Commentationes Mathematicae Universitatis Carolinae

Otto Vejvoda; Marie Kopáčková
Periodic solutions of abstract and partial differential equations with deviation

Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 4, 645--652

Persistent URL: http://dml.cz/dmlcz/106031

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

21,4 (1980)

PERIODIC SOLUTIONS OF ABSTRACT AND PARTIAL DIFFERENTIAL EQUATIONS WITH DEVIATION O. VEJVODA, M. KOPACKOVA

Abstract

The existence and the uniqueness of a timeperiodic solution of an abstract linear differential equation in a Hilbert space with deviating argument are studied. Certain parabolic and hyperbolic equations are investigated in detail.

Key words: Abstract equation, deviating argument, periodic solution.

Classification: 35B10

Abstract

1. Introduction. In this paper time periodic solutions of a certain abstract linear differential equation with unbounded operator and with deviating argument are dealt with. In the second section we prove a general existence theorem whose disadvantage is that it may be sometimes rather difficult to verify its assumptions. That is why the special abstract and partial differential equations of the first and second orders are investigated in the third and fourth sections. In contrast to ordinary differential equations with deviating argument a small attention has been payed till now to existence of periodic solutions of partial differential equations of this type. Previously, C. Monari ([1, 2]) has proved existence of periodic solutions of retarded parabolic

equations with a nonlinear term and V. Comincioli ([3], [4]) has studied linear parabolic equations with periodic deviation.
2. Abstract equation of the order p. Let A be a selfadjoint generally unbounded operator acting in a Hilbert space $H^{0}(\Omega)$ with a domain $D(A)$ which has eigenvalues $\lambda_{1} \leqq \lambda_{2} \leqq$ \leqq... of finite multiplicity and a complete orthonormal system in $H^{0}(\Omega)$ of eigenfunctions $\nabla_{1}, v_{2}, \ldots$, where Ω is a bounded region in R^{n}. Let σ^{\prime} be a fixed real number. Putting $P_{0}(\lambda)=1$, denote by $P_{m}(\lambda)(m=1,2, \ldots, p), Q_{m}(\lambda)(m=$ $=1,2, \ldots, q$) polynomials with constant coefficients of the or$\operatorname{der} p_{m}, q_{m}$, respectively and set $H_{\omega}^{k}(R)=\left\{u \in H^{k}(R) ; u(t+\omega)=\right.$ $=u(t), t \in R\}$ (and similarly for vector-functions). We discuss the operator $L: H_{\omega}^{0}\left(R ; H^{0}(\Omega)\right) \longrightarrow H_{\omega}^{0}\left(R ; H^{0}(\Omega)\right)$ given by the following expression

$$
\operatorname{Lu}(t)=\sum_{m=0}^{n} P_{m}(A) \frac{d^{p-m} u}{d t^{p-m}}(t)+\sum_{m=0}^{q} Q_{m}(A) \frac{d^{q-m} u}{d t^{q-m}}(t-\delta)
$$

with the domain

$$
\begin{aligned}
& D(L)=U=(\underbrace{\Re}_{m=0} H_{\omega}^{p-m}\left(R ; D\left(A^{p m}\right)\right)) \cap(\underbrace{q}_{m=0} H_{\omega}^{q-m}\left(R ; D\left(A^{q}\right)\right)) . \\
& \text { Clearly, } u \in U \text { iff } \sum_{j_{k} \in \mathcal{N}}\left[\sum_{m=0}^{p}\left(j^{p-m} \lambda_{k}^{p_{m}}\right)^{2}+\right. \\
& \left.+\sum_{m=0}^{q}\left(j^{q-m} \lambda_{k}^{q_{m}}\right)^{2}\right]\left|u_{j k}\right|^{2}<+\infty \text {, where }
\end{aligned}
$$

$$
\begin{equation*}
u(t)=\sum_{i \in \underset{k}{j \in N}} u_{j k} \exp (i j \nu t) v_{k}, \tag{2.1}
\end{equation*}
$$

Z is the set of integers, N is the set of positive integers and $\nu=2 \pi / \omega$.

