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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
20, 4 (1979) 

.RREDUCIBILITY OF COMPOUND MATRICES 
Miroslav FIEDLER 

Abstract: We investigate the influence of irreducibi-
lity or reducibility of a square matrix on irreducibility or 
reducibility of its compound matrices and generalized compound 
matrices. The case of additive compound matrices is solved by 
a graph-theoretical approach. 

Key words: Compound matrix, directed graph, irreducible, 
reducible. 

Classification: 15A75 

I* Introduction. As is well known I2~Jf the k-th compound 

matrix A^k' to the m x n - matrix A (14 k~min(mfn)) is defi­

ned as follows: Let M » -{lf...fm}f N » •[!,...,n]; denote by 

M(k), N(k* respectively, the set of all k-tuples in Mf N res­

pectively, ordered lexicographically (e.g. for m * 4f k « 2f 

M ( k ) = 4(lf2)f(lf3)f(lf4)f(2f3),(2f4)f(3.4H). A
( k ) is then 

an (®) x (£) - matrix with row indices in irk
 f column indi­

te) (k) 
ces in N% ' whose entry with the row index Ie M% ' and column 

(k) 
index JeN v ' is det A(I,J)f i.e. the determinant of the k x k 

submatrix of A with row indices in I and column indices in J» 

For an indeterminate x, the k-th compound matrix 
(k) (A • xl) , I being the identity matrix, is a matrix pol:yno-
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mial in x of degree k: 

(A • xl)(k) = A<k»0)-* + A*,l)J~l * ... 

... • AO-.-- 1^ + A<
k»k). 

The matrices A ,J , 1^-j^k, are sometimes called generali-
(k 1) zed compound matrices. In particular, the matrix Av » is 

tkl called k-th additive compound matrix and denoted by A . 

We shall investigate what influence the irreducibility 

or reducibility of A has on irreducibility or reducibility of 

the generalised compound matrices. Let us recall that a squa­

re matrix A is reducible if it is of the form 

A n > 0 

*21» A22 

where A,p A22 are square matrices of order at least one, or 

if A can be brought to such a form by a simultaneous permuta­

tion of rows and columns; otherwise, A is irreducible. 

It is clear that if A has rank r, all compound matrices 

A**' for k>r will be zero matrices and, if r< k<n, A**' will 

be reducible even if A is irreducible. Similar simple state-
(k s) stents can be made for the generalised compound matrices A ' ' 

if r< s. 

We shall show, however, that the additive compound matrix 

(if of degree at least two) preserves the property of the ori­

ginal matrix to be irreducible or reducible. Moreover, each 

generalized compound matrix (if of degree at least two) of a 

reducible matrix is reducible as well. In the proof of the 

first theorem we shall use the notion of the directed graph 
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G(A) of a square matrix A * (ai]c):G(A) * EN,.B] where N * 

* -{l,2,..#,n5 is the set of vertices and ( i . . c ) e £ . the set 

of edges, iff i^ k (we omit diagonal entries) and a i k+0. It 

is well known 131 that a square matrix of order n £ 2 is irre­

ducible iff G(A) is strongly connected, i.e. if there is a 

path in G(A) from every vertex into any other vertex* 

We shall also need the explicit formula, for the additi-
Ckl ve compound matrix A as shown in 111: 

If A « (aiK) *
8 square of order nf N * {lf...fn$f then 

Ckl Ck) 

the entry of A with the row index ItN v ' and column index 
JeN**' is (ISI denotes the number of entries in the set S) 

f Jtj aii if Z * J> i#e* , l A j I * k> 
(1) Alk1(I,J) m J o if IXnJlAk - 2. 

L (-1)* a y if I In J) « k - lf 

where Ci? * I\ ( I A J ) , -£:j} » J\ (InJ) and 6 is the number of 

elements in In J between i and j (in the natural ordering of 

indices). 

Finally, we shall make use of the well known KCnig'e the­

orem I4J: Let A * ta.^) ̂  a square matrix of order n, N «. 

» -Clf...fn$. If there exist subsets N^ and Hg of H such that 

IN,I • I N2I> n and a i k * 0 whenever id N^ and ke H 2 then 

det A • 0. 

2» Results. First of all, we shall introduce the notion 

of the k-th additive compound graph of a directed graph with 

n vertices, l=k = n. 

(2fl) Definition. Let G = £V,EJ be a finite directed 
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graph without multiple edges with the set of vertices V and 

set of edges E. Let k be an integer, 1 4 k 4 n where n » I VI. 

The k-th additive compound graph Qlkl
 0f G is the graph 

£V(k)fE
i:kJ,1 where V ( k ) is the set of all k-tuples in V and 

(I,J)eBLld tor l£V ( k )
f J e V ( k ) iff U n J I * k-1 and, for 

U l * 1^ d ^ J) f W * <*x (I^J), (i,j)e E. 

Qie name is justified by the following theorem: 

(2f2) Theorem. Let A be a square matrix of order nf 

Alkl its k-th additive compound of A, ll.k£n. Then the di­

rected graph G(AIkJ) of Atk3 is isomorph to the k-th additi-

ve compound graph Mua*J of the directed graph H * G(A) of A. 

