
Commentationes Mathematicae Universitatis Carolinae

Zdeněk Frolík; Petr Holický
Selections using orderings (non-separable case)

Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 4, 653--661

Persistent URL: http://dml.cz/dmlcz/106032

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/106032
http://project.dml.cz


COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21.4 (1980) 

SELECTIONS USING ORDERINGS (NON-SEPARABLE CASE) 
Z. FROUK, P. HOUCK* 

Abstract: Two selection theorems w i th their proofs 
using the lexicographic ordering of sequences of positive 
integers are extended for correspondence3 of complete (non-
separable) metric spacea. 

Key words: Point-analytic space, point-Luzin space, 
Suslin set, Baire set, ̂  -dd-preserving correspondence, 
^ -db-preserving correspondence. 

Classification: 54C65, 54H05 

The main result is Theorem below which generalizes the 

selection Theorem of von Neumann [ N.1 and partially the Muni-

formization type" Theorem of Mazurkiewicz CM1 to the non-se-

parabJLe case. The proofs follow the pattern of the proofs of 

von Neumann (Lemma 1(a) corresponds to UN, Lemma 163) and of 

K# Kuratowski (Lemma Kb) corresponds toEK, Th. 3, p. 4913) 

respectively. Lemma Kb) is proved also in tHoi. 

The proofs are using the lexicographic order on se^. In 

what follows, ae is an infinite cardinal conceived as the set 

of all ordinals of cardinal --z ae , and endowed with its well 

order and the discrete uniformity. The product space at*** is 

a metrizable complete uniform space endowed with the lexico

graphic order -1 defined as follows: 
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t c c n j Ht i f i n 5 iff •?o6n! + -«/SnJ and eCk-*/ lk 

for the smallest k such that ^ k ^ / ^ k * 

In what follows, we shal l need the following two e le

mentary facts about the order: each non-void closed set in 

ae° has the smallest element, and the set 

^d -pdgV \ d x i d2S 

is closed in the product space te^x* ae,0* . 

On the other hand, we need to know the concepts of ana

lytic, point-analytic and point-Luzin spaces, and several ba

sic properties from Cffi-j_ 2^ • Also, the term Baire set is used 

for a more general notion (corresponding to extended Borel of 

Hansell in metric spaces, and to hyper-Baire used by the 

first author in his earlier work). For convenience of the re

ader we quickly recall what is needed. 

By a space we always mean a uniform space, and the topo-

logically fine uniformity (called fine by J. Isbell) consists 

of all continuous pseudometries. "Discrete" is understood in 

the uniform sense. A family -SX laeAi is called to be ^-dis

cretely decomposable (abb. 6 ~dd) if there exists a family 

$X |a€A,neo? such that each family *tX \acAf is discre

te, and X = U -l X J n e co i for each a. A family 4.X } is 

said to be e'-db (# -discretely base-like refinable) if there 

exists a 6-discrete collection 3 such that each X is the 

union of a subfamily of CB . Clearly e'-dd implies e'-db. For 

Lemma 2 we need to know that in a metric space ̂ Xft? is tf'-dd 

or & -db iff it is such in the fine uniformity, and locally 

£-dd implies #-dd (see tHa, Lemma 2 and Corollary 13). 

A correspondence F=gr F:X—> X (gr FcXxY) is said to 
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be ^-dd-preserving or & -db-preserving provided that if 

{Xl is e^-dd or «--db in X.then so is -CFDCJ? in Y. To a J a 

check the properties,it is enough to check the images of dis

crete families iXA • 

A space X is called point-analytic if there exists a 

continuous ef-dd-preserving mapping of a complete metric 

space P onto X; if f may be chosen 1-1,then X is called point-

Luzin. One obtains the definition of analytic if f is allowed 

to be an upper-semicontinuous compact-valued correspondence. 

We need to know that if X c Y and X is point-analytic * 

then X is Suslin in Y (derived by the Suslin operation from 

the clo3ed set3 of Y) - IFH-^, Corollary 4.3(a)3 , and if X ia 

Su3lin in Y and Y ia point-analytic,then so is XCFHg, Corol

lary 3.43. 

We alao need to know that if f:X—> Y is a surjective 

continuous e'-db-preserving mapping,then Y is point-analytic 

whenever X is, and if f is moreover infective, then Y is 

point-Luzin whenever X is ER^J* Th. 3.6(a)! . 

We denote by Ba(X) (see [FH2, § 1.13) the smallest €T-

algebra containing the zero sete of uniformly continuous func

tions, that is closed under the operation of taking arbitrary 

discrete unions. The elements of Ba(X) are called Baire aets. 

