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COMMENTATIQNES MATHEMATICAE UNIVERSITATIS CAROUNAE 

20.3 (1979) 

LEFT-SEPARATED SPACES: A COMMENT TO A PAPER 
OF M. G. TKACENKO 

Petr SIMON 

Abstract: There appeared two beautiful papers of M.G. 
Tkafienko tTOtTplin the last issue of this journal. He stu
died the properties of spaces which can be expressed as a 
union of not too many left-separated subspaces. In this no
te we want to give alternative (and perhaps easier) proofs 
of Tka5enko's theorems. 

Key words and phrases: left-separated space, t -com
pact space, free sequence• 

Classification: Primary 54A25, 54P05 

Secondary 54B05 

0w Preliminaries. A topological space X is called left-

separated (right-separated, reap.), if there exists a well-

ordering < of a set X such that each initial (coinitial, 

resp.) segment under < is closed. It turns out that left-

separated spaces have other pleasant properties, cf. e.g. 

tA£.) fCA2J ,CGJ1. Gerlitz and Juhass ((GJl) proved among ot

hers, that each left-separated compact Hausdorff space X is 

both scattered and sequential, TkaCenko (CTgl) showed that 

the same holda If the space X is regular countably compact 

and if X = U { X n : n < 4>1 with each X n left-separated; moreo

ver X will be compact than. Aiming for this result, TkaSenko 
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considered the situation in the whole generality, i.e. the 

space X was assumed to be if-compact and X * U{ X^: oc •* f I 

with each X^ left-separated (̂  an infinite cardinal) and pro

ved further results, some of which will be restated here* 

The following notation will be frequently used through

out the whole paper: If (A,< ) is an ordered set and if xe A, 

then A( «-fx) denotes the initial segment 4 ye A:y< xj. Simi

larly, A(«— txl *$ ye A:y .6x} f A(xf—> ) * i ye A:yj>xJf 

Atxf-->) «CyeA:y^xj. 

As usually adopted, cardinals are identified with the 

initial ordinals of the same cardinality. 

!• Definition. Let X be a topological space, (Pf< ) or

dered subset of X, FcX. The set F is called to be wide with 

respect to P if Fn PCxf-^ )=*= 0 for each x 6 P. 

2* *£!§&• L e t X be a topological space, let (Pf<p) be 

a free sequence in Xf (M,<M) left-separated subs pace of X, F 

closed subset of X which is wide with respect to P. Assume mo

reover that for each point xe X there is some pe P with x e 

e P(-*-~fp). 

Then there exists a closed set F'c F which is wide wrt P 

and such that either F'n M « 0 or F' is discrete and contain

ed in M. 

(Becall that (P,<) is a free sequence in X if < is a 

well-ordering of P such that P( <— fx)n P tx,-> ) = 0 whenever 

xeP.) 

Proof. By a trans finite induction we shall define the 

points m e M and the points p^ , q^e P as follows: 

°-oG * •ttPp'C p»i (3 «c oc\ , (supp0 a < p first element of P) 
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mtC m <u~**Tot element of MnFfiPCq^ » — » t 

p. » < p - f i r s t element of P such that W& £ *Ep<& t —* ) • 

Let x be the f i r s t ordinal such that the induction 

cannot continue. 

Case 1 . q^ cannot be defined. That means f {1^:06 < y} 

i s a cof inal sequence of ( P f < p ) . Notice that the sequence 

{m^: cC < j \ i s f r e e : Fix cc < y , according to the choice 

of m / s and q« 's we have im„: p> < cclo P(-^- ,0^) and -fm^: 

: oc ^ (I < -yI c PUq^;—*). Since P i s f ree , PC-*—,q^) n 

r-Ptq^, —->) » 0 , thus -Cm*: p -< &}n\m'. oC&p<y$**0* 

Put H » «fmoC:oC< 9̂ .? and consider the s e t H - -fcm : 

: oc, -*.: y \ . I f H - -trn :̂ <*< jl i s not wide wrt Pf there ex 

i s t s some p€ P with (H - «tm : oc < y \ )n Pfp,—>) » 0 . Now 

i t i s se l f -ev ident that the s e t F'« -Cm : cC <j}n P[p,—>) 

i s c losed, d i s c r e t e , wide with respect to P and contained 

in FnM. 