Proof. Follows immediately from (1); in fact, if the 
Ck) vertices of V are numbered by the numbers lf2f...fn and V
v ' 

by k-tuples in lexicographical order the ordering of the ver­

tices of H k corresponds to that of the rows in G(A t k lh 

(2*3) Theorem. Let G be a strongly connected finite di­

rected graph with n vertices. Then for each k * lf2,...,n, 

the k-th additive compound graph G of G is strongly con­

nected as well. 

Proof. Since Q » G and Q has a single vertex, we 

shall assume that 2 i k < n . Let G * [V,E1 and let Vlf V2 be 

different subsets of V, |V-,1 « IV2I * k. We shall show that 
Ikl Lk'l 

there exists a path in G J from the vertex of G correspon­

ding to Vn to the vertex corresponding to V2. We shall use in­

duction with respect to the number v(VlfV2) * k - i \ ^ V 2 i . 

Let first »(VlfV2) = 1, let Y± = V 0 u U } , V2 » V 0uij} where 

V0 » V^n V2. G being strongly connected, there exists a path 

P » (ifulf•••>usf;j) in G from i to j: It none of the vertices 
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ulf...,u0 is contained in VQ then (V0u-fi|f V^-fu^,... 

..., V 0u{u s^ f VQu{j5) is a path in Qlkl from V1 to Vg. Ot­

herwise, let Up be the first vertex from P in VQf then u 

the first vertex from P succeeding p-̂  which is not in V0§ then 

u the first vertex from P succeeding u in VQ etc«.f till u 

the first vertex for which all vertices uq * uq +1>.*.fuflf j 

are outside VQ. Then, 

( v o ^ i ^ V o ^ u l * ' — » V o u ^ 

Vo"% rl*^V
X*V^ 

M t t q -^'•••>Vouiuqt*»
Voui,1q +1J,...,V0o *j 5) is a path 

in Gtk:1 from V^ to V2. 

Now let ^(VitV2) • i>> 1 and assume the assertion is true 

for all Vlf V2 in V*
k' satisfying >> (v£,V2)<: i> . Then there 

exist vertices ueVg^V-. and veV-^^Vg. Since *>>(VlfV2\ *u} u 

u{v})-< i> and T>(V2\-CuJ u-t vifV2) * 1, there exist paths 

from V-, to V2\ 4u I u i v? as well as from V2\ 4u3 u 1 v} to V2 

in Glk:Jf hence also from Vx to V2. 

(2,4) Theorem. Let A be an irreducible square matrix of 

order n. Then for each k =- l,...,n, the k-th additive compound 
rvj 

matrix A of A is irreducible as well. 

Proof. As we mentioned in the introductionf a square mat­

rix is irreducible iff its directed graph is strongly connec­

ted. Therefore, this theorem follows immediately from Theorem 

(2,3). 

(2t5) Theorem. Let A be a square matrix of order n. If 

A is reducible then for each k = lf...fn-l and each 8 « 1,... 
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(k a) ...fkf the generalised compound matrix A * ' is reducible 

as well. 

Proof. Let A s ( a ^ ) ^ r e 3ucible , *e^ N * * f l f . . . f n } . 

Then there ex is ts a non-void proper subset M of N such that 

*£4 * 0, whenever i c M and j^M. Let k be an integer, l i k s 
(k) 4 n - l f l e t Vr ' kas above be the set of a l l k-tuples in N. 

We shall distinguish two cases: 

Case A. k-=lMl. Define Z as the subset of N*k' consis­

ting of all k-tuples contained in M. Observe that Z is a 
(k) non-void and proper subset of Nv '• Let us show that if Ie Z 

and J ^ Z then det A(I,J) • 0, i.e. the entry of A*k) with the 

row index I and column index J is zero. Since J^Z f there ex­

ists an index j& J such that j e)M. Therefore, the column in 

the submatrix A(IfJ) corresponding to the index j contains 

all sero entries so that det A(IfJ) = 0, indeed. However, the 

property that det A (I, J) = 0 whenever I & Z and J^Z means 

that A*k' is reducible. 

Case B. k . > l M ) . Denote by Z the subset of Nv*' consist­

ing of those k-tuples which contain all indices in M. We 

shall show again that det A(IfJ) * 0 whenever Ie Z and Je)Z. 

If J # Z f there exists an index h€M f h<^J. The matrix A(I,J) 

of order k contains a sero block with k rows corresponding 

to indices in M and k - (IM) - 1) columns corresponding to 

indices in Jv (M\*hl). KBnig's theorem mentioned in the int-

reduction implies then det A(I,J) = 0. Consequently, Av ' is 

reducible in this case as well. 

Since A + xl is reducible in the same manner as A, 
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(A + x l ) ( k * i s reducible, which means that A { k f S ) are redu­

cible for a l l k, s , 14 s . 4 k 4 n - l . Bie proof i s complete. 
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