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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21, 1 (1980) 

REGULAR SOCIETIES WITHOUT SHORT CYCLES 
V. KOUBEK, J. RAJLICH 

Abstract: For every triple (n,m,k) of integers bigger 
than 1 a society is constructed such that each its team has 
n points, every point lies in m teams and it has not cycled 
with length6k. 

Key worde: Society, graph, cycle, team. 

Classification: 05C99, 05C35 

In this note all sets are finite. A society (or hyper-

graph) is a couple (X,R) where X is a set called an under

lying set and R is a set of subsets of X called teams of 

the society, The notion of a society came into being as a 

generalization of that of a (aymmetrical) graph - viewed as 

a society which haa only two-point teama. Grapha were invea-

tigated in many papera. A special role among graphs ia play

ed by the regular ones. A graph (X,R) is k-regular if for 

each x e X , card { A € R ; x 6 A l = k. We generalize this notion 

as follows. A society (X,R) is (n.m)-regular if every team 

has n pointd and every point x £ X lies exactly din m teams 

(n, m are natural numbers, n , m > 0 ) , Hius an m-regular graph 

ia a (2,m)-regular aociety. Another important notion in the 

theory of graphs ia that of a cycle. We generalize this 
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notion for a society in a natural way: a one-to-one sequen

ce (AlfA2,.. .jAy) of teama, r:>l, is a cycle of length r if 

there are distinct points (x-^Xg,... fXp) such that x-^eA^n 

nAj, XptiA2riA,,....x 6 i L n A . j . All simple examples of re-

gaUer societies (or graphs) have short cycles. The question 

of existence of k-regular graphs without short cycles was 

solved in [2l,L"3J. A k-regular graph has been produced with 

girth > n - the girth of a society with a cycle is the length 

of the shorteet cycle in it, otherwise the girth is oo (oo>n 

for every natural number n). We can formulate this result as: 

Proposition 1: There is (2,n)-regular society with 

girth >k, for every couple of natural numbers n, k, k>l. 

The other important class of graphs are bipartite graphs. 

In this note a bipartite graph is a triple (X,Z,R) where (X,R) 

is a graph, ZcX such that for every AeR, Zr>A4-0*(X - Z)n A. 

If we want to generalize the notion of n-regular graph for 

the clas9 of bipartite grapha then we can do this as follows: 

a bipartite graph (X,Z,R) is (n.m)-regular if for each x 6 X «-» 

- Ẑ card-i A eRjjxeAl= n, and for each x eZ , card {AC Rjx eAj = 

= m. Then the well-known theorem on representatives can now 

be restated as follows: 

Theorem 2: For a society (X,R) define a bipartite 

graph $(X,R) = (XuR,X,S) where (x,A) e S iff x eA. Then § 

is a bijective correspondence between societies and biparti

te graphs such that: 

a) a society (X,R) is (n,m)-regular iff $(X,R) is an 

(n,m)-regular bipartite graph; 

b) a society (X,R) has a cycle of length k iff $^,R) 
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has a cycle of length 2k. 

We now reformulate one of the results from [3j : 

Proposition 3: For every couple n, k of natural num

bers there is an (n,n)-regular society with girth > k. 

The aim of this note is to prove the following genera

lization of Propositions 1 and 3. 

Theorem 4: For every triple n,m,k of integers bigger 

than 1 there is an (n,m)-regular society with girth > k . 

Using Theorem 2 we get: 

Coronary 5: For every triple n,m,k of integers big

ger than 1 there is an (n,m)-regular bipartite graph with 

girth > k. 

The proof of Theorem 4 is based on the following idea. 

We construct societies ^ ( n ^ s ) without cycles and such 

that every team contains n points, every point is contain

ed either in one or in exactly m teams. The parameter s cha

racterizes the size of the society (see the introductory de

finitions and Lemma 6). We take a disjoint union £&(n,m,s) 

of m copies <i?£(n,m,s). i=l,2,... ,m, of *if(n,m,8) and glue, 

them together by the equivalence generated by a suitable se

quence <f> of bisections yi:B^(n,m,3)—^B.+1(n,i,s), where 

Bi(n,m,e) denotes the set of elements of ^ ( n ^ s ) contain

ed only in one team. The resulting society ^r(n,m,s,y) i« 

(n,m)-regular (Lemma 7). With the aid of Lemma 9 we can, un

der certain assumptions on Co ,and s, replace cp by another 

sequence y of bisections t^iB..—> B£+1 yielding a new so

ciety £&(n,m,s,y) whose girth is three times bigger than 
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that of S£r(n,m,s,y). Repeated blowing up of girth finally 

proves Theorem 4. 

Proof of Theorem 4: First we give some definitions. 