If we replace "zero set3 of uniformly continuous functions" 

by the collection if(X) of all Suslin set3 in X,we obtain the 

definition of tf(X). 

Finally, a correspondence F;X—> Y is said to be Cftl<— % ) 

measurable if F LN.3 e Wl for each N in ft # 

It should be remarked that Lemma 1(a) can be proved by 

the method of IKRN.1 and LKP3. 
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1. The purpose of this section is to prove the following 

re3ult. 

Lemma 1. Let P be a closed subspace of •aec> , and let 

h be a continuous mapping from P onto a uniform space X. Con

sider the selection s:X—>P for h"" such that alxl is the 

smallest element of h Cx3 for each xdX. Then: 

(a) If h is 6f-db-preserving,then s is (y(X) <-— Ba(P))-

measurable (and of course, s"" is *o-dd-preserving as the in

verse to any selection of h is).-

(b) If h is 6 -dd-preserving the set s C X3 i9 co-Suslin 

in P (i.e. P\ 3 C X3 i3 Suslin). 

Proof of (a) : Let t be any aelection for h . If iV^} 

is a disjoint family in t 1X3,then «St~" LD 3$ is disjoint and 
—1 

hCD 3 s t [DJ for each a. Thence, if-fD 5 is discrete, then 

-ihCD ]J is & -db, and being disjoint, it is & -dd. Thus t"" 

i9 € -dd-preserving, particularly, a"" is e -dd-preserving. 

It follows now that to show the measurability it is enough to 

find a 3-discrete open base 3B for the topology of P such 

that s is (?(X) ••*— .33 )-measurable. We take the usual basis 

consisting of sets of the form 

B(a) •= * beP)b|n+l = aj 

where s.=(a0>... ,8^) £ 3€
 n , n c o , and prove that s~ IA-Ua)J 

is the difference of two Suslin sets of X. To this end, for 

each d e se^ let 

1(d ) = *clc c *e,° , e-j?di. 

Clearly 1(d) is an open set, and it is easy to see that 

for each finite sequence a ranging in ae there exist c and d 

in ^e^ such that 
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B(a) = 1(d) M ( e ) . 

(Put c = - i a o , . . . , a n - 1 , a n , 0 , 0 , . . . i and d» i a ^ , . . . . - a ^ - a ^ + 

+ 1 , 0, 0 , . . . } . ) 

Ncf? the proof i s concluded ty showing that a" £Kd)J i s 

ana ly t i c , hence Sus l in , for each d . Observe 

s ^ L K d ) ] =*<txis[xl^d$ M x I .3 c e h " 1 ^ ] with cA d? « h t l ( d ) ] . 

Now hLKdXl is analytic, because 1(d) is analytic (it is com

plete metrizable), and h is a continuous ^-db-preserving map

ping £35H2, -&• 3-6(a)J. 

Remark. Without changing the proof, the assumption "h 

is 6f -db-preserving" in Lemma 1(a) may be weakened to "h is 

d -dr-preserving" whenever we know that the image of an analy

tic space under a continuous ^-dr-preserving mapping is ana

lytic, and this is actually true. One can do that by a slight 

modification of the proof for e'-db in [JH^, Th. 43. 

For the proof of Lemma K b ) we need the following 

Lemma 2. Let h be a er-dd-preserving continuous mapping 

from a metric space P onto a uniform space X. Let 

M -=-£<d1,d2>€PxPlhfd1l * hid 2H . 

Then the projections 

^ 1 s i < x , y > — - > x l : P ^ P — > P and 

ur2 = { < x , y > — > y > : P x P — > P 

restricted to M are e?-dd-preserving. 

Proof of Lemma 2. Because of symmetry it suffices to pro

ve the assertion for 3r*2. 

Let -IDJae-U be a discrete family in M. There exist 6T-dis-

crete open covers % and 1T of P such that if U e % and 7 €'1/"\ 
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then (UxV)nD a40 for at most one aeA. Since V i s er-dis-

crete and P i s e -dd-simple, by CEH-̂ , Prop. 1.23 i t i s enough 

to show that ^Vnjr2tDft3? i3 flf-dd. Clearly Vr*ar2tDal » 

« *r2t(PxV)ADa3, and the family ^ ^ ( P x V J n l ) ^ i s d is 

crete because each U G. U meets at most one of i t s members. 

