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COMMENTATIONS MATHEMATICAE UNIVERSITATIS CAROLINAE 

21.2(1980) 

PURELY FINITELY GENERATED ABELIAN GROUPS 
Ladislav BICAN 

Abstract: In this note a new structural description 
of purely finitely generated abelian groups is presented. 
This criterion enables us to show that the class of purely 
finitely generated groups is closed under pure subgroups 
and that this class is contained in the class of all fac
tor-splitting torsionfree abelian groups. As an application 
a theorem concerning the splitting of pure subgroups is 
generalized. 

Key words: Purely finitely generated group, factor-
splitting group, p-rank, generalized regular subgroup, 
splitting group. 

Classification: 20K15 

By the word "group" we shall always mean an additive-

ly written abelian group. The symbol Jf will denote the 

set of all primes. If H is a torsionfree group, M a subset 

of H and or'Stf then <M> denotes the or'-pure closure of 

M in H. Zw. will denote the group of rationals with deno-
<n 

minators prime to every p e st* • Any maximal linearly inde

pendent set of elements of a torsionfree group H is called 

a basis. Other notations and terminology is essentially 

that as in L'81. 
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1. Purely finitely generated groups. Recall I!3) that 

a torsionfree group H is said to be purely finitely genera

ted if it contains elements h-phg,...,h^ such that 
ft* u 

Lemma 1: Let H be a completely decomposable torsion-

free group of finite rank n. Then there is a decomposition 

Jf = . C/, 31 . of the set 31 such that for each i=l,2,...tk 

the group H ® Z^ is completely decomposable with ordered 
i 

type set. 
a* 

Proof: Let H =.5.® J. be a complete decomposition of 
- — - - -i» 4 --

H, h.feJ., i=l,2,...,n. For any permutation y> <s Sn define 

•31̂  to be the set of all primes p with h^O* Q \ ) 2. 

Sh (h /2^)J...2h (h ^ n ^ ) . The group H<£ Z^ is obviously 

completely decomposable with ordered type set for each 
y c sn. 

Theorem 2: If H is a tor si onfree group of finite rank 
i 

n then^the following conditions are equivalent: 

(i) H is purely finitely generated. 

(ii) There exists a decomposition 3t = -M* iff ̂  of the 
set 3X such that the group H 6> -L, is completely decompos-

^i 
able for each i=l,2,...,k. 

(iii) Ohere exists a decomposition JT = . ^ ^ ̂  of the 

set sr such that for each i=lf2,...,k the group H & Z is 
*i 

completely decomposable with ordered type set. 

(iv) There exists a pair-wise disjoint decomposition 

# = \J* JT ̂  of the set 3f such that for each i=l,2,...,k 

the croup H ® Z is completely decomposable with ordered 
*i 

type set. 
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Proof: (i) implies (ii). Let H be a purely finitely 

ordered group of rank n. By [3; Lemma 5] to every prime p 

there exists a linearly independent sub9et-i h|p ,hgP ,... 

...,h£p^} of the set -ih^jhg,... ,hffl} 9uch that < h-^hg, • • • 

P 4. «*. 

...,hm> " = ..£< ^i>p.
+^?>j < h±> • F o r e a c h linearly inde

pendent subset S =-{hi fh^ ,... ,1^ j of -fh-̂ -hg,.. • ,-^j we 

1 2 k 

denote by jr<, the s e t of a i l primes p fo r which 

< h 1 , h 2 , . . . , h m > J » Z 1 < h i >J + ^ < h i > . Ely the preceding 

p a r t we c l e a r l y have # = V ^ s an<a t h * s u n i o n i s ooviously 

f i n i t e . To f i n i s h the proof of the i m p l i c a t i o n i n ques t ion 
i t s u f f i c e 9 to show t h a t H <S> Z^ i s a completely decomposab-

*S 
l e g roup . As3uming a a u i t a b l e enumeration of the e lements , 
n l » n 2 * * * * >nm w e c a n 3 U P P o s e t h a t S = { h ^ h g , • • • ,h. $ and that 

- \ h l t h 2 , . . . f h } i s a b a s i s of H. Moreover, t a k i n g s u i t a b l e 

m u l t i p l e s of r ^ ' s , i = l , 2 , . . . ,m, we can suppo3e t h a t n ^ - ^ , . . . 

