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THE AMALGAMATION PROPERTY OF VARIETIES DETERMINED 
BY PRIMITIVE LATTICES 

Vaclav SLAVIK 

Abstract: No variety determined by a primitive latti
ce has the Amalgamation Property. 
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Classification: 06A20 

A class K of lattices is said to have the Amalgamation 

Property if, whenever A,B,CeK are lattices such that C is 

a sublattice of both A and B, then there is a lattice Z e K 

and embeddings f of A into Z and g of B into Z such that 

f(c) = g(c) for all ccC. 

Let L be a lattice. Denote by N(L) the class of all lat

tices that contain no sublattice isomorphic to L. A lattice 

L is said to be primitive if N(L) is a variety. The complete 

description of all primitive lattices is given in £11; the 

reader is supposed to be acquainted with £13. 

The aim of this note is to show that no variety V = 

= N(L) (where L is a primitive lattice) has the Amalgamation 

Property. 

Let us remark that both extreme varieties of lattices 

and the variety of distributive lattices have the Amalgama-



tion Property; i t is an open oroblem (cf. £23) to determi

ne the number of varieties of latt ices with the Amalgama

tion Property. 

A lattice L is said to be A-decomposable if there ex

is t nroper sublattices L-,, L̂  of L such that whenever f. 

(i = 1,2) are embeddings of L̂  into a lattice Z and f~.(x) = 

= ?2^ ^0T a 1 1 x e * 1 n ^2 t n e n L c a n D e e-Qbedded into Z. 

Let I*,, L~ be proper sublattices of a lat t ice L. We 

shall say that the condition Pv( 1 ,̂1.2) is satisfied if L U 

Ul^ = L and for al l xel^N L ,̂ y €3-2NLi o n e of the follow

ing conditions is satisfied: 

1) there exists a c € Î O 1.̂ , such that either e£x and 

cvyeLALp or c i y and c v x £ L-̂  r\ L>> • 

2) there exist c,d£ % A L 2 s u c n t n a t either c^-x^d -̂  

fscvy or c ^ y t r d ^ x v c 

3) there exists a c e l ^ n 1̂  such that either x ^ c ^ y 

or y t c ^ x , The condition PA (1^,1^) is defined dually. 

Lemma 1. Let L , k be proper sublattices of a lattice 

L and let P v (L-pI^) and PA (I^,-^) be satisfied. Then L is 

A-decomposable. 

Proof. Let f̂  (i = 1,2) be embeddings of L̂  into a lat

tice Z such that -^(x) = f2(x) for al l x e l ^ n l ^ . We shall 

show that the mapping h = f-u f2 is an embedding of L into 

Z. First we shall prove that h is injective. Let x+y and 

h(x) = h(y). I t is enough to assume that x e L*\ I*) and y € 

e LgX I*,. 

Case 1: c e L ^ L . , c£ x and cvyfi 1.̂ n L-.. Then f2(y) = 

- h(y)=h(x)=f1(x)=f1(cvx)=f1(c) vf1(x)=f2(c) vf x (x) . 
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We have f2(c).£f2(y) and so c^y syvcel^nl^; a contra

diction. 

Case 2: Cjdel^nLp and c^x^d^cvy. Then f-^x) = 

=f1(t3)vf1(x)£f1(d)=f2(d)^f2(cvy)=f2(c)vf2(y)=f1(c) v 

vf1(x)=f1(x). 

We have f 1 (x)=f . , (d ) and so we get x = de I^nL^; a contra

diction. 

Case 3: c c Î r. 1^ and x -=c 6y. Then h(x) = f-^x) -=fj(c) 

» f 2 ( c ) . ^ f 2 ( y ) = h(y) = hfoc). 

We have f1(x)=f1(c) and so x-cel^^L^i a contradiction. 

Now we shall prove that h is a homomorphism. It is e-

nough to verify h(xvy)=h(x) v h(y) for all xel^N L2, y e 

Case 1: cc Î r. L^, c^x and y vc c l^nl^. Then 

h(xvy)=h(cvxvy)=f1(cvxvy)=f1(x)vf1(c vy)=f1(x) v 

vf2(cvy)=f1(x)vf2(c)vf2(y)=f1(x) v f 1 ( c ) v f 2 ( y ) * 

-=f1(x)vf2(y)=h(x)vh(y). 