We look for a function $u \in U$ satisfying the equation

$$
\begin{equation*}
\operatorname{Lu}(t)=g(t) \tag{2.2}
\end{equation*}
$$

almost everywhere. The solution u is sought in the form (2.1). Writing

$$
\begin{equation*}
g(t)=\sum_{j \in Z, k \in N} g_{j k} \exp (i j \nu t) \nabla_{k} \tag{2.3}
\end{equation*}
$$

and inserting (2.1) and (2.3) into (2.2), we get the equations for $u_{j k}$

$$
\begin{equation*}
T_{j k} u_{j k}=g_{j k}, j \in Z, k \in N \tag{2.4}
\end{equation*}
$$

where $T_{j k}=\sum_{m=0}^{n} P_{m}\left(\lambda_{k}\right)(i j \nu)^{p-m}+\sum_{m=0}^{\lambda} Q_{m}\left(\lambda_{k}\right)(i j \nu)^{q-m} \exp \left(i j \nu \delta^{\sigma}\right)$.
Evidently, one necessary condition for the existence of a soIution $u \in U$ is

$$
\begin{equation*}
g_{j k}=0 \text { for }(j, k) \in S_{1}=\left\{(j, k) \in Z \times N ; T_{j k}=0\right\} \tag{2.5}
\end{equation*}
$$

Using the wellknown facts we get the following
Theorem 2.1. Let $g \in H_{\omega}^{\circ}\left(R ; H^{\circ}(\Omega)\right)$ satisfy (2.5). Then . (2.2) has a solution $u \in U$ iff
(2.6) $(j, k) \in(Z \times N) \backslash S_{1}\left[\sum_{m=0}^{\uparrow}\left(j^{p-m} \lambda_{k}^{p}\right)^{2}+\sum_{m=0}^{q}\left(j^{q-m} \lambda_{k}^{q}\right)^{2}\right]$ $\left.\left|T_{j k}\right|^{-2} \lg _{j k}\right|^{2}<+\infty$.

If (2.6) is satisfied, then every solution of (2.2) is the sum of the general solution $u_{0} \in \mathbb{U}$ of the equation $I u_{0}=0, u_{0}(t)=\sum_{\left(j, \sum_{k}\right) \in S_{1}} u_{j k} \exp (i j \nu t) v_{k}$, and of particular solution

$$
u_{1}(t)=\sum_{(j, k) \in\left(Z_{\times} N\right)-S_{1}} g_{j k} T_{j k}^{-1} \exp (i j \nu t) v_{k}
$$

The solution is unique iff $S_{1}=\varnothing$.
Remark 2.1. In this paper we do not deal with the weakly nonlinear problem

$$
\begin{equation*}
I u=\varepsilon f(u) \tag{2.7}
\end{equation*}
$$

Let us note briefly how to solve this problem. Let $S_{1}=$ $=\varnothing$, then assuming f to be a continuous and Lipschitzian mapping from U into the space of g (for which there exists a solution of the corresponding linear problem) we can prove easily the existence of a solution to (2.7) for sufficiently small ε (making use of a fixed point theorem). Let $S_{1} \neq \varnothing$. Then the problem is equivalent to a system consisting of the auxiliary equation and of the bifurcation equations

$$
\int_{0}^{\omega}\left(f(u(t)), v_{K}\right)_{H^{o}(\Omega)} \exp (-i j \nu t) d t=0,(j, k) \in S_{1}
$$

and this may be solved, for instance, by an implicit function the orem.
3. The first order equation. Let the equation

$$
\begin{equation*}
L u \equiv u_{t}(t)+A u(t)+\alpha A u(t-\delta)+\gamma u(t-\delta)=g(t) \tag{3.1}
\end{equation*}
$$

be given. Assume that the operator A is selfadjoint and bounded from below, α, γ^{r} are real constants and $U \equiv H_{\omega}^{\circ}$ (R; $D(A)) \cap H_{\omega}^{l}\left(R ; H^{0}(\Omega)\right)$. The coefficients $u_{j k}$ of an ω-periodic solution $u \in U$ of (3.1) must satisfy (2.4), where

$$
\begin{equation*}
T_{j k}=i j \nu+\lambda_{k}+\left(\alpha \lambda_{k}+\gamma\right) e^{-i j \nu \delta} \tag{3.2}
\end{equation*}
$$