I f H - Krn^icC < y \ i s wide wrt Pf define F'« H - {m^: 

: o& < j] . We have to ver i fy that F#n M » 0 . Pick arbitrary 

m£M and l e t fiQ = sup 4/3 :n^<^ m}. I f m̂  « m, then m^F' 

t r i v i a l l y . Further, mt£M(«~- fm) since M i s l e f t - separated , 

hence m^-(nu: ft < p Q 1 . Final ly, m^-fmp: p o ^ | 2 <- f I : Sup

pose not . Then mcPCqn f ~ - * ) n F n M f the p o s s i b i l i t y m * m„ 
Po Po 

was discussed and i f m<M n * , we obtain a contradiction 
to the choice of 1 * . 

J*o 
Case 2. m ^ cannot be defined. That means M A Pr>PEq^f -* ) = 

= 0. It suffices to define F' • FnPtq*,-^). The verificati

on that the set F' is as required may be left to the reader. 

Case 3. p ^ cannot be defined. This case is empty becau

se of the assumption that each point x c X belongs to some 
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P(«~,p) and by the fact that P is free. 

3* Lemaa. Let x be an infinite cardinal, X *t -compact 

topological space, P * i p^: cc <t I dense subset of X. Then 

the space X * 4 x e X : there is oc -c T such that xe-£p*s 

: % «-" oc J is t -compact. 

The easy proof is omitted. 

*• Theorem (TkaSenko iT^a). Let X be an infinite cardi

nal, let X be a f -compact topological space, X * K*sWdizoc< t \ 

where each M^ is a left-separated subs pace of X. Then there 

does not exist a free sequence of length % in X, in particu

lar, t(X) 4 v . 

(Recall that t(X), the tightness of X, is infuse: n is 

a cardinal and V X c X V x e Y 3 Z cY (x eZ &IZI 6 at)J.) 

Proof. Suppose the contrary: let P » ip^i oc < ^ j be 

the free sequence in X. Being closed in X, the set f i e t-

compact. BSy the lemma 3, the space Y * {xe P: there is ot*< x. 

with x e£p«: (3 < oc 3 is t -compact, too. 

Let K^ * M^nY for QC << * ; K^ is clearly left-separated, 

and Y » U { K ^ : oc <• vI• We shall successively apply Lemma. 2: 

Let F0
 s X. PQ is wide wrt Pf closed in Y, KQ is left-separa

ted subspace of Y, thus there is an F-|C P which is closed, 

wide wrt P and either F-. n K0 * 0 or F-. c K and F-, is discre

te. Clearly each set in Y which is wide wrt P is of cardina

lity at least x , this fact together with the X -compactness 

of Y rules out the second possibility. Hence F 1n K •» 0. 

Proceeding by an obvious induction, we obtain on each suc

cessor stage oC+ 1 a closed set ^ +i
c^cc auch that ^c+^^uT 

= 0 and -^+1 is wide with respect to P. If oc <. x is a limit 
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ordinal, define P^ »C\ iFpi (3 -< « J # Assuming all P^ ( £ < cc) 

to be wide wrt Pf 1^ will be wide wrt P, too: If p,eP, then 

«CP^nPfpcf-» ):(3<ocJis a decreasing sequence of closed sets 

in Y and Y is t-compact, thus y^Ptp*,-* ) is non-void* 

We have constructed a nested sequence {P^:^ <- t*} of non

empty closed subsets of Y. Its intersection is empty, since ' 

Y » {JiYL^x cc «ZK} and K n Po+1 * 0 for each oC •< ̂  • But the 

apace Y is r -compact - a contradiction. 