We shall assume that n, m, s is a triple of positive inte

gers. Define: 

P(n,m,s) ̂ fij^jai1* t~ s» ii^iOflf•••»-&$, for j=l,2,...,t 

i2£*il92,...tmi9 i2j+16^1,2,...,nil ; 

Q(n,m,s) = P(n,m,s)x 4lf2,...,m}; 

B(n,m,s)cp(n,m,s), H A^lt1 € &(n,m,a) iff t = sf 
J tJ"*.L 

C(n,m,s) = B(n,m,s)x-(1,2,...^}; 

T(n,m,s) = <ZcP(n,m,8);3{ijTj^X€P(n,m,3) - B(n,m,s), 

3q£ fl,2,...,m], 

a2t+2 = q» a2t+3e *lt2f»i-a*Wu H 0,1,...,nil; 

U(n,m,s) = -CZK-Cq^ Z€.T(n,m,s), q 6 Cl,2,... ,iU; 

For -eiA^1&B(n,m,s) and for w<s define JTw(*£ijij®^
1) = 

where X€B(n,m,s) put 4rw(xfq) = (#w(x)fq)f CSw(x,q) = 

= (0q(x),q). Put ^ ( n ^ s ) = (P(n,m,s), T(n,m,s)), 

*fr(n,m,s) = (Q(n,m,s), U(n,m,s)). Then it is clear: 

Lemma 6: Every team of «(Kn,m,s) or Sf(n,m,s) has ex

actly n+1 points. Every point of P(n,m,s) - B(n,m,s) or 

Q(n,m,s) - C(n,m,s) lies exactly in m+1 teams. Every point 

of B(n,m,s) or C(n,m,s) lies exactly in one team. The girth 

of ^(n,m,3) or «£'(n,mf8) is bigger than any natural number. 

We say that a mapping <# :C(n,m,s)—i*B(n,m,s) fulfils 

(*) if for every q£ -Cl,2,.. .ml the restriction <f on 

B(n,m,s)x. £ql is a bisection. Let ^>, be an equivalence on 
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C(n,m,s) such that a rv b iff cp(a) * g>(b). (The smal

lest equivalence on Q(n,m,s) merging the same pointa as 

r\/ will be denoted nj , too.) We define a aociety 

y^(nfmfsfc^) as follows: the underlying set is Q(nfmfsfcp) = 

= Q(nfmf3)/r>^ , the teama are U(n,mfafy) = { Z A ^ ; 

ZcU(n,mfs)}. Then it is eaay that: 

Lemma 7: S(MmfnfsfGp) is an (n+lfm+l)-regular aociety 

whenever <f fulfil3 (#). 

In the following we want to choose s and 5 fulfilling 

(#) such that the girth #f 3Er(nfmfsf<y)^k. 

Let w > l be a natural number with w<s. Define: 

H(n,mfs,w) -^w(x)jj x6B(nfm,s)}, L(n,m,s,w) = H (n,m,9,w) .x 

.x. {1,2,... ,m}. We say that y:L(n,m,s,w)—^H(n,mfsfw) ful

fils (*) if for every q e -ft, 2,... fm$ the restriction of Y 

to H(n,mfs,w)x -CqJ is a bisection. Further for y"il 

:L(nfmfsfw)—vH(nfmfs,w)f if2:C(n,mfw)—*B(n,m,w) defi

ne Y1iay2:C(n,m,3)—>B(n,m,s) by 6 w ( f 1 B
, T 2 ^

x ^ = 

= Y 1(^ w(x)), 3rw( y-ĵ H y2(x)) = r 2(^ w(x)). Then it is 

easy to prove 

Lemma 8: Let V =T 1
s a" lf2* Tkien Y fulfi3B W iff 

Y ^ and Y 2 fulfil (.*). Moreover the projection from 

C(n,m,s) to B(n,m,s) fulfils (*). 

Now we prove the basic lemma of the proof: 

Lemna 9: Let Y:L(n»mtsi*)—>H(n,m,s,w) fulfil (#). 

Let h:L(n,m,s,w)—* -C2J!, 2.1+1,... ,2w+l$ be a one-to-one 

mapping. Define 9 :L(n,m,s,£)—:> H(n,m,8,jfc) as follows: 

*w(cp(x)) * Y ( V
x ) ) » and if x s Wlj^j*a»^) ^ ^ »(x)as 

"*aj*j«2l where for ^ W i ^ f M ^ U , j*h(<fw(x)) 
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we have a. = i ., and i f j = hitf (x)) and j i s even then 
rj J W 

a. = i4 + 1 (mod m), if j = h(Cf (x)) and j is odd then u J w 

a- = i- + 1 (mod n). 

Then g> fulfils (*). If moreover the girth aC of 

&(n,m,8»p H«y)> --̂pS. where p is the projection, then for 

every ^:C(n,m,i-l)—> B(n,m,£-1) fulfilling (#) it holds 

that the girth of £(Kn,m,s, ̂ H y )>3oc . 