Theorem 3.1.
(a) If $|\propto|<1$, then S_{I} is finite and the solution $u \in U$ of the equation (3.1) exists for every $g \in H_{\omega}^{0}\left(R ; H^{0}(\Omega)\right)$ satisfying (2.5).
(b) If $\alpha=1$ and $\gamma=0$, then S_{1} is finite. If $\alpha=-1$ and $\gamma=0$, then $S_{1}=\{(0, k) ; k=1,2, \ldots\}$ is infinite.

In both cases the solution $u \in U$ of (3.1) exists for $g \in H_{\omega}^{0}\left(R ; D\left(A^{2}\right)\right)$ satisfying (2.5).
(c) If $|\propto| \pm 1$ and $\propto \gamma<0$, then S_{1} is finite and the solution $u \in U$ of (3.1) exists for $g \in H_{\omega}^{0}(R ; D(A))$ satisfying (2.5).

Proof. By (3.2), $\mathrm{T}_{\mathrm{jk}}=0$ only if

$$
\lambda_{k}^{2}+j^{2} \nu^{2}=\left(\alpha \lambda_{k}+\gamma\right)^{2}
$$

which implies immediateiy the assertion of the finiteness of the set S_{1} in the cases(a) and (c). In (b) the equality $T_{j k}=$ $=0$ is of the form

$$
\lambda_{k}\left[1 \pm \cos \left(j \nu \sigma^{\prime}\right)\right]=0 ; j \nu \mp \lambda_{k} \sin \left(j \nu \sigma^{\prime}\right)=0
$$

from which the form of the set S_{1} is evident. The other assertions of Theorem 3.1 follow from the estimate

$$
\begin{aligned}
\left|T_{j k}\right|^{2}= & \lambda_{k}^{2}+j^{2} \nu^{2}+\left(\alpha \lambda_{k}+\gamma\right)^{2}+2\left(\propto \lambda_{k}+\gamma\right) \\
& {\left[\lambda_{k} \cos \left(j \nu \sigma^{\sim}\right)-j \nu \sin \left(j \nu \sigma^{\gamma}\right)\right] \geqq \lambda_{k}^{2}+j^{2} \nu{ }^{2}+} \\
& +\left(\propto \lambda_{k}+\gamma\right)^{2}-2\left|\propto \lambda_{k}+\gamma\right|\left(\lambda_{k}^{2}+j^{2} \nu^{2}\right)^{1 / 2}= \\
= & {\left[\left(\lambda_{k}^{2}+j^{2} \nu^{2}\right)^{1 / 2}-\left|\propto \lambda_{k}+\gamma\right|\right]^{2}=} \\
= & {\left[\left(1-\alpha^{2}\right) \lambda_{k}^{2}-2 \propto \gamma \lambda_{k}+j^{2} \nu^{2}-\gamma^{2}\right]^{2}\left[\left(\lambda_{k}^{2}+\right.\right.} \\
& \left.\left.+j^{2} \nu^{2}\right)^{1 / 2}-\left|\propto \lambda_{k}-\gamma\right|\right]^{-2}
\end{aligned}
$$

and from (2.6).
Remark 3.1. If $|\propto|=1, \propto \gamma>0$, the set S_{1} is determined by the equations

$$
\lambda_{k}^{2}+j^{2} \nu^{2}=\left(\alpha \lambda_{k}+\gamma\right)^{2}, \operatorname{tg}\left(j \nu \alpha^{\nu}\right)=-\frac{j \nu}{\lambda_{k}}\left(\lambda_{k}>0\right)
$$