5» Definition. Let X be a topological space. Define 

^(X) » inf -UWUX » U m and each M<=m is a left-separat

ed sutfcspace of Xj 

n(X) » inf i\2b\i 3) is a family of nowhere dense sets in X 

such that US) contains all non-isolated points of Xj 

*>• Theorem. Let X be a dense-in-itself topological space 

such that d(X).t(X)<n(X). Then $(X)>n(X). 

Proof. Choose a cardinals with d(X)*t(X) ± v < n(X). 

We want to show that t< £(-*)• Suppose the contrary: Let % 

be m family of left-separated subspaces of X such that iWli- t 

and U1H » X. Since n(X) •> v , there must be some M e 171 which 

cannot be covered by 4s. <& nowhere dense subsets of X. Define 

N » M(-*~ ,a), where a » in% *tb£ M:M(-*— fb) cannot be covered 

by 6 K nowhere dense subsets of X} 

if such an a can be found, if not, let 

N » M. 

Clearly, the set N is not nowhere dense\ let K » No int N. De

note by < K the we\l-ordering of K induced by the order of M. 

The following are easy observations: 

(a) K cannot be covered by 6 z nowhere dense subsets 
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Of X 

(Notice that N has this property and that N - K « N - (No 

A int N)cN - int N, which is nowhere dense in X.) 

(b) K is dense in int N (any nonvoid open set Ucint N 

meets Nf hence 0*UnN * Un int Nn N • UoK). 

Claim: The cofinality of (Kf < K) is not greater than r . 

To prove the claim, choose some set <,q,-: § •< ̂ 3 c int N 

dense in int N. Since d(X) -fe v f it is possible. 

Since K is dense in int N and since t(X) ± v , choose 

for each £ << v a set T^c K such that iTg 1 £ v and q^s Tg *• 

Denote by T the union UiT^i f < v i . Then IT I 4* v and 

5b-£q : f < -cjp K. It follows that T is cofinal in K; If not, 

for t a supg T we have that te Tc K( «r~ ,t), but K is left-

separated - a contradiction. 

Having proved the claim, let us choose a cofinal subset 

•taus § < t? 3 of K. We obtain K c U-CK( <-,mJ : f < t . c 

c vj I N ( ^ ~ , I J : f < <r 3 . By the choice of N, for each § < ^ 

there is a family .jlc of nowhere dense subsets of X, such 

that \JL I & % and U l _3 N( t-,i-)f Then K c U { UJ£ : 

: | < r } , which contradicts (a)• 

?• Corollary (Tkadenko llTgl): Let X be a compact Haus-

dorff space, X *U-llin:n<a>} , where each 1^ is a left-se

parated subspace of X. Then X is scattered. 

Proof. It suffices to show that X has at least one iso

lated point. Suppose the contrary; let X be dense-in-itself • 

Then X can be continuously mapped onto 2 ; la t f be such a 

mapping. Choose XcX to be a closed subspace of X such that 

f T Y is irreducible. Then X is a compact Hausdorff space 
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without isolated points which admits a continuous irreducib

le mapping onto 2 . This implies d(Y) • d(2^) * &> , n(Y) « 

niZ*0) > <v . Moreover, £ (X) « CJ and X is (countably) com

pact, according to Theorem 4, t(X) -= o> , hence t(Y) £ *> • 

Applying Iheorem 6, we obtain JU)an(Y) > O . But f*> £ t 

> <£(X) 2 £(Y) - a contradiction. 

8. Concluding remarks, (a) There exists an example of 

a (compact Hsusdorff) topological space X without isolated 

points, where £(X)*t(X)-d(X)< |X 1 holds. Thus the number 

n(X) cannot be replaced by i X I in Theorem 6. 

(b) The original Tkafcenko's proofs heavily depend on 

the fact that the following statement is true for some par

ticular choices of the spaces X and Y: If X and Y are (regu

lar) topological spaces and f:X—> Y a continuous perfect 

irreducible onto mapping, then £(X)a.jf(Y). It suggests a 

question: Is the statement true in general? 
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