Commentationes Mathematicae Universitatis Carolinae

Václav Slavík
 The amalgamation property of varieties determined by primitive lattices

Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 3, 473--478

Persistent URL: http://dml.cz/dmlcz/106013

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

 21,3 (1980)
THE AMALGAMATION PROPERTY OF VARIETIES DETERMINED BY PRIMITIVE LATTICES
 Václav SLAVIK

Abstract: No variety determined by a primitive lattice has the Amalgamation Property.

Key words: Lattice, primitive lattice, variety, the Amalgamation Property.

Classification: 06A20

A class K of lattices is said to have the Amalgamation Property if, whenever $A, B, C \in K$ are lattices such that C is a sublattice of both A and B, then there is a lattice $Z \in K$ and embeddings f of A into Z and g of B into Z such that $f(c)=g(c)$ for all $c \in C$.

Let L be a lattice. Denote by $N(L)$ the class of all lattices that contain no sublattice isomorphic to L. A lattice L is said to be primitive if $N(L)$ is a variety. The complete description of all primitive lattices is given in [1]; the reader is supposed to be acquainted with [1].

The aim of this note is to show that no variety $V=$ $=N(L)$ (where L is a primitive lattice) has the Amalgamation Property.

Let us remark that both extreme varieties of lattices and the variety of distributive lattices have the Amalgama-
tion Property; it is an open nroblem (cf. [2]) to determine the number of varieties of lattices with the Amalgamation Property.

A lattice L is said to be A-decomposable if there exist proper sublattices L_{1}, L_{2} of L such that whenever f_{i} ($i=1,2$) are embeddings of L_{i} into a lattice Z and $f_{1}(x)=$ $=f_{2}(x)$ for all $x \in I_{1} \cap I_{2}$ then L can be embedded into Z. Let L_{1}, L_{2} be proper sublattices of a lattice L. We shall say that the condition $P_{V}\left(I_{1}, I_{2}\right)$ is satisfied if $L_{1} U$ $U I_{2}=L$ and for all $x \in I_{1} \backslash I_{2}, y \in I_{2} \backslash I_{1}$ one of the following conditions is satisfied:

1) there exists a $c \in L_{1} \cap L_{2}$ such that either $c \leqslant x$ and $c \vee y \in L_{1} \cap L_{2}$ or $c \leqslant y$ and $c \vee x \in L_{1} \cap L_{2}$.
2) there exist $c, d \in I_{1} \cap L_{2}$ such that either $c \leq x \leq d \leq$ $\leqslant c \vee y$ or $c \leqslant y \leq d \leqslant x \vee c$.
3) there exists a $c \in I_{1} \cap I_{2}$ such that either $x \leqslant c \leqslant y$ or $y \leqslant c \leqslant x$. The condition $P_{\wedge}\left(I_{1}, L_{2}\right)$ is defined dually.

Lemma 1. Let I_{1}, I_{2} be proper sublattices of a lattice L and let $P_{V}\left(L_{1}, L_{2}\right)$ and $P_{\wedge}\left(L_{I}, L_{2}\right)$ be satisfied. Then L is A-decomposable.

Proof. Let $f_{i}(i=1,2)$ be embeddings of L_{i} into a lattice Z such that $f_{1}(x)=f_{2}(x)$ for all $x \in L_{1} \cap L_{2}$. We shall show that the mapping $h=f_{1} \cup f_{2}$ is an embedding of L into Z. First we shall prove that h is injective. Let $x \neq y$ and $h(x)=h(y)$. It is enough to assume that $x \in L_{1} \backslash I_{2}$ and $y \in$ $\epsilon I_{2} \backslash L_{1}$.

Case 1: $\quad c \in L_{1} \cap L_{2}, c \leq x$ and $c y y \in L_{1} \cap L_{2}$. Then $f_{2}(y)=$ $=h(y)=h(x)=f_{1}(x)=f_{1}(c \vee x)=f_{1}(c) \vee f_{1}(x)=f_{2}(c) \vee f_{1}(x)$.

We have $f_{2}(c) \leqslant f_{2}(y)$ and so $c \leqslant y=y \vee c \in I_{1} \cap I_{2}$; a contradiction.