Hence S_{1} is finite for $\nu \delta^{\prime} \mathfrak{r}^{-1}$ rational. For irrational $\nu \delta^{\prime} \pi^{-1}$ we have not been able to decide whether S_{1} is finite or not. If $|\propto|>1$, then S_{1} is either finite (e.g. $S_{1}=\left\{(0, k) ; \lambda_{k}=0\right\}$ for $\operatorname{Lu}(t) \equiv u_{t}(t)+A u(t)+\alpha A u\left(t-\delta^{\sim}\right)$, $\nu \delta=2 \pi$) or infinite (e.g. $S_{1}=\{(\pm j, k), j=12 m(m+1)+3$, $k=2(2 m+1) m=0,1,2, \ldots\}$ for $\operatorname{Lu}(t) \equiv u_{t}(t)-u_{x x}(t)-$ $\left.-\sqrt{2} u_{x x}(t-\pi / 4), u(t, 0)=u\left(t, 2 \pi 3^{-1 / 2}\right)=0, \omega=2 \pi\right)$.
4. The second order equation. Another special case of (2.2) which is dealt with here is the equation
(4.1) $u_{t t}(t)+a u_{t}(t)+A u(t)+A u(t-\sigma)+\gamma u(t-\sigma)=g(t)$, where A is a selfadjoint operator in $H^{0}(\Omega)$ with eigenvalues $-\infty<\lambda_{1} \leqq \lambda_{2} \leqq \ldots$ of finite multiplicities and a complete orthonormal system in $H^{0}(\Omega)$ of eigenfunctions v_{1}, v_{2}, \ldots. Concerning an ω-periodic solution $u \in U=H_{\omega}^{0}(R ; D(A)) \cap$ $\cap H_{\omega}^{2}\left(R ; H^{0}(\Omega)\right)$ we will prove three theorems.

Theorem 4.1. Let $\alpha=0$ and $g \in H_{\omega}^{1}\left(R ; H^{0}(\Omega)\right) \cup$ $\cup H_{\omega}^{\circ}\left(R ; D\left(A^{l / 2}\right)\right)$. Then S_{1} is finite and the solution $u \in U$ of (4.1) exists iff $g_{j k}=0$ for $(j, k) \in S_{1}$.

Proof. Since

$$
\begin{equation*}
T_{j k}=\lambda_{k}-\nu^{2} j^{2}+a \nu j i+\gamma \exp (\nu \delta j i) \tag{4.2}
\end{equation*}
$$

we can write the estimate

$$
\begin{aligned}
& \quad\left(\lambda_{k}^{2}+\nu^{4} j^{4}\right)\left|u_{j k}\right|^{2}=\left(\lambda_{k}^{2}+\nu^{4} j^{4}\right)\left|g_{j k}\right|^{2}\left|T_{j k}\right|^{-2} \leqq \\
& \leqq\left(\lambda_{k}^{2}+\nu^{4} j^{4}\right)\left\{\left[\left(\lambda_{k}-\nu^{2} j^{2}\right)^{2}+(a \nu j)^{2}\right]^{1 / 2}-|\gamma|\right\}^{-2}\left|g_{j k}\right|^{2} \leqq \\
& \leqq \text { const. }\left(\lambda_{k}^{2}+\nu^{4} j^{4}\right)\left[\left(\lambda_{k}-\nu^{2} j^{2}\right)^{2}+(a \nu j)^{2}\right]^{-1} \cdot\left|g_{j k}\right|^{2}
\end{aligned}
$$

for j, λ_{k} being sufficiently large. Now, putting $\nu^{2} j^{2}=$ $=\theta \lambda_{k}$ let us investigate the term $\left(\lambda_{k}-\nu^{2} j^{2}\right)^{2}+(a \nu j)^{2}$ for θ from the intervals $[0,1-\varepsilon],[1-\varepsilon, 1+\varepsilon],[1+\varepsilon,+\infty)$, respectively (ε is a fixed positive number). In the first and third intervals it holds evidently

$$
\left(\lambda_{k}^{2}+\nu^{4} j^{4}\right)\left|u_{j k}\right|^{2} \leqq\left. c \lg _{j k}\right|^{2}
$$