. . . , h m € < h 1 , h 2 , . . . , h n > . Then fo r each prime p c Jr*s we have 

<hLh2 V? -£< hi>5 \h < hi> = i f f < hi>? ® 

Now i t i s e a s i l y seen t h a t < h - ^ h g , . . • jh^} = 

= - - £ ® < h . > i ? © Z ® < h , > and consequent ly the group 

H<8> \ * £f «h±>% * Z- > © . S J * « h i > ® Z ) i s com-
. ^ s t " T S S 4,*Jte'+1 i ^ S 

p l e t e l y decomposable. 

( i i ) impl i e s ( i i i ) . Suppose t h a t 3f = 4,Vl ^ ^ and t h a t 

the group H 0 Z i s completely decomposable f o r each 
^ i 

i = l , 2 , . . . , k . By Lemma 1 for each i * l , 2 , . . . , k the s e t 7f d e -
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* * 

composes into 3t -£z*A sty"' in such a way that the group 

H O Z ® Z (£) is completely decomposable with ordered 
-* V 

type set for each ;j=l,2,... ,k^. Now the assertion follows 

easily from the simple fact that Zw,£> Z _ £ Z . ̂ , for all 

subsets ST'9 <rt" of or • 

(iii) implies (iv). For each i=l,2,...,k put 3r. = 

= fl\-\ ( .L-̂ , rf*). The group H<g> ̂  i=l,2,...,k is obvi-

ously completely decomposable with ordered type set and 

the union or = XJ^ S. is clearly pair-wise disjoint. 

(iv) implies (i). Suppose that the set St decomposes 
A 

into a pair-wise disjoint union 3f = \^*j\ & . in such a way 

that for each i=l,2,...,k the group H @ Z , is completely 

decomposable with ordered type set. Then for each i=l,2,... 

...,k there are elements hi1' thi1^,... ,1a,;1' in H such that 

H. = E0 Z„ = Z ® < h\i;® I V 1. We are going to show 
£i ^ir*1 J * 

that H =,2T4 -̂ ~, < h!; X7. Let h€H be an arbitrary element. 

For each i=l,2,...,k the set 4h:[
i) ,h^l),... th^} is obvi

ously a basis of H so that there is a positive integer oc 

such that cch€<h:[
i)

fh^
i)

f...fhn
i)> , o6h = .-§4 ^ j 1 ^ 1 ' , 

for each i=lf2f...,k. Write cC in the form cC= risi, i= 

=lf2,...,k, where r. is divisible by the primes from tf^ on

ly and (sifp) = 1 for each p e J?\. Now r.jh ̂> 1 = och<g> 1/Q±-

-*£t ^ji)hji)€> l/si = J^ ^Ji)(hJi)® 1/s.). From 

19; § 60 Ex. 9(a)J it easily follows that r. | Jlii)h(.i) for 
— . •-» u u /П/ 

each ^=1,2,...^ and consequently s ^ 6.-S.̂  < -*j V or.̂ . How

ever, (SiiSgf-»s
k
) = 1 in view of the disjointness of 
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Jle, * , 
~^JA tJT.5* ^h^s - ^J 3A oC± = 1 for s u i t a b l e in tegers oC-, 
.V#J i t - . 1 -» x jfe --

oC 2 , . , . ,c3C k and consequently h =^^f 0-^s.jh 6 
jQr̂  o v / • \ rr h/ (n/ 

e . z . JE, <hl)>H
jr s . s ; z \ < * \ - > z -

Theorem 3: Every pure subgroup of a purely finitely 

generated torsionfree group is purely finitely generated. 

