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CONCERNING INTERIOR MAPPING THEOREM
Marian FABIAN

Abstract: Let X, Y be real normed linear spaces with
scalar product and F:ﬁ(xo,r)-—e>1 be a Lipschitzian mapping

which can be approximated by a family of linear, continuous,
"uniformly" open mappings with a certain accuracy. Then it
is proved that Fx, lies in int R(F), see Theorem 1. Further-

more, additional conditions satisfying Fx e int R(F) are dis-

cussed. The proof of the quoted result is carried out by de-
veloping of the method of Pourciau [5, Section 91, where the
finitely dimensional case is considered.

Key words: Space with scalar product, Lipschitzien map-
ping, convex closed set, interior(of the closure) of range,
interior mapping theorem.
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Introﬁuction. The well known interior mapping theorem,
due to Graves [3, Theorem 11, asserts that Fx ¢ int R(F) if
the mapping F:X—> Y does not differ much from a linear, con-
tinuous, open mapping L near X, and X is complete. Recently
Pourciau [ 5] obtained the same conclusion provided that X
and Y are finitely dimensional and the only mepping L is re-
placed by a family of linear, surjective (i.e., open) mapp-

ings. His result reads as follows:
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Theorem (Pourciau [5, Theorem 6.11). Let F: R® — R,
mé&n, be a Lipschitzien mapping, x,€ int D(F), and let the
Clarke subdifferential (cf. [1, Definition 1], [4, Section 2J])

8F(xy) = cof lin dF(x) | x —> x,, dF(x,) exist}
be surjective, i.e., each Le dF(x ) is surjective.

Then Fx e int R(F).

It should bte noted that, in the case m = n, the above re-
sult is contained in Clarke’s inverse function theorem [1,
Theorem 1].

The aim of this note is to extend, as long as we are ab-
le, the Pourciau theorem to infinitely dimensional spaces,
see Theorem 1. In the proof we follow [ 5, Section 9], where a
penalty functional technique is used. But some difficulties
are to be avoided in our situation. Namely, in [ 5, Section 91,
the Clarke subdifferential of some nonnegative continuous
functional at a point of its minimum is computed with help of
the chain rule [5, Proposition 4.8]. However, in our case no
kind of differentiability is assumed and hence no chain rule
is available. Mopeover,.in an infinitely dimensional space,
it may happen that a functional on a closed ball attains mi-
nimum in no point.

The obtained result is, unfortunately, somewhat weaker
than what we would wish. That is we get that Fxoe int R(F)
only. In the last section there are given some additional con-
ditions under which our result becomes an interior mapping
theorem, i.e., Fx e int R(F).

Als o the sense of the condition (2) is explained in this

section.
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Result. Let X, Y be real normed linear spaces with sca-
lar products {.,.> and corresponding norms ll-ll, i.e.,
{u,u’= Nul?. B(x,,r) stands for the open ball of centre
X, € X and radius r> 0. The clost\zre of a set McX is denoted
by ﬁ, the closed convex hull of M by co M. ut stands for the
set

{xeX |[{x,m>= 0 for all meM¥ .
Given a mapping F:X—> Y, its domain and range are denoted
by D(F) and R(F) respectively. The space of all continuous,
linear mappings L:X—> Y, with D(L) = X, endowed with the usu-
al linear structure and norm is denoted by & (X,Y). The norm
WLl of L € £(X,Y) is defined by

ILh = sup § ilx W | Hixh=1%.

L* means the adjoint mapping to L, N(L) is the space of all
x € X satisfying ILx = 0, R ™ stands for the n-dimensional Eu-
clidean space.

Theorem 1. ILet X, Y be real normed linear spaces with
scalar products and F:X—> Y be a mapping with ‘B—Gp__,r)c D(F)
for some x,€& X and some r>0. Assume that there are numbers
«> 0, fel 0,%), ¥ > 0, and a set @ c & (X,Y) such that
the following three conditions are satisfied:

(1) ¥V x, XeB(x,,r) UFx-Fxl£ ylx-xl,
(2) VYyeY 30%xeX VL0ie® <{y,Lx)z Iyl ixl,

(3) V=x, xeB(x,,r) ALeM I FXx-Fx - Lx -x)ll ¢

£ pix - xl.

Then Fx ¢ int R(F); more precisely,

B(Fxy, (¥ =@)r)c F(Blx,,0)).
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Proof: Fix yeB(Fxo,(% -({)r), y¥Fx , arbitrarily.
We shall argue by contradiction, that is, let there bep > O
such that
(4) Vxem I Fx - ylz @ > 0.

We shall consider the following functional

@(x) =lIFx -yl + klx - x V1, xeBlxg,r),

where

-2
(5) k=21Fx, -yl.

(We note that the member kil x - X, ' plays the role of a "pe-
malty".) Denote
m = inf {@(x) | xe B(x,,r) 3.

At this point the proof splits into two cases. First let us

assume that

(6) m<IFx, -yl [=aq(x))].