whereas in the second the following inequalities

$$
\left(\lambda_{k}^{2}+\nu^{4} j^{4}\right)\left|u_{j k}\right|^{2} \leqq c j^{2}\left|g_{j k}\right|^{2},\left(\lambda_{k}^{2}+\nu^{4} j^{4}\right)\left|u_{j k}\right|^{2} \leqq c\left|\lambda_{k}\right|\left|g_{j k}\right|^{2}
$$

hold. Thus the sum $\sum_{j, k e}\left(\lambda_{k}^{2}+\nu^{4} j^{4}\right) \mid u_{j k} \|^{2}$ converges if at least one of the sums $\left.\sum_{j, k}\left|\lambda_{k}\right|_{j k}\right|^{2}, \sum_{j, k} j^{2}\left|g_{j k}\right|^{2}$ converges. Since $T_{j k}=0$ implies

$$
\left(\lambda_{k}-\nu^{2} j^{2}\right)+(a \nu j)^{2}=\gamma^{2}
$$

S_{1} must be finite.
In the cases $\propto a \neq 0, a=0$ we cannot say more than in Theorem 2.1. Better results may be obtained for special values of ν, δ and λ_{k}. Let us state two of them which may be proved easily.

Theorem 4.2. Let $\nu \sigma^{\circ}=\pi,|\propto|<1, a>0$ and $g \in H_{\omega}^{I}\left(R ; H^{0}(\Omega)\right) \cup H_{\omega}^{0}\left(R ; D\left(A^{l / 2}\right)\right)$. If $g_{o k}=0$ for every k : $\lambda_{k}=0$, then there exists a solution $u \in U$.

Theorem 4.3.

(1) If $a=0, \alpha=0, \min _{(j, k) \in Z_{x} N}\left|\lambda_{k}-\nu^{2} j^{2}\right|>|\gamma-|$, then $S_{1}=\varnothing$ and the solution $u \in U$ of (4.1) exists for every $g \in U$ and is unique.
(2) If $a=0,|\alpha|<1, \quad \lambda_{k}=k^{2}, \quad \gamma=0, \quad \nu \delta^{\prime}=\pi$, $(1-\infty)^{1 / 2} \nu^{-1}$ is rational, then S_{1} is infinite, $S_{1}=$
$=\left\{(j, k) ; j k^{-1}=(1-\alpha)^{1 / 2} \nu^{-1}\right.$ and the solution $u \in U$ of (4.1) exists for $g \in H_{\omega}^{1}\left(R ; H^{0}(\Omega)\right) \cup H_{\omega}^{0}\left(R ; D\left(A^{1 / 2}\right)\right), g_{j k}=$ $=0$ for $(j, k) \in S_{1}$.
(3) If $a=0,|\propto|<1, \lambda_{k}=k^{2}, \gamma=0, \nu \sigma^{r}=\pi$, $(1-\alpha)^{1 / 2} \nu^{-1}$ is irrational and $\left|(1-\alpha)^{1 / 2} \nu^{-1}-j k^{-1}\right| \geqq$ \geqq const. k^{-2} for $(j, k) \in Z \times N$, then $S_{1}=\varnothing$ and the solution $u \in U$ of (4.1) exists for every $g \in U$ and is unique.
References
[1] MONARI C.: Soluzioni periodiche di una equazione parabolica con un termine di ritardo non lineare, Ist. Lombardo Accad. Sci. Lett. Rend. A 103(1969), 689-703.
[2] MONARI C.: Su una equazione parabolica con termine di ritardo non lineare, discontinua rispetto all incognita: soluzioni periodiche, Ricerche Mat. 20(1971), 118-142.
[3] CONINCIOLI V.: Problemi periodici relativi a equazioni d' evoluzione paraboliche con termini di ritardo, Rend. Ist. Lomb.(Sc. Mat. e Nat.)104(1970),356-381.
[4] COMINCIOLI V.: Ulteriori osservazioni sulle soluzioni del problema periodico per equazioni paraboliche lineari con termini di perturbazione, Rend. Ist. Lomb. (Sc. Mat. e Nat.)104(1970), 726-735.

Matematický ústav ČSAV
Žitna 25, Praha 2
Ceskoslovensko

