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20, 4 (1979)

IRREDUCIBILITY OF COMPOUND MATRICES
Miroslav FIEDLER

Abstract: We investigate the influence of irreducibi-
lity or reducibility of a square matrix on irreducibility or
reducibility of its compound matrices and generalized compound
matrices. The case of additive compound matrices is solved by
a graph-theoretical approach.

Key words: Compound matrix, directed graph, irreducible
reduch%e. ’ ’ !

Classification: 15A75

1. Introduction. As is well kmown [ 2], the k-th compound
matrix A®) to the m x n - matrix A (14 k£min(m,n)) is defi-
ned as follows: Let M = i1,...,mJ, N = {1,...,n}; denote by
l(k), N(k) respectively, the set of all k-tuples in M, N res-
pectively, ordered lexicographically (e.g. for m = 4, k = 2,
) = 50,2),a,3,0,8,02,3),02,4),3.403). A% is then
an (}) x (f) - matrix with row indices in %) colum indi-

(k) I((k) and columm

ces in N whose entry with the row index Iec

index Je N¥) ja get A(I,J), i.e. the determinant of the k x k

submatrix of A with row indices in I and column indices in J.
For an indeterminate x, the k-th compound matrix

(A + xI)(k), I being the identity matrix, is a matrix polyno-
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mial in x of degree k:

(4 + x1)(K) o 4 (500 Kk o A1) kel ees

o AG0K-1) (k)

soe

The matrices A(k’j), 16 j£k, are sometimes called generali~
ged compound matrices, In particular, the matrix A(k'l) is
called k-th additive compound matrix and denoted by Q2

We shall investigate what influence the irreducibility
or reducibility of A has on irreducibility or reducibility of
the generalized compound matrices. Let us recall that a squa-

re matrix A is reducible if it is of the form

(All’ 0 )
A2 422
where A,,, A,, are square matrices of order at least one, or
if A can be brought to such a form by a simultaneous permuta-
tion of rows and columns; otherwise, A is irreducible.

It is clear that if A has rank r, all compound matrices
A(l) for k>r will be zero matrices and, if r< k<n, A(k) will
be reducible even if A is irreducible. Similar simple state-
ments can be made for the generalized compound matrices A(k")
if r<s.

We shall show, however, that the additive compound matrix
(if of degree at least two) preserves the property of the ori-
ginal matrix to be ‘irreducible or reducible, Moreover, each
generaliuh compound matrix (if of degree at least two) of a
reducible matrix is reducible as well. In the proof of the
firat theorem we shall use the notion of the directed graph
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G(A) of a square matrix A = (a;,):G(A) = [N,B] wvhere N =
= {1,2,...,n} is the set of vertices and (i,k)cE, the set
of edges, iff i3+ k (we omit diagonal entries) and 8% 0. It
is well known [3] that a square matrix of order n22 is irre-
ducible iff G(A) is strongly connected, i.e. if there is &
path in G(A) from every vertex into any other vertex.

We shall aiso need the explicit formula for the additi-

Ack] as shown in [1]:

ve compound matrix
If A = (a;,) is square of order n, N = {1,...,n}, then
the entry of A™¥) with the row index I<N‘Y) and column index

JeNE) i5 (S| denotes the number of entries in the set S)
;«%] aii if I= J, i.'. 'II\JI = k,
(1) At¥)(1,9) = 0if |Indl4k - 2.

(-1)% a5 42 1TnJ) =k - 1,

where {1} = I\ (InJ), ij} = J\ (InJ) and S is the ‘number of
elements in InJ between i and j (in the natural oi-dering of

indices).

Finally, we shall make use of the well known K3nig’s the-
orem [4]: Let A = (aik) be a square matrix of order n, N =
= {1,...,n}. If there exist subsets N; and N, of N such that
INj1 +INy)>n and a;, = O whenever ic Ny and ke N, then

det A = O,

2. Results, First of all, we shall introduce the notion
of the k-th additive compound graph of a directed graph with
n vertices, 14k4n.

(2,1) Definition. Let G = [V,E] be a finite directed
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graph without multiple edg¢es with the set of vertices V and
set of edges E. Let k be an integer, 1£kx<n where n =} V).
The k-th additive compound graph al¥? of G is the graph
(v(k) ElX)] where v(X) is the set of a1l k-tuples in V and
(1,0 e ¥ for T1e v, 3 v(E) ipp 11AJ) = k-1 ama, for
$43 = IN(Ind), 4§t = dN({ANnJd), (i,j)eE.

The name is justified by the following theorem:

(2,2) Theorem. Let A be a square matrix of order n,
A'¥7 its x-th sdditive compound of A, 1% k4n. Then the di-
rected graph G(A[kl) of A[k] is isomorph to the k-th additi-

ve compound graph mlk] of the directed graph H = G(A) of A.
Proof, Follows immediately from (1); in fact, if the

vertices of V are numbered by the numbers 1,2,...,n and V(k)

by k-tuples in lexicographical order the ordering of the ver-

tices of gtx? corresponds to that of the rows in a(al¥l),

(2,3) Theorem. Let G be a strongly connected finite di-
rected graph with n vertices. Then for each k = 1,2,...,n,
the k-th additive compound graph G[k] of G is strongly con-
nected as well.