Proof: Let S be a pure subgroup of a purely finitely 

generated group H. By Theorem 2(iii) there exists a decompo-
Jk/ 

sition --5T = ̂ Sr^ &± °? "the set tfr such that for each i=l,2,.. 

...,k the group H ® Z is completely decomposable with or-
i 

dered type set. By 19} Theorem 60.4 3 the group S<3> 2L, is 
vi 

isomorphic to a pure subgroup of H ® Z for each i=l,2,... 
^i 

...,k. Consequently, S<$ Z is a completely decomposable 
*i 

group with ordered type set by [1, Theorem 13 and it suffi

ces to use Theorem 2. 

Recall that a torsionfree group H is said to be factor-

splitting if each homomorphic image of H splits. 

feeorem 4: Every purely finitely generated torsionfree 

group is factor-splitting. 

Proof: Let H be a purely finitely generated group. By 

Theorem 2(ii) there exists a decomposition si = ̂ V^J ^± °^ 

the set or such that the group H ® Z^ is completely decom-
*i 

posable for each i=l,2,...,k. Now for each i=l,2,...,k the 

group H ® Z is factor-splitting by [7; Theorem 6 ] and it 
,jri 

suffices to use C7; Lemma 53» 

2. Splitting of pure subgroups. If H is a torsionfree 

group then the set of all elements h of H having infinite 
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p-height is a subgroup of H which will be denoted by 

Ulp°°l . It is well-known (see [11]) that if H is a torsion-

free group and F its free subgroup of the same rank then the 

number r (H) of summands Cip07) in H/F does not depend on 

the particular choice of F and this number is called the p-

rank of H. A subgroup K of a torsionfree group H is called 

generalized regular if for every geK the characteristics of 

g in K and in H differ only in finitely many places. 

Now we shall formulate Conditions ( oC ), (• y ) (see [ 2.]). 

A mixed group G with the torsion part T satisfie3 Condition 

(OG) if to any geG\T there exist9 an integer m such that 

mg has in G the same type as g+T in G/T. We say that a mixed 

group G with the torsion part T satisfies Condition ("y) if 

it holds: If G/T contains a non-zero element of infinite p-

height, then the p-primary component T of T is a direct sum 

of a divisible and a bounded group. 

Lemma 5: Let H .= -fa-, ,a2> • • •! be a torsionfree group of 

finite rank n and let i ni>n2># • • >nn^ b e a bas^s of H, F = 

= 1LJ <h.>. If for each m=lf2,.„. it is 

H/< Fu ^A < a.>J* > ̂  .-f ® T , 

where T + 0 and & is an infinite set of primes, then H 

contains a generalized regular subgroup K of rank n such that 

the factor-group H/K ha% infinitely many non-zero primary 

components. 

Proof; In each set # , m=l,2,..., choose a prime p 

in such a way that all these primes are pair-wise different. 
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By hypotheais, to each m=-l,2,... there exists a subgroup 
tin if k_ 

K^S < F u ^ ^ ai^r> of H sucn that H/^- c(%>i where 

oo 
kmc-tl,2,..., oo } . If we put K = r v K^ then for each m=lf 
2,... it is KiK^ and the factor-group H/K is a homomor-

phic image of H/K. Consequently, the factor-group H/£ has 

non-zero p -primary component for each m=l,2f... and it re

mains to show that K is a generalized regular subgroup of 

H. 

If g € K is an arbitrary element then g * am for some 

m=l,2,... . If the equation p x = g is solvable in H then 

xe<g>£ = < a ^ and x ^ H ^ by tne choice of K^'s. If 

p^. -f P1tP2»
#**fPm-ii

 tnen xe-^nKgA ..• t^K^^ and so X€K. 
K H 

Thus the characteristics X (g) and X (g) can differ only 

on places corresponding to the primes Pi»P2»**#»Pm-l ^^ ^ 

is a generalized regular subgroup of H. 