Case 2: c.dcl^nl^ and c^x^d-£cvy. Thenh(xvy) = 

=h(cv xvy)=h(c vy)=f2(c vy)=f2(c) v f2(y)=f1(c) vf2(y) * 

^f1(x)vf2(y)=h(x)vh(y). h(y)=f2(y)^ f2(c v y)=h(x vy). 

h(x)=f1(x)^f1(d)=f2(d)^f2(cvy)=h(xvy). 

So we get h(x)vh(y)=h(xvy). 

Case 3: ccrl^nl^ and x£c£y. Then h(x) vh(y)=f-L(x) v 

Vf2(y)=f1(x)vf2(c vy)=f1(x)vf2(c)vf2(y)=f1(x)vf1(c) v 

Vf2(y)=f1(c) vf2(y)=f2(c)vf2(y)=f2(y)=h(x)=h(xvy). 

Let A2, A3, A4, Bn <n21), Cn (n>l), DR (n>0), ^ 

(n^O), Fn (n£2), Gn (n>2) be the same lattices as the 

lattices defined and pictured in ClJ and let R, P, Q denote 
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the same constructions as those defined in £3l 

Lemma 2. The lattices A2, A^, A., Bn ( n . ? l ) , Cn (n> 1) 

are A-decomposable. 

Proof. Let L^^A-2»A3»A4>Bn»cn^ •
 T h e lattice L haa ex

actly two both meet and join irreducible elements a, b. Put 

L, = LMaS, J-p = --'Mbi . It is easy to verify the conditi

ons P v (L^,!^) and PA(L>L,L2). 

Lemma 3. Let L be a lattice of cardinality at least 3. 

Then the lattice R(L) is A-decomposable. If, moreover, there 

exist elements a, te L such that a40r, L (the least and 

the greatest element of L) and such that L = (a3u£t) (the 

disjoint union), then the lattices P(L,a) and Q(L,a) are A-

decomposable. 

Proof. Put 1.̂  = R(L)McLli, L2 = *0L,lL,cL,oL,iL}.
 P u t 

1.̂  = P(L,a) x 4cL3, 1*2 = 4lL,iL,cL,a,t,t va,t Aai. Put L, = 

= Q(L,a)MdLS, L2 = UL,iL,cL,dL,oL,0L,a,t,a vt,a /\tj. The 

verification of PV(L,,L2) and P A (L, ,1^) is easy. 

Lemma 4. The lattices Dn (n'ro), E n (n-?0), Fn (n£2), 

Gn (n2T2) pictured in Fig. 1 are A-decomposable. 

Proof. Let ke{ .Dn , .En ,Fn ,G*$. Itr *s a m e c n a ni c a-- work 

to verify that the conditions P v (L, jl^), P A (L, ,Lw) are sa

tisfied for the sublattices 1^ = L\-Ca,b$ and 1.̂  = (k3 (the 

ideal generated by k) where a, b, k are the elements pictur

ed in Fig. 1. 

Let T be the class of all lattices L such that the class 

N(L) does not have the Amalgamation Property. It is evident 

that any finite A-decomposable lattice belongs to T and so 

we get from Lemma 1 that the lattices A2, A-., A., B , C 

- 476 -



Figure 1. 

belong to T. Since the lattices Dn, En, Fn, Gn are A-deeom-

posable into two sublattices not containing a sublattice iso

morphic to Dn, En, Pn or Gn, respectively and the lattices 

D , En, Fn> Gn can be embedded into Dn, En, Fn and Gn, res

pectively, we get that the lattices Dn, En, F Gn are in T. 

If L is a finite lattice having at least three elements, then 

by Lemma 3 the lattice R(L)belongs to T; if, moreover, L « 

- (aVoLt) (the disjoint union) for some a, t e L, then the 

lattices P(L,a) and Q(L,a) belong to T. Evidently T is clos

ed under the dual lattices. Combining the facts mentioned a-

bove with the main result of til we get that all primitive 

lattices except for the two-element lattice and the five-e-
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lement nonmodular lattice are in T. Since the class of all 

modular lattices does not have the Amalgamation Property 

C23, we get 

Theorem. Let V be a nontrivial variety of lattices 

and let there exist a lattice L such that V is the class of 

all lattices that do not contain a sublattice isomorphic to 

L. Then V does not have the Amalgamation Property. 
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