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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 
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ZEROS OF ACCRETIVE OPERATORS 
Simeon REICH, Ricardo TORREJ6N 

Abstract: We show how properties of the resolvent can 
be used to provide simple proofs of new results on existence 
of zeros and surjectivity for accretive operators. 
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fixed point property. 

Classification: 47H06, 47H15 

Let E be a real Banach space, and define the duality 

mapping J from E into the family of weak star compact con

vex subsets of E* by 

J(x) =-:x*eE*:(x,x*) =lx|2and !x*l = txlJ . 

Let (y,x)+ = max -t (y,j) :j e J(x)\ . Recall that a subset A of 

ExE with domain D(A) and range R(A) is said to be accreti

ve if (yx - y2»
xi " x 2 ^ ° for a 1 1 txi,yi3eA, i = 1,2. 

It is called m-accretive if, in addition, R(I + rA) = E for 

some (hence all) r>0. The resolvent Jr and the Yosida ap

proximation ̂  of A are defined by Jr = (I + rA) and A^ = 

= (I - Jr)/r respectively. 

The purpose of this note is to show how properties of 

the resolvent can be used to provide simple proofs of new 

results on existence of zeros and surjectivity for accretive 
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operators. Ihe operators may be set-valued and no continui

ty assumptions are imposed on them. Theorems 3 and 4 provide 

necessary and sufficient conditions for the existence of ze

ros, and Theorem 6 is a general surjectivity result. Alt

hough our results are stated for m-accretive operators, this 

assumption can often be relaxed. For details concerning the 

fixed point property for nonexpansive mappings, see 17J. 

We begin with a lemma (cf. 19, Lemma 1.1]). Let 1. D H = 

= inf 41 x\:xeDt. 

Lemma 1. Let E be a Banach space each bounded closed 

convex subset of which has the fixed point property for non-

expansive mappings, and let AcExE be m-accretive. If yn € 

e Ax , i xJi is bounded, and y —> y, then y c R(A). 

Proof. We may assume that y = 0. Let R = lim sup I x l . 
m,-* co n 

The se t $ z e E : l i m sup I z - x,J.fe Rl i s non-empty, bounded, c l o -
40,->CO a 

sed, and convex. Since I J-pX- - x | ifc r 11 Ax^ It ± riy I —> 0, it 

is also invariant under Jr. Consequently, it contains a fixed 

point of Jr, hence a zero of A. 

We use this lemma to provide a proof of the following 

result (cf. CIO, Theorem 2] and [6, Theorem 13). 

Theorem 2. Let E be a Banach space each bounded closed 

convex subset of which has the fixed point property for non-

expansive mappings, and let A c E x E be m-accretive. Then A is 

zero free if arid only if lim | J+x\ = oo for each x in E. 
x+co * 

Proof. I f y e A ^ O , then U t x | £ 2 l x - y l / t , so that 

| J . x l i s bounded. Conversely, i f 4.x_ = J+ x l i s bounded for 
n 

some x in E and some sequence t —> oo , then y = (x - XL) 

/+ —--> 0. Since y^cAx^m the result follows from Lemma 1. 
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Theorem 2 will be used in the proof of our next result. 

Let cl(D) and bdy(D) denote the closure and boundary of a 

subset D of E. 

Theorem 3» Let E be a Banach space each bounded closed 

convex subset of which has the fixed point property for non-

expansive mappings, and let AcE.x-E be m-accretive. Then 06 

e R(A) if and only if there is a bounded open subset U of E 

and a point x in Uflcl (D(A)) such that (y,x - x )+>0 for 

all x€.bdy(U)nD(A) and y e Ax. 

Proof. If 0<kR(A). then lim I J+x I = oo by Theorem 2. 
T t~ta> x ° 

Since lim J+x^ = x and J+x is a continuous function of t, 
-fc -»• CM- t o o t o ' 

there is a positive r such that J x 6bdy(U). Therefore 

(Arxo,JrxQ-xo)^0 and xQ = JrxQ, a contradiction. Necessity 

is obvious. 

If, in addition, E is uniformly smooth, then by [11, The

orem 13 the strong lim J+x^ exists and belongs to A~ 0. Tims 

in this case we can conclude that A has a zero in cl(U). 

Note that in contrast with Theorem 3 the sufficient con

dition of [6, Theorem 2] is certainly not necessary. 

We now present two variants of Uieorem 3 (both with a 

weaker assumption on E). Theorem 4 improves upon [8, Lemma 

1.2.]. 

flaeorem 4. Let E be a Banach space the unit ball of 

which has the fixed point property for nonexpansive mappings, 

and let A c E x E be m-accretive. Then 0 e R(A) if and only if 

there is a positive R>0 and a point x in cl(D(A)) such that 

(y,x - x ) + 20 for all ycAx with lx - xQl = R. 