Thence we may and shall assume that *Da$ i s a discrete family 

in M such that «C ar-̂ tD 3? i s discrete in P. Since h i s e'-dd-

preserving, the family K h tar^tD^? i s cr-dd in X. Since the 

mappings h ©ar^ and h ©3r2 coincide on M, we have that 

{h tJT2CD 33$ i s €f-dd in X, and since h i s continuous, ne

cessarily 

(*) -WThh t3r2tDa3 3? 

i s ef-dd in the fine uniformity of P, and since P i s metric, 

the family i s et-dd in P tHa, Lemma 2 ] . Finally, $3r2tDa3$ i s 

6*-dd because i t is dominated by the e-dd family (*). 

Proof of Lemma Kb) . I t i s easy to check 

stX3 = P \3 t 1 t t<d 1 ,d 2 >cPxPlhtd 1 3 *htd 2 3 , d-,*-d2U 

where JT-̂  is the projection on the f i rs t factor. The set in 

the brackets i s equal to 

^<d1>d2>€.PxPlhtd13 -= htd23* n { < d l fd2>€ Px Pld-,* d2 S • 

Since the f i rs t set i s closed and the second one i s open, the 

intersection i s analytic ISH2, Th. 3.33, hence the image under 

3?^ i s analytic because ar̂  restricted to Kd-pd^lhCd-J = 
88 htd23^ i s e'-dd-preserving by Lemma 2. Thus stx3 i s the com

plement of a Suslin set in P. 

2» Corollaries. The main result reads as follows: 

Theorem. Let F:X —> Y be a correspondence of uniform 
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spaces X and X. Then: 

(a) If the graph grF of F is point-analytic and if the 

projection tf-rgrF-^ X is 6*-db-preserving, then F admits a 

(<F(X) «•*—Ba(X))-measurable selection f. 

(b) If grF is point-Luzin and if sr-^grF—»> X is e'-dd-

preserving, then there exists a (?(X) «— Ba(X))-measura"ble 

selection f for F such that grF\ grf is analytic. 

Proof, (a) Since grF is point-analytic, by definition 

there exists a 6f-dd-preserving continuous mapping g of a clo

sed subspace P of some ae0* onto grF. 

Put h * of-% o g and apply Lemma 1(a) (we may suppose that 

BF » X, i.e. ^IgrFJ = X) to obtain a (?(X) -*- Ba(X))-mea

surable selection s for h. Put f = ^ p ° ̂  ° a# A ^ t n r e e n-ap8 

are (W *r~ Ba)-measurable, and so is then f. 

(b) In this case we may assume that g is a bisection. 

Lemma K b ) applies to h, and since g is bijective 

gtP\sLX-Jl = grFNgrf, 

and hence the set is analytic as the image of an analytic spa

ce ty a continuous 6^-dd-preserving mapping. 

We conclude with several consequences of Theorem; in each 

of the cases the hypothesis would imply that of OLtieorem. Of 

course, we need to apply further results. 

Corollary 1. There exists a (STCX) «-—Ba(X))-measurable 

selection f for a closed-valued-correspondence F:X— .> X provi

ded that the following three conditions are satisfied: 

(oC) F is Suslin measurable (i.e. (tf (X)-<—<^f (X))-mea-

surable)) 

((*>) F~ is 6f-dd-preserving 
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(̂ *) X ia ooint-analytic and Y is a subapace of a point-

Luzin space. 

If, in addition, F is Baire measurable and X is point-

Luzin, then F can be chosen such that, in addition, grFXgrf 

is analytic. 

Proof. The projection grF—.> X is S'-dd-preserving by 

CFH-L Lemma 2.5(a)J and CFHlf Prop. 3.1(b)3. The graph of P is 

Suslin Cm 2 > Prop. 4.2J, X*Y is point-analytic CiHpf P^op* 

3.2(b)3f and thus grF is noint-analytic CFH~, Cor. 3.4j. 

The validity of the assumptions of Theorem (b) can be 

derived similarly from the extended assumptions. 

Corollary 2. If F~ :Y—-> X is a mapping in Corollary 1, 

then there exists a (<f (X) «:—Ba(Y))-measurable selection f 

for F provided that (cc ) and (y) are satisfied, and F~* is 

€• -db-pre serving. 

Proof. The projection grF—> X is S'-db-preserving by 

CFHlf Lemma 2.5(b)J and CR^, Prop. 3.1(b)J. The graph of F 

is point-analytic by the same arguments as in the proof of 

Corollary 1. 

Remark. If the assumption ((3 ) in Corollary 1 was sup

plied by 

( $' ) F is er-dd-preserving, 

then the same assertions are valid for F"* :Y—-> X instead of 

F:X—-> I. 

Similar change could be done in Corollary 2 (when F:X—> 

—> Y is a mapping). 
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