We remark that k<« - 2(3 for "Fxo -yl < (% - R)r. Choose
(1) Ae(0, =28 =KIN(O,F NP, -yl - m)

and denote

M ={xeB(xo,r)[cg(x)<m +D5% .
We claim

(8 Me{xe Blxg, B [ 1x - x> 3.

. r-k
(In the sequel we shall show that =y - k>0,) Indeed, let
xeM. Iflx - x I 2 %, it would then follow by (4),(5) and
(7) that

A+ m>cx) =I1Fx - yh+klix = xI>kllx - x|l z k§=

IFx, - ylIl > 28 +m,
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a contradiction. Hence xe B(xo,g). Also, (1) and (7) yield
A+m>UIFx -yl +kllx-x,ll 2 Fx, - yl-lIFrx - Fx°ﬂ+
+ xllx = x 0zWFxy = yh=- (y-K)lIx -x,0>2A +m -
(- lx=-xll, (=% Ix=-x >4,

which completes the proof of (8). The last inequality also
shows that o > k.

Fix xe M and heB(O,z). By (8), x + heB(x ,r). We shall
approximate the difference g (x + h) - @(x) with help of so-
me linear mapping. For brevity put

=Fx -y, b=Fx+h) -y
and choose some L ¢ 720 which corresponds to x, x + h by (3).

Then (1),(3) and (4) yield

Mol - Hall - s8> = bt (Ib - al? + 2¢b - @ - In,a)) +

lafiChai + 1ol =~ flah + Wb

nLluhu-r-gﬁ“'—‘%ﬂ— g—(7+|\Lll)nhIl + 2p0nl,

i.e.,

+{In,a) (y2In1? + 2p Inkial) +

{lh,Fx - y)‘_

fiIF(x + h) =yl - IFx - y| -
v Y lFx - yi

(9)
2 Qg- (7 + LDIRNZ + 2p1n ) .

Similarly, as ix - x,l| > -,;,l-‘-\_—g owing to (8), we have

- Ch,x - x) n|i
lx +n - x Il -llx-xI - - U inl
Ix - xcll x + h = x I+ fix - x|
2
+ {hyx = x> jix - xpli- llx + h - x|l . 2knlj £ 7= kllhlz.
flx - xo llx+h- x°|l+ lx - xoll Ix - x, A
o
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Thus, adding the last two inequalities, we get
{lh,Fx - y). k(h.x - xy) £
IFx -y Ihx = x|

cf(x+h) - g(x) -

-[( “L“ +2 L—}Mhll +2p] Inl.

Furthermore there is (see (7)) de (O,%) such that

(_ggﬂ.z;"@wut[k)&w -A-2p-k

Thus we get that

(10) g(x+h) - gx) - SMFE=32 £(y - p)mll

whenever x€ M, he€B(0,0") and L corresponds to X, X + h by

(3).
Now let X ¢ M be such that (X)<m + %—JA - By (2),
there is he X, llhll = %d" , such that

(11) <y - Fx Ih)zocﬂy-Fxll Ihi = Iocof'lly-inl

for a1l Le W . let L e % correspond to X, X + h by (3).
Then, bearing in mind that

(12) gE+h) - gX)>n~- (m+3dA) =-3d4,

we get from (10) - (12) that

- 360 + 3xd'= - $dA +ulihll < (X + B) - &) -

(Fx - y,Th
- B vy g (- BN = (=003,
$b< 32,

a contradiction.

It remains to investigate the second case, that is
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m = IlFxo -yl . It is easy to check that (9) also holds for
x = x,, all heB(xo,r) and corresponding L € 7L . Thus we
get
g(xy +h) - @lx,) - (L Fx, - 9 - kihtla

ﬂFxo -yl

£ [{S; (F+ WL ini + 2p] inll.
Let Jd,¢ (O,r) be so small that -

%(r + ML) Fg< o = 23 - k.

Then, recalling that @(x, + h)Z ¢ (x,), we get from the last
two inequalities that
{Lh,Fx - y>

h
Trmy - 31 <lnl

whenever 0% heB(0, d) and L corresponds to x,, X, + h by
(3). Following (2) there is O%h e B(0, o) such that

<y - Fxg,th > Z lly - Fx llholi
for all L & 771 . Combining the last two inequalities we get-
that «llb il < <llh i, a contradiction.
Thus, provided that (4) holds, we have obtained in both
cases, that is m< | Fx, - yll and m = l[Fx, - yll , a contradic-

tion. Whence it follows that

inf {IFx - yl | x€B(x,,r)t = 0, i.e., ye F(Blx,,r)).
) Q.E.D.

Discussion. The condition (2) looks somewhat curiously.
Its sense is clarified in the following proposition. We show
there that (2) means that the set € Wl consists of "uniform-

ly" open mappings, or that the set of adjoint mappings
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(86 M )* = {1*| Ledo WL}

is "uniformly " injective. It should be noted that a condi-

tion similar to (2) can be found in Clarke [1, Lemma 3].

Proposition 1. Let X, Y be real Hilbert spaces, o« > O
and M c £(X,Y). Then the following three assertions are
equivalent each to other:

(i) VyeY 304xeX VLe® <Ky,lx>Zilylilixl
(ii) VyeY vLedo® I1Iyl2 iyl
(iii) VYyeY VLeco® 3TxeX ILx=y&lylzlxl.