Proof., Since G[l] = G and G[n] has a single vertex, we
shall assume that 2£k<n, Let G = [V,E) and let V;, V, be
different subsets of V, \Vll = lvzi = k. We shall show that
there exists a path in ok from the vertex of at¥] correspon-
ding to V; to the vertex corresponding to V,. We shall use in-
duction with respect to the number »(Vy,Vp) =k - 1VjnV, i,
Let first »(Vy,V,) =1, let v, = v uiil, v, =_V°u{.i} where
Vo = vlr\ 72' G being strongly connected, there exists a path

P= (i,ul,...,u.,a') in G from i to j: If none of the vertices
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Upyeeeyly is contained in V, then (Vou-[ﬂ, vo“{“f’""
eeey Voufugd, Vouidf) is a path in al¥1 from v, to V,. Ot-
herwise, let \:o.p:L be the first vertex from P in vo, then “q
1
the first vertex from P succeeding p; which is not in V,, then
u. the first vertex from P succeeding u_ in V, etes, till u
v2 4 q
the first vertex for which all vertices uqt' uqt 411000yl i
are outside V, . Then, .

(vo V) {i% 'vo (V) {u].} geee ,Vo u xlupl-lg’vo V] {upl_l‘i J {“q1§ N\ { uql-l} ’
Vou {upl_]_} ui uqll\ 1 uq1_2 fpeeeyVou -iupl_].? u {\lql} S upli ’
Vou {“ql} ,Vo u {“ql_._l} goeece ,Vo U {“pz-l} ,Vou {upz_l} w4 llqu \

\{ uqz_li,...,vou{\lqé ,voU{ +1},...,V°u "j i) is a path

\xqt
in qlkl
in G from Vy to V,.

Now let »(V;,V,) = »> 1 and assume the assertion is true
for all vi, Va' in v(K) satisfying » (vi,v,‘;)< 2 o Then there
exist vertices ueV, \V, and veV;\V,. Since v(Vl,Vz\ fulvu
uiv})< » and »(Vy\{uluivi,V,) =1, there exist paths
from V, to VN iul uiv} as well as from V,\ fuju iv} to V,
in G[k], hence also from V; to V,.

(2,4) Theorem. Let A be an irreducible square matrix of

order n. Then for each k = 1,...,n, the k-th additive compound

[x) of A is irreduéible as well.

matrix A
Proof. As we mentioned in the introduction, a square mat-

rix is irreducible iff ite directed graph is strongly connec-

ted. Therefore, this theorem follows immediately from Theorem

(2,3).

(2,5) Theorem. Let A be a square matrix of order n. If

A is reducible then for each k = 1,...,n~1 and each 8 = 1,,..
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essyk, the generalized compound matrix A(k"’) is reducible
as well.

Proof. Let A = (ay,) be reducible, let N = {1,...,nj.
Then there exia;t.s a non-void proper subset M of N such that
8y = 0, whenever ic M and j¢il. Let k be an integer, 14k £
£n-1, let N(k) a8 above be the set of all k-tuples in N.
We shall distinguish two cases:

Case A. k.£|M|. Define Z as the subset of N'X) consis-
- ting of all k-tuples contained in M., Observe that Z is a

non-void and proper subset of N(k)

+ Let us show that if Ie 2
and J¢ Z then det A(I,J) = O, i.e. the entry of AlK) with the
row index I and column index J is zero. Since J¢ Z, there ex-
ists an index je¢ J such that jé¢M. Therefore, the column in
the submatrix A(I,J) corresponding to the index j contains
all gsero entries so that det A(I,J) = O, indeed. However, the
property that det A(I,J) = O whenever Ic Z and J¢ Z means

that A{K) ig reducible.

Case B. Xk>|M|, Denote by Z the subset of NX) consist-
ing of those k-tuples which contain all indices in M. Ve
shall show again that det A(I,J) = O whenever Ie Z and Jé¢ z.
ItJé ﬁ, there exists an index he¢ M, h¢ J. The matrix A(I,J)
of order k contains a zex;o block with k rows corresponding
to indices in M and k - (IM} - 1) columns coz"reeponding to
indices in J\ (M\{h3}), KBnig’s theorem mentioned in the int-
roductiﬁ implies then det A(I,J) = O. Consequently, A(k) is
reducible in this case as well.

Since A + xI is reducible in the same manner as A,
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(A + xI)(k) is reducible, which means that A(k") are redu-

cible for all k, 8, 14 s£k%n-1. The proof is complete.

[y

£a2i

[31

[4)
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