Case 2: $c, d \in L_{1} \cap I_{2}$ and $c \leq x \leq d \leq c \times y$. Then $f_{1}(x)=$ $=f_{1}(c) \vee f_{1}(x) \leqslant f_{1}(d)=f_{2}(d) \leqslant f_{2}(c \vee y)=f_{2}(c) \vee f_{2}(y)=f_{1}(c) \vee$ $\vee f_{1}(x)=f_{1}(x)$.
We have $f_{1}(x)=f_{1}(d)$ and so we get $x=d \in I_{1} \cap L_{2}$; a contradiction.

Case 3: $c \in I_{1} \cap L_{2}$ and $x \leq c \leq y$. Then $h(x)=f_{1}(x) \leqslant f_{1}(c)$
$=f_{2}(c) \leqslant f_{2}(y)=h(y)=h(x)$.
We have $f_{1}(x)=f_{1}(c)$ and so $x=c \in I_{1} \cap I_{2}$; a contradiction.
Now we shall prove that h is a homomorphism. It is enough to verify $h(x \vee y)=h(x) \vee h(y)$ for all $x \in L_{1} \backslash L_{2}, y \in$ $\in L_{2} \backslash L_{1}$.

Case 1: $c \in I_{1} \cap I_{2}, c \leqslant x$ and $y \vee c \in L_{1} \cap L_{2}$. Then $h(x \vee y)=h(c \vee x \vee y)=f_{1}(c \vee x \vee y)=f_{1}(x) \vee f_{1}(c \vee y)=f_{1}(x) \vee$ $\vee f_{2}(c \vee y)=f_{1}(x) \vee f_{2}(c) \vee f_{2}(y)=f_{1}(x) \vee f_{1}(c) \vee f_{2}(y)=$ $=f_{1}(x) \vee f_{2}(y)=h(x) \vee h(y)$.

Case 2: $c, d \in I_{1} \cap I_{2}$ and $c \leqslant x \leqslant d \leqslant c \vee y$. Then $h(x \vee y)=$ $=h(c \vee x \vee y)=h(c \vee y)=f_{2}(c \vee y)=f_{2}(c) \vee f_{2}(y)=f_{1}(c) \vee f_{2}(y) \leqslant$ $\leqslant f_{1}(x) \vee f_{2}(y)=h(x) \vee h(y) . h(y)=f_{2}(y) \leq f_{2}(c \vee y)=h(x \vee y)$. $h(x)=f_{1}(x) \leqslant f_{1}(d)=f_{2}(d) \leqslant f_{2}(c \vee y)=h(x \vee y)$. So we get $h(x) \vee h(y)=h(x \vee y)$.

Case 3: $c \in I_{1} \cap I_{2}$ and $x \leqslant c \leqslant y$. Then $h(x) \vee h(y)=f_{1}(x) \vee$ $\vee f_{2}(y)=f_{1}(x) \vee f_{2}(c \vee y)=f_{1}(x) \vee f_{2}(c) \vee f_{2}(y)=f_{1}(x) \vee f_{1}(c) \vee$ $\vee f_{2}(y)=f_{1}(c) \vee f_{2}(y)=f_{2}(c) \vee f_{2}(y)=f_{2}(y)=h(x)=h(x \vee y)$.

Let $A_{2}, A_{3}, A_{4}, B_{n}(n \geq 1), C_{n}(n \geq 1), D_{n}(n \geq 0), E_{n}$ $(n \geq 0), F_{n}(n \geq 2), G_{n}(n \geq 2)$ be the same lattices as the lattices defined and pictured in [1] and let R, P, Q denote
the same constructions as those defined in [I]
Lemma 2. The lattices $A_{2}, A_{3}, A_{4}, B_{n}(n \geq 1), C_{n}(n \geq 1)$ are A-decomposable.

Proof. Let $L \in\left\{A_{2}, A_{3}, A_{4}, B_{n}, C_{n}\right\}$. The lattice L has exactly two both meet and join irreducible elements a, b. Put $L_{1}=L \backslash\{a\}, L_{2}=L \backslash\{b\}$. It is easy to verify the conditions $P_{V}\left(I_{1}, I_{2}\right)$ and $P_{A}\left(I_{1}, L_{2}\right)$.