Proof. Let B = B(xQ,R) = k xe E: \x-xQl< Rh Let x£B. 
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Since I Jpx-xo \£ I x-xQ| + ) J
r

x
0--*01 » we see that J p x e B f o r 

a l l sufficiently small positive r. If I J+x-x I = R for some 
% o 

t, then (Atx,Jtx-xQ) + > 0. Therefore R2 = | xQ - J%x\2 & 

& ( x - x 0 , J . t x - x Q ) + ^ | x - x 0 | R, and | x-x 1.5 R, a contradiction. 

Thus we see that J.x e B for all 0 -* t < co .It follows that 

for each fixed r>0, J maps cl(B) into itself; Hence Jp has 

a fixed point, which is a zero of A. 

In order to see that Theorem 4 is not true in all Banach 

spaces, define T:cQ—> c by Ttx-jjXg,...) = (l^-Xg* •..) and 

let A = I-T. 

Theorem 5. Let E be a Banach space the unit ball of 

which has the fixed point property for nonexpansive mappings, 

and let A c E ^ E be m-accretive. Assume that there are a boun

ded open subset U of E, a point xQ in UHcl(D(A)), and a po

sitive c such that (y,x-x0)+2rc for all x ebdy(U)A D(A) and 

ye Ax, and let R = sup \\ x-xQ| :x ebdy(U)J . Then B(0,c/R) c R(A), 

Proof. We first show that 0 & R(A), and then apply this 

result to A'c E X E defined by A'x = Ax-z with Is |<c/R. Let 

UcB(xQ,R), and let r and z satisfy r>RVc and | a-xQ) ̂  R. 

Defining CcExE by Cx = Ax + (x -z)/r, we see that 

(Cx,x-x0)+2r c - R /r>0 for xcbdy(U). The proof of Theorem 3 
C C -JL shows that J+xrt remains in U for all t^-0. Since J-̂ x̂  = J!:z, to r o r ' 

we see that j£ maps cl(B(x0,R)) into itself. It follows that 

0 is indeed in R(A). Now let A' be defined as above. Then A' 

satisfies the hypotheses of the theorem with c'= c - lzAR>0. 

therefore O^R(A'), z e R(A), and the proof is complete. 

We continue with the following surjectivity result. Re

call that CcE*.E is said to be locally bounded if for each 
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point x e c l ( D ( C ) ) there i s a neighborhood U of x such that 

U { Cx:x e U i i s bounded. 

Theorem 6. Let E be a Banach space each bounded c losed 

convex subset of which has the f ixed point property for non-

expansive mappings, and l e t A c E * E be m-accretive. I f A 

i s l o c a l l y bounded, then R(A) = E. 

Proof. I f yn€.^3-n and yn—> y f then ix^ i s bounded be 

cause A~ i s bounded on a neighborhood of y . lEjjr Lemma 1, y e 

6 R(A). In other words, R(A) i s c losed . To see that R(A) i s 

a l so open, l e t y e A ^ t and suppose that A" i s bounded on 

B(yQ ,R). Let y e B(yo , .R/2), and for p o s i t i v e r l e t x̂ . s a t i s f y 

y + r x Q € A x r + rx . Denoting y + rx - rXj, by z r 6 A x , we ha

ve (y0 - z r , x Q - x r ) + > 0 . Therefore (yQ - z p , z r - y ) + 2 0 , 

( y 0 • y » z r • yK*\*v ~ y | 2 > a n d i z r " y ' ~ , y " y 0 ' < R / 2 * 

Consequently, I zp - y0l^ R and \,xj\ is bounded* Since 

lim z_ = y, we see that yecl(R(A)) = R(A). The result fol-

lows. 

Thia theorem improves upon two results of Browder. See 

C4, p. 3913 and C5, p. 1643. 

In the following corollaries we replace the local boun-

dedness assumption by stronger hypotheses. For the Hilbert 

space case, see [1, p. 31J. See also 12, Theorem 33 and [3, 

Theorem 53. 

Corollary T. In the setting of Theorem 6, if 

lim II AxS = co , then R(A) = E. 
accDCA) 

Corollary 8. In the setting of Theorem 6, if there is 

a point x £ E such that lim ,AX (y, x-xrt)./ \ x\ = oo , where 0 x & D CA) ° ̂  

ye Ax, then R(A) = E. 
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Another way to prove Corol la ry 7 i s to observe t h a t i f A 

i s bounded, then f o r a f ixed r^> 0, I - J i s bounded on unboun

ded s e t s . Hence i J ^ x ] i s bounded, J has a f ixed p o i n t , and 

t h e r e s u l t f o l l o w s . This argument a l s o shows t h a t i f A - i s 

bounded, then cl(R(A)) = E i n any Banach space [ 1 2 , Bieorem 

1 3 . 

Corol lary 8 can be proved by n o t i n g t h a t i f O^HtA), 

t h e n by Theorem 2, l i m U^x | = co and (A tx , J . x - x Q ) ^ < 0. 

This method a l s o provides a new s u f f i c i e n t c o n d i t i o n for t h e 

e x i s t e n c e of a zero of A. 
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