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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,4 (1980) 

ON LIOUVILLE THEOREMS, CONTINUITY AND HOLDER 
CONTINUITY OF WEAK SOLUTIONS TO SOME QUASIL1NEAR 

ELLIPTIC SYSTEMS 
B. KAWOHL 

(dedicated to Jindfich NeSas on the occasion of his 50th birthday) 

Abstract: We prove that every bounded weak solution of a 
quasilinear elliptic system (0.1) is Holder continuous in Si if 
and only if the system has a Liouville-type property '£( K ̂  ). 
The proofs are based on recent results of M. Giaquinta and J. 
NeSas. 

Key words: Regularity, weak solution, quasilinear ellip
tic system, Liouville s property, blow up technique, Sobolev spa
ce. 

Classification: 35J60 

§ 0. Introduction. Let £l <=> iR f n ̂ 2, be a bounded domain. 

We consider the quasilinear elliptic system 

&u 36 Six 
(0.1) 4 U « U , u ) g-Jg-* + .;8<x,u> g--J *aJd* 

" X a ^ j S £ + ** * r J dx' ** a)<A)3mf 

where r,s=l,2,... ,m; i, j=l,2,... fn; u = ( u p U ^ . ^ . ^ e t W > (il)o 

A L*50 (il).J m and where the summation convention is used for r,s,ifj 

throughout the paper. The coefficients ar^(x,u) and a*.s(x,u) are 

continuous functions on SI x IR f gje--P(il)f g € iP (a), p> n, 

and the system (0.1) is strongly elliptic, i.e. there exists a 

^/> 0 such that 

(0.2) a?®(x,u) 1 1 c. ? z. MA 9 \ 2 holds for evory x e i l , f € R ^ 
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and u c K*. 

As e.g. H. Prehse pointed out in [51, "the experience ill 

the theory of elliptic equations suggests that regularity theo

rems hold for those types of equations, for which a Liouville-

theorem is true". We are going to show that for systems of type 

(0.1)f(0.2) regularity theorems are equivalent to Liouville-

theorems. To be more precise, the properties (R) and £( R n) de

fined below are equivalent to each other. As a byproduct we pro

ve that bounded continuous solutions of system (0.1),(02) are 

automatically Holdercontinuoue. 

w 'PCJD denotes as usual the Sobolev space of those func

tions, whose derivatives of order up to k belong to the Lebeegue 

space iP(Q). 3)(XI) is the space of smooth testfunctions with com

pact support in £L , and (f°(C0 consists of those continuous func

tions on XL , which are locally oo-Hb*ldercontinuous. For conve

nience we shall write 1***01), lP<Sti, &(&) and 0^(0) from now 

on also for vectorvalued functions. 

Let us point out that we assume the boundedneas of weak so

lutions throughout the paper. According to [18J it is natural 

to start from L*°-solutions. Nevertheless it should be interest

ing to investigate conditions under which the assumption ueL̂ Cfi.) 

can be dropped. One step in that direction was recently done by 

B. Giueti and 0. Modica in 1151. 

In order to present our main result in a concise form let 

us introduce a few more notations and definitions: 

tMl denotes the family of those solutions v d r ' (il)nL*((D to 

system (0.1),(0,2), whose L*°-norm is less than or equal to M, 

103 dsnotes the family of functions gj«lPCQ)f g
re lP/2(0) 
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(j»lf2f...,nj r«l,29••«,»; p>n) satisfying 

LMG] is the union of those two sets, i.e. [MQJ - [ M l u t O , . , 

A s A(M) ia the following conatant defined by the coefficient a 

of the ayatem (0.1) 

Definition of L( JRn): We aay that the ayatem (0.1) haa 

Liouville 'a property L( R n) if and only if for every x° € -0-

any aolution ve wj^( JRm) r\ V°l R n) of the ayatem 

^ V o<I) 

(0.3) /R*4j(x°,T) -g* -s-J dx - 0, <»> « 3)(R B), 

haa to be a conatant. 

Definition of (5): We say that the ayatem (0.l),(0.2) haa 

property (C) if and only if every bounded weak aolution 

m«W1»2CQ)AL-^.a) of (o.l) is locally continuoua in SI and if 

the modulus of continuity is uniform with respect to CM J./ 

Definition, of (R): We say that the system (0.1), (0.2) haa 

property (%) if and only if every bounded weak aolution 

U ^ W ^ - ' ^ J W A L ^ U D of (0.1) ia HSldercontinuoua in il with Hea

der exponent oo « min4^, 1 - &}f and if the following a priori 

estimate holds for every 5? c II * 

itul ̂  _ &c(M fO fA f<u, f .a' f diattH', SSL)), 
C*(JL') 

where the constant c ia uniform with reapect to CGM1. 
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Main result: Under the general assumptions on il and the 

system (0.1),(0.2) (cf. the first paragraph of this introduc

tion) the properties Ji R n ) . (C) and (R) are equivalent to each 

other 

Let us make a few remarks about the history of the regu

larity-problem for quasilinear systems, which goes all the way 

back to Hilbert's 19th problem (see e.g. E22, 18, 61). It was 

already known that (R) holds for n=2, i.e. for twodimensional 

domains (cf. C21, 22, 25J) or for m-=l, i.e. for the case of a 

single equation (cf. £3, 181). Holdercontinuity, however with 

undetermined Hold erexponent oo , was also shown for systems 

with principle part in diagonal form (cf. e.g. £191, but also 

127, 16, their case a=0l). As will be seen in § 2, Liouville's 

property holds in all these cases. Hence we obtain new proofs 

for already known theorems. 