Lemma 3. Let L be a lattice of cardinality at least 3. Then the lattice $R(L)$ is A-decomposable. If, moreover, there exist elements $a, t \in L$ such that $a \neq 0_{L},{ }^{l_{L}}$ (the least and the greatest element of L) and such that $L=(a] u[t)$ (the disjoint union), then the lattices $P(L, a)$ and $Q(L, a)$ are $A-$ decomposable.

Proof. Put $L_{1}=R(L) \backslash\left\{c_{L}\right\}, L_{2}=\left\{0_{L}, I_{L}, c_{L}, o_{L}, i_{L}\right\}$. Put $I_{1}=P(L, a) \backslash\left\{c_{L}\right\}, I_{2}=\left\{I_{L}, i_{L}, c_{L}, a, t, t \vee a, t \wedge a\right\}$. Put $I_{1}=$ $=Q(L, a) \backslash\left\{d_{L}\right\}, L_{2}=\left\{I_{L}, i_{L}, c_{L}, d_{L}, o_{L}, o_{L}, a, t, a \vee t, a \wedge t\right\}$. The verification of $P_{V}\left(I_{1}, L_{2}\right)$ and $P_{A}\left(I_{1}, I_{2}\right)$ is easy.

Lemma 4. The lattices $D_{n}^{\prime}(n \geq 0), E_{n}^{\prime}(n \geq 0), F_{n}^{\prime}(n \geq 2)$, $G_{n}^{\prime}(n \geq 2)$ pictured in Fig. 1 are A-decomposable.

Proof. Let $L \in\left\{D_{n}^{\prime}, E_{n}^{\prime}, F_{n}^{\prime}, G_{n}^{\prime}\right\}$. It is a mechanical work to verify that the conditions $P_{V}\left(L_{1}, L_{2}\right), P_{\wedge}\left(L_{1}, L_{2}\right)$ are satisfied for the sublattices $L_{1}=L \backslash\{a, b\}$ and $L_{2}=$ (k] (the ideal generated by k) where a, b, k are the elements pictured in Fig. 1.

Let T be the class of all lattices L such that the class $N(L)$ does not have the Amalgamation Property. It is evident that any finite A-decomposable lattice belongs to T and so we get from Lemma 1 that the lattices $A_{2}, A_{3}, A_{4}, B_{n}, C_{n}$

Figure 1.
belong to T. Since the lattices $D_{n}^{\prime}, E_{n}^{\prime}, F_{n}^{\prime}, G_{n}^{\prime}$ are A-decomposable into two sublattices not containing a sublattice isomorphic to D_{n}, E_{n}, F_{n} or G_{n}, r espectively and the lattices $D_{n}, E_{n}, F_{n}, G_{n}$ can be embedded into $D_{n}^{\prime}, E_{n}^{\prime}, F_{n}^{\prime}$ and G_{n}^{\prime}, respectively, we get that the lattices $D_{n}, E_{n}, F_{n}, G_{n}$ are in T. If L is a finite lattice having at least three elements, then by Lemma 3 the lattice $R(L)$ belongs to T; if, moreover, $L=$ $=$ (a]u[t) (the disjoint union) for some $a, t \in L$, then the lattices $P(L, a)$ and $Q(L, a)$ belong to T. Evidently T is closed under the dual lattices. Combining the facts mentioned above with the main result of [1] we get that all primitive lattices except for the two-element lattice and the five-e-
lement nonmodular lattice are in T. Since the class of all modular lattices does not have the Amalgamation Property [2], we get

Theorem. Let V be a nontrivial variety of lattices and let there exist a lattice L such that V is the class of all lattices that do not contain a sublattice isomorphic to L. Then V does not have the Amalgamation Property.

References

[1] J. JEŽEK and V. SLAVfK: Primitive lattices, Czech. Math. Journal 29(104)(1979), 595-634.
[2] G. GRÄTZER: General lattice theory, Akademie-Verlag, Berlin 1978.

Vysoká Skola zemědêlska
mechanizacni fakulta
16021 Praha 6 - Suchdol
Ceskoslovensko
(Oblatum 26.3. 1980)