Lemma 6: Let H be torsionfree group of finite rank n. 

If the set jr' of all primes p with r(H I p">3 )< r
p(H) is in

finite then H contains a generalized regular subgroup K of 

rank n such that the factor-group H/.K has infinitely many 

non-zero primary components. 

Proof; Let -fh-^hg,... ,hn$ be a basis of H, P « 

* j-<~,jl i h.) and H = {a-jja^,...). With respect to Lemma 5 

it suffices to show that for each m=-l,2,... the factor-group 

H/<P u,-Ej i &±^iff ) naa infinitely many non-zero p-primary 

components. Proving indirectly suppose the existence of a 

positive integer m such that the factor-group 

H/< P u JE^ < ai>;rr> is #.,-primary where m^ is a finite 

set of primes. Denoting of2 s * ^ ^ i f the sequence 
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0 - * 2J, ® (F + £ < «,>*>•--> ^ ® H - > Zo( ® H/(- + J ^ a ^ - O 

i s exact by 19 | Theorem 60.6 3. 331U8 the group Z^ ® H i s pu-
m2 

rely finitely generated and consequently r (H) = r(HCpa?3) 

for each p f e ^ by [3f Proposition 13. Then necessarily 

JT £ #-, f which contradicts the hypothesis. 

Now we are ready to prove the following generalization 

of C4f Theorem 53 • 

Theorem 7: The following conditions are equivalent for 

a torsionfree group H of finite rank n: 

(i) If G is a mixed group with the torsion part T such 

that G/TaH then every pure subgroup of G of rank n splits 

if and only if G satisfies Conditions (t*J)f (^)« 

(ii)(a) v (H) = r(HCp°°3 ) for almost all primes and 

for all primes p with r(H Cp^l) = Of 

(b) for every generalized regular subgroup K of H 

of the same rank n the factor-group H/K has only a finite 

number of non-zero primary components. 

(iii) r (H) = 0 for each prime p with r(H£p°°3) = 0 

and for every generalized regular subgroup K of H the tor

sion part of the factor-group H/K has onty a finite number 

of non-zero primary components. 

(iv) If G is a mixed group with the torsion part T 

such that G/TMH then every pure subgroup of G splits if 

and only if G satisfies Conditions (oc)f (y). 

Proof: Conditions (i) and (ii) are equivalent by 
1 % 

£4; Theorem 53. 

( i i ) implies ( i i i ) . The set */*-Cp *«r | r (H) * 

4r(HCpao3 )} i s f in i te by the hypothesis and consequently. 
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[3; Proposition 1] shows that the group H @ ^ . ^ ^ i s pure

ly finitely generated. If S = <K>~ is the pure closure of 

K in H then S@> ̂  , is pure i n H ® Z^^, by [9; Theorem 

60.43 and so it is purely finitely generated by Theorem 3. 

By [9; Theorem 60.63 we have S/K® Z^slW/-*(S® Z ^ ^ , )/ 

/(K<g> Ẑ NrJr,) and hence the group S/K® Z^^,, has only a fi

nite number of non-zero primary components by 13; Proposi

tion 13, Ktg> Z^ssr/ being generalized regular in S<g Z^^^,* 

Now it is obvious that the torsion part S/K of H/K has only 

a finite number of non-zero primary components. 

(iii) implies (iv). Let G be a mixed group with the 

torsion part T such that G/T^H. If G satisfies Conditions 

(cC), if) then every pure subgroup of G splits by Lemma 6 

and CA; Lemma 23. Conversely, if every pure subgroup of G 

splits then, especially, every pure subgroup of G of rank n 

splits and G satisfies Conditions (oC), if) by Lemma 6 and 

[4f Theorem 53. 

(iv) implies (ii), The proof is the same as that of 

the implication (i) implies (ii) in C4; Theorem 53. 
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