Proof: The former statement is obvious. We have to 

prove the latter one. Assume that A-^Ag,...,6^ is a cycle 

in #r(n,m,s, ̂ tay ) and r< 4oC . Choose ii -1 j?*1^ B(n,m,w) 

and define B = 4x; Jy = (a,u)cA , 6^(x) = #w(y), Jrw(x)= 

= (-ti-i .=1 ,u)"l. Since AlfA2,...,Ar form a cycle we get 

that B ,r .a- . + 0f B 2nB^,...,B nB, + 0, moreover we can 

choose a sequence of distinct points (x-̂ ,X£,.. .,x^) such 

that x-^ B-ĵ oBg, Xg6 B^nB^,... fxr& ByOB^. Hence B-,,^,... 

...,B can be divided into sections which form cycles. 

Define ^a: 4l,2,...,ri — * il,2,... tml as follows: 

^t(q) = u if A is an image of some Zx£u! by ~*m& f Z € 

cT(n,m,s). Since ̂ «<y fulfils (#-) by Lemma 8 we get that 

(«/ is a correctly defined mapping. E|y Lemma 6, ^JU is not 

constant. Let <ct,(j-l) + <a(;j) = <ou(,j+l) =...= <ct( J)£ (U( J+l). 

Then from the definition of *£ (n,m,s) we get that B. and B T 

determines all members between j and j". The analogous sta

tement holds for A- and kj. Further if we choose x,y € 

% V * Aq " c(n»m»8)» x = M ^ S I 1 ! <*(o)>> y • 
= ( ,fb

u^u=i+1 .» <^0))> then t,t'> w and for u<2w+lf a^ = bu. 

On the other hand if we choose zgA- , - C(n,m,s), z = 

= (^cu^u=l » f^J-D) then there are two indexes u-̂t u^ <: 

<2w+l such that cu •£ au , cu + au (^ = h(6w(x'))f 
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u2 = h<ffw(
x">> where x',x" e C(n,m,9), s^B <$>(x') =;£B!cp(xn) 

and Aj_Tf> Aj containa the class of ̂  containing x' -

from the definition of <p we get card A. ..nA. = 1). Thus 

if p,( j~l);-f-. (Mj) then there is j' such that -J/U/(j'), 

^(j'-l)^ - f ra ( j ) , ^(j-DJ and B ^ ^ n B ^ / r . . B.^oB.. Hen-

We choose a cycle Bt,Bt+1,... ,Bt/. Then by the follow

ing considerations one of the following two cases is neces

sary; 

1) this cycle is in the sequence B,,Bp, # .„ ,B once more in 

the converse ordering. But A., jAg,... ̂ A^ is a cycle so these 

two cycles do not exhaust all sets B-^B-,,... ,Br. From the 

rest we can also choose a cycle and again by the foregoing 

considerations there is still another cycle these. Ihufl fro* 

the sequence By,Bp,...,B it is possible to choose four dis

joint cycles, hence r . ^ 4 0 0 - a contradiction. 

2) This cycle is contained in two other cycles (in the con

verse ordering). Hence r>3cc . 

The lemma is proved. 

Assume that it is given k such that the girth of 

otr(n,m,s,y)> k. Now we complete the proof by induction. Choo

se s such that the following considerations are possible • 

Choose YQ as ^ke projection. Put k = s - -x (>0). Assume 

that k, - a - ^ - -Mp*—(:>0). Then there is a bijection from 

L(n,m,s,k0) to -(2^+2,2^+3,... ,2kQ^ and we can construct^ 

by Lemma 9. Since the girth of £6*(n,m,s, Y0^
 = 2 w e S e t ***•* 

the girth of ^ ( n . m . s . p S T j l ; ^ ^ (P -̂ 3 tne projection). Now 

we assume that k2 = s - L - --̂ -̂ — (> 0) and we can con

struct Y7 a£ a^ n by I-emTTH 9. If we repeat this step for a 
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suitable number of times we wind up with the girth of 

$<n,m,s,p Hy t)> k, which concludes the proof of Bieorem 4. 

Define 

cp(n,m,k) = -fr; there ie an (n,m)-regular society (X,R) with 

girth Z k and card X = r}j 

R(n,m,k) = min o(n,m,k) • 

Then it is easy to prove: 

Proposition 10: <j> (n,m,k) forms an additive subsemi-

group of natural numbers. If r € <p (n,m,k) then ~- is an in-

teger. Define $(0) =[|], $(i+l) = $(i) + [ - ^ — j . Then 

$(0)£ 4̂ R(n,m,k)^ $(t) where t is the smallest number 

such that 2(3t)>k. 

Proof: The disjoint union of societie9 pre3erves (n,m)-

regularity and the girth of the disjoint union is the mini

mum of girths. Hence we get the first statement. The second 

statement follows from the fact that for (n,m)-regular socie

ty (X,R) it hoMs: card R*n = m«card X. The third one follows 

from the proof of Theorem 4. 

The form of G? (n,m,k) or the value of R(n,m,k) i3 an 

open problem. Uiese values are known only for simple cases 

e.g. if n = 1 or m = 1, or n = 2 = m. 
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