Proof: (i) = (ii). (i) obviously remains true if %L
is replaced by € 770 . That is, to each ye Y there is O %

4 xe X such that {y,Lx>Z allyll x| whenever Le €6 89 . Hence
Uyl x| 2 < *y,x>=<y,Lx> Z <l yl Ixl

and, dividing it by lix| %0, (ii) follows.
(ii) = (i). The proof is similar to that of [1l, Lemma
3]. Fix yeY., Since the case y = O is trivial, we may assume

y+0 in the sequel. The set
((86 M)*)y = {I*y | Leéo M3}

is convex and, by (ii), is disjoint with B(O,ocllyll). Hence,
owing to the theorem on separation of two convex sets L6,

3.4 Theorem], there is O#% x¢ X such that

alxltllyll = sup §{x,v> | veB(0O,xlyl)} £ inf{<x,v>|v ¢ ((S0BL*)y¥}.
Whence it follows

«llxll iyl £ CFy,x> =<y,1x)

whenever L ¢ % as (i) asserts.

(ii) = (iii)., Fix Le €0 9L . We remark that R(L*¥) =
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= N(L)‘L[6, 12.10 Theorem]. But (i) ensures that R(I*) is
closed. Hence X = R(L*) ® N(L). Take Q4 x € R(L*) arbitrari-
ly. Then x = I¥y for some ye Y and so, by (ii),
alxl? =0l By, x ) =aly,Ix) £ ol yliilx] ) Dyl N 1x ) =

= llxll lzx |
and, cancelling it by llxll+0, we get
(13) VxeR(LY) a«ilxll£llxl.
It follows that L maps the closed subspace R(L*) of X onto
a closed subspace of Y. On the other hand we always have

R(L) = L(X) = L(N(L)L) = L(R(L*)).

Hence R(L) is closed in Y. Finally, as R(L) = N(L"‘)‘L Le,

12.10 Theorem] and N(L*) = £0} by (ii), we infer that R(L)

= Y.,Let now ye Y be given. There is x € R(L*) such that Ix

n"

y and (13) completes the proof of (iii).

(iii) = (ii). Let ye Y, Le €0 77L . We may assume y #0,
By (iii), there is O xe€ X such that Ix = y and Iyl =z !V xl.
Hence
Uxll 1Ty 2 <x, TFy> = <Ix,y> = [ylPZ «lx Uy,

Iyl 2z ecliyll.
Q.E.D.

Ir F(B?xo,r)) is closed, then our result becomes an in-

terior mapping theorem. Let us formulate some additional con-

ditions satisfying F(B(xo,r)) to be closed.

Proposition 2. F(leo,r)) is closed if one of the fol=-
lowing conditions is fulfilled:

(i) X is comple te (i.e., Hilbert) and there is J > 0 so

that
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(14) Vx, xeB(x,r) IFx - Fxlzdlix - xI .

(ii) X is complete and each L € W is injective (and hence
an isomorphism thanks to Proposition 1)

F= AI4a + K, where A ¢ R and K is a compact mapping

(iii)
(iv) dim X<+ 00 (and hence dim Y<dim X owing to Proposi-
tion 1).

Proof: (i) is obvious. (ii). Let x, J'Eemo—,?) and
take a corresponding L by (3). As L is injective, we have from
Proposition 1 (iii) that
IFx - Fx§ 2 IL(x - U = IFX - Fx - L(X - x)f Z (- pIIX - xl.
Now (i) can be used. (iii)., The case A = O is obvious. If
A + 0, see [2, III, 5 Propositionl] for instance. (iv) fol-

lows from (iii) at once. Q.E.D.

It should be noted that, if (14) is satisfied for some
Jd > 0, then there exists a simpler proof of Theorem 1. Na-
mely, we can use the functional @(x) = lly - Fxllz, which has

no penalty member.
The case (iv) in the above proposition leads to the theo-

rem of Pourciau. Let us show it. As the set ¢9F(xo) is com-
pact in the space ¥ (R™, R™), and surjective, there exists
€ > 0 so that each L belonging to the set
WM =4Le L(R",R™)| 3LedF(x)) IL-Tl£e}

is still surjective. Since the multivalued mapping @ F is
upper semicontinuous [5, Proposition 4.11, there exists r>0
such that 8F(x) c @ whenever xe B(x,,r). We note that %
is closed and convex. Hence, by [ 5, Theorem 3.1, Proposition

3.23, to each x, X¢B(x,,r), there is Le 711 so that

- 354 -



FX - Fx = L(X - x).

Thus (3) is satisfied with (3= 0. (1) holds with some >
>0 because F is a Lipschitzian mapping. Finally 777 is con-
vex compact since so is aF(ko), and each L ¢ 72 is surjec-
tive, i.e., each L* is injective. It follows there exists
& > 0 so that the assertion (ii) in Proposition 1 holds.
Thus Proposition 1 yields (2), We have verified all the as-
sumptions of Theorem 1 and so, together with Propositiom 2

(iv), we get that Fx_ lies in int R(F).

o
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