Nevertheles properties (6),(R) and L(IRn) do not always 

hold. In fact, based on an example by £. DeGiorgi [41, E. Giu-

sti and M. Miranda L14.1 gave a counterexample of a quasilinear 

system with discontinuous solution u(x) « i *\ • for n£3« Ob

serve that due to our main result the regularity-problem for 

solutions to system (0.1),(0.2) reduces to the equivalent, but 

simpler looking problem of verifying Liouville's property un

der suitable assumptions. In this context the important ques

tion arises: Which additional assumptions on the principal 

part of (0.1) are sufficient to provide L(Rn)? As we mention

ed above, we give a few positive answers in § 2. 

There are many wellknown results concerning H'dlder conti

nuity almost everywhere in il . These are the so-called partial 

regularity results (cf. £23, 13, 10, 11, 8, 9, 61). To be more 
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explicit, let us recall the commonly used notation 

1 -
u j» . i . -. M , r ,M r u(x)dx 
x°fH iieas Ba(x°) \(x') 

for the mean value of u in the ball BR(x°) with center x° and 

radius R and 

U(x°,R):« *T* X v )|tt(x) - tt^0 ̂  dx 

as a measure for the mean deviation from u d » The partial re

gularity result states essentially (cf. { 1) that a bounded 

weak solution u of system (0.1),(0.2) is Holdercontinuous in 

every point x° e il for which the following condition (0#4) 

holds: 

(0.4) lim inf U(xt>,R) « 0. 
R-*0 

Consequently, a bounded weak solution of system (0.1), (0*2) is 

Holdercontinuous everywhere in il , if (0.4) is satisfied for 

every x° e XI . If we denote the set of points x & it , in which 

(0.4) is violated, with S (standing for singular points) one is 

led to the question: When is S empty? To answer this question, 

additional a-priori-knowledge about the solution u of system 

(0.1),(0.2) seems to be needed. It is however desirable to have 

a replacement for (0.4) available that does not depend on the 

solution u of (0.1),(0.2). Property U(IRn) has precisely this 

advantage. Generally speaking we may say that liouville's pro

perty enables us to close the gap between partial and global 

regularity. 

The following diagram may illustrate how we proceed in the 

following paragraphs. 
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(ft « g ± i (5) 

%{&) >S « 0 

§ 2 

As the reader will notice the main effort is hidden in 

§ 1, especially in Lemma 1.5. Ve should also mention that (tf) 

implies S » 0 directly. The proof is left as an exercise to 

the reader. 

Recent results [5,7,17,20,29,30,31] strongly suggest that 

results similar to the ones presented in this contribution 

ought to be expected for quasilinear systems "with quadratic 

growth", i.e. e.g. of type D ^ a ^ U ^ V u ^ u ^ x ) ) * f (xfufvu)f 

with f(xfufp)£ alpl
2 • b. 

Many of the ideas in this paper, especially the "hard 

part" § 1, are along the lines of It. Oiaquinta and J. NeSas 

[8, 9, 261 who derived related results for the gradient of 

W >** -solutions to nonlinear systems. In fact the equivalence 

of ZiWP) and (R) wats conjectured by J. Ne6as. The author is 

deeply indebted tb him for numerous stimulating discussions 

and advise. 

This paper was written while the author enjoyed the hos

pitality of Charles University in Prague y where he participa

ted in J. Neoas 'seminar. Support was provided by Charles Uhi-
m 

•ersity, the Technical University of Darmstadt and the DAAD. 

Finally the author acknowledges H. Grabmuller'a and M. Qru-

ter's helpful comments on the manuscript. 

§ 1. A partial regularity result. Results of this type 

were shown before, however under slightly stronger assumptions. 
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, there exists a ball Bp (x°) cc SL with &,< \ dist (x0faO) 

that ufcC^CBp (x0)) with oC * min4 i,l - ~{ and such that 

The following proposition is due to II. Oiaquinta and J. Necas, 

who used essentially the same method as S. Qiusti et al. in 

their former papers. A proof of the local Holder continuity can 

be found in (.83,(93. J. NeSas sketched the proof of the uniform 

a-priori-estimete in (261 and gave it more elaborately in M s 

seminar-talks in October 1979. 

Proposition 1.1. I*et u c LIIJ be a bounded weak solution 

of system (0.1), (0.2). for every point x° e XI such that 

(1.1) lim inf U(x°,R) » 0 

holds 

such 

the a-priori-estimate 

holds uniformly with respect to the class £MQ3. 

Corollary 1.2. Let u e CM3 be a bounded weak solution of 

system (0.1) , (0 .2 ) . Suppose that for every 57 c H property 

(1.1) hplds uniformly with respect to x° e 5? . Then u e 

fc C^dl) with <* * min-tj , ! - :?? and the a-priori-estimate 

(1.3) Itull ^c(M,G,A,^f.XL\distUl%&a)) 
c*(ii) r 

holds uniformