7) t h a t 

A + m> c^(x) = llFx - y II + k llx - x 0 B>k llx - x0H > k | = 
= llFx0 - yll > 2h + m, 
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a contrad ict ion. Hence xeB(xQt^). Also, (1) and (7) y i e ld 

A + m r II Fx - y II + k II x - x0 II 2 W Fx0 - y II - II Fx - FxQ II + 

+ k l l x - x 0 ) U H F x 0 - yil - if- k> || x - x 0 l l > 2 A + m -

- ( r - k ) J x - x0H , ( t f - k) Hx - x0ll > A , 

which completes the proof of ( 8 ) . 0:he la s t inequality also 

shows that *f > k. 

Fix xeU and h « B ( 0 , § ) . By (8 ) , x + h e B ( x Q , r ) . We sha l l 

approximate the d i fference <y(x + h) - <f(x) with help of s o 

me l inear mapping. For brevity put 

a = Fx - y , b = F(x + h) - y 

and choose some L e Iftl which corresponds to x , x + h by (3 ) . 

Then ( 1 ) , ( 3 ) and (4) y i e ld 

Hoi, . , l a , i . < ^ 1 * M l t h i (Db - all2 + 2< b - a - I h , a » + 

^<^ a > | > l ! l^VA^) 4 | a^ |b >
 (r2HMI2 + ̂ llhHllal)) + 

+ »L»i|hii i i t f^ ' ib i i—* 4 " ( r + ,iL,i)iihi12 + 2^iihit > 
i . e . , I 

<Ih,Fx - y> 
HF(x + h) - y |l - ItFx - y l| - - £ 

llFx - y l 
(9) 

§ | - ( r + IlLIDllhll2 + 2-pllhi . 

x + Һ - x j l - II x - xл|| 

ť-
< h , x - x n > lihil^ 

Similarly, as ilx - x || > -~-—p owing to (8 ) , we have 

0 ' _ 
O I _ - x 0 l l llx + Һ - x0У+ l(x - x 0 _ 

+ <h,x - x0> Цx - x0Ц- ||x + h - x0И 2ÍҺІI2

 f - k 2 

• - • ' • •'•" _s • £ 2 ••• '-IjҺЯ • 
| |x - x 0 II l|x + h - x0H+ II x - x 0 l | - Hx - x0H " à 
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Thus, adding the last two inequalities, we get 

, . <Ui'FX " y > „ < h , X " V A CPU + h ) - a (x) k — Sf 
7 * I f t c - j rD I I - - - o * 

4(-̂ - + ̂ r1 + 2V) l lh , l + 2^l(h,u 

Furthermore there is (see (7)) eft (0,?r) such that 

(^ + ̂ +^K<*-A-^- k. 3? z? 
Thus we get that 

(10) <j(x + h) - <y(x) - ̂ ^ yW
y>i(*--4)llhll 

whenever x€M, h € B ( 0 , c f ) and L corresponds to x» x + h by 

( 3 ) . 

Now l e t x c M b e such tha t cj>(x)<m + \<?& . By (2 ) , 

there i s h e X, Khll =- f cT , such tha t 

(11) <y - Fx , Ih>Soc i iy - Fxll llhll = JoccTlly - Fill 

for a l l L e ffll . Let L e W correspond to x, x + h by (3) , 

Then, bearing in mind tha t 

(12) <j(x + 5) - cj>(x);>m - (m + | cTA ) = - \cTA , 

we get from (10) - (12) tha t 

- \6L + Joccf= - \<f& +oc|ihll -c <y(x + h) - cj> (x) -

" Clh~-*yf^U-A)m = Coc-A)Jcf , 

a contradiction. 

It remains to investigate the second case, that is 
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m = llFx - y II . I t i s easy to check that (9) a l so holds for 

x = xQ, a l l h £ B ( x 0 , r ) and corresponding L s l S t , Thus we 

get 
<Lh,Fx0 - y> 

^ • h , - y ^ - _ _ - „„«, 

-* [ | r (T + IILII) ( h i + 2/S] llhll . 

Let <f0c (0,r) be so small that 

jz(T+ HU)cT0< ac -2(1 - k. 

Then, reca l l ing that cj> (xQ + h ) £ c p ( x 0 ) , we get from the las t 

two inequa l i t i e s that 

<Lh,Fx0 - y> 

FxG - y | 
-вCІIҺÏ 

o 

whenever 04 -h6B(0 , cfQ) and L corresponds to xQ, x + h by 

(3 ) . Following (2) there i s 0 + h Q 6 B ( 0 , cFQ) such that 

<y - Fx0,:tho> > oolly - FxQH Hh0H 

for a l l L € W, . Combining the la s t two inequa l i t i e s we get 

that ooII hQii < ocll hQ| , a contrad ict ion. 

Thus, provided that (4) ho lds , we have obtained in both 

cases , that i s m -c II FxQ - y it and m = llFx - y ll , a contrad ic

t i on . Whence i t follows that 

in f -\llFx - yli ( x 6 B ( x 0 , r ) t = 0, i . e . , y e F (B(x 0 , r ) ) . 
o> 

Q.E.D. 

Discussion. The condition (2) looks somewhat curiously. 

Its sense is clarified in the following proposition. We show 

there that (2) means that the set co Tfl consists of "uniform

ly" open mappings, or that the set of adjoint mappings 
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(co Wl)* = 4.L*| L€CO ?3i$ 

i s "uniformly" i n f e c t i v e . I t should be noted t ha t a condi

t ion s imi la r to (2) can be found in Clarke [ 1 , Lemma 3 1 . 

Proposi t ion 1. Let X, Y be r e a l H i lbe r t spaces , oc •> 0 

and 1$\, c .sC(X,Y). Then the following three a s s e r t i o n s are 

equivalent each to o the r : 

( i ) Vy&Y 30^xeX VheTTt < y,Lx> > oc II y II II x II 

( i i ) V y c l V U f o W II L*yil £ ocdyll 

( i i i ) V y c Y V L e c b ^ 3 x e X Lx = y fclly II S ocllx t|. 

Proof: ( i ) = = ^ ( i i ) . ( i ) obviously remains t rue i f t$l 

i s replaced by co Tfltl . That i s , to each y e l there i s 0 + 

4 x € X such tha t <y ,Lx >g ocil yll IixII whenever he co <#t. Hence 

HL*yll llxli Z <L*y,x> = <y,Lx> Z cell yll llxll 

and, dividing it by ||xl| 4*0, (ii) follows. 

( i i ) ====->(i). The proof is similar to that of Cl, Lemma 

33. Fix y£.Y. Since the case y = 0 is trivial, we may assume 

y=kO in the sequel. The set 

((co Tfr )*)y M L * y | L c c o m ] 

i s convex and, by ( i i ) , i s d i s j o i n t with B(0, ocllyli). Hence, 

owing to the theorem on separa t ion of two convex s e t s 16, 

3.4 Theorem], there i s O + xcX such tha t 

octxHiiyll = s u p \ < x , v > | v € B ( O f o c l y « ) } ^ i n f - « x , v > l y € ( ( c o a ^ ) * ) y ? . 

Whence it follows 

oc llxll Hyil6<L*y,x> =<y,Lx> 

whenever L & *fll as (i) asserts. 

(ii) mm} (iii). Fix Lcco W, .We remark that R(L*) 
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= N(DA"j:6, 12.10 Theorem]. But ( i ) ensures t h a t R(L*) i s 

c losed . Hence X = R(L*) <$> N(L). Take Q4-x6R(L*) a r b i t r a r i 

l y . Then x = L*y for some y e Y and so , by ( i i ) , 

oCllxii2 = oC<L*y,x> =cC<y,Lx>^ ocii y II IlLx || h II L*yl! II Lx II = 

= |lxll IlLxii 

and, cancel l ing i t by UxlJ-fcO, we get 

(13) Vx<=R(L*) oollxi i^l lLx il . 

It follows that L maps the closed subspace R(L*) of X onto 

a closed subspace of Y. On the other hand we always have 

R(L) = L(X) = L(N(L)X) = L(R(L*)). 

Hence R(L) i s closed in Y. F ina l ly , as ITT) = N(L*)X £6 , 

12.10 Theorem] and N(L*) =i0} by ( i i ) , we in fe r tha t R(L) = 

= Y.#Let now y € Y be given. There i s xeR(L*) such tha t Lx = 

= y and (13) completes the proof of ( i i i ) . 

( i i i ) «==-> ( i i ) . Let y e Y, he co ffit . We may assume y + 0 . 

By ( i i i ) , there i s O-fxcX such tha t Lx = y and Hyll^ocH xli. 

Hence 

lixlj iiL*yl(2 <x,L*y> = <Lx,y> = (|yi(2£ oG K xil Uy It, 

l|L*y|| 2 ocii y || . 

Q.E.D. 

If F(B(x ,r)) is closed, then our result becomes an in

terior mapping theorem. Let us formulate some additional con

ditions satisfying F(B(x ,r)) to be closed. 

Proposition 2. F(B(xQ,r)) is closed if one of the fol

lowing conditions is fulfilled: 

(i) X is complete (i.e., Hilbert) and there is cT>- 0 so 

that 

- 353 



(14) V x, xeB(x0,r) II Fx - Fx )l £ cT II x - x II -

(ii) X is complete and each L € IPil is infective (and hence 

an isomorphism thanks to Proposition 1) 

(iii) F = ft Id + K, where % e IR and K is a compact mapping 

(iv) dim X<+ co (and hence dim Y^dim X owing to Proposi

tion 1). 

Proof: (i) is obvious, (ii). Let x, x€B(xQtr) and 

take a corresponding L by (3). As L is infective, we have from 

Proposition 1 (iii) that 

ilFx - Fx( 2 llL(x - x)i! - iiFx - Fx - L(x - x)i| £(oC-/l)llx - xH. 

Now (i) can be used. (iii). The case X = 0 is obvious. If 

X 4* 0, see f2, III, 5 Proposition] for instance, (iv) fol

lows from (iii) at once. Q.E.D. 

It should be noted that, if (14) is satisfied for some 

oT > o, then there exists a simpler proof of Theorem 1. Na-
P 

mely, we can use the functional <j>(x) = Hy - Fxll, which has 

no penalty member. 

The case (iv) in the above proposition leads to the theo

rem of Pourciau. Let us show it. As the set &F(x^) is com-
o 

pact in the space o£(Rn, IRm), and surjective, there exists 

& > 0 so that each L belonging to the set 

m = ihe tf (IRn,lRm) | 3 he 9 F(xQ) IIL - L II k e \ 

is still surjective. Since the multivalued mapping d F is 

upper semi continuous 115, Proposition 4.13| there exists r > 0 

such that £F(x) c OT whenever xe B(x ,r). We note that K&, 

is closed and convex. Hence, by C5, Theorem 3.1, Proposition 

3.23, to each x, x . s B ( x ,r), there is L s S t so that 
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Fx - Fx = L(x - x ) . 

Thus (3) is satisfied with (i = 0. (1) holds with some y > 

> 0 because F is a Lipschitzian mapping. Finally Iti is con

vex compact since so is dF(x ), and each L e 7#L is surjec-

tive, i.e., each L* is infective. It follows there exists 

cC > 0 so that the assertion (ii) in Proposition 1 holds. 

Thus Proposition 1 yields (2), We have verified all the as

sumptions of Theorem 1 and so, together with Proposition 2 

(iv), we get that FxQ lies in int R(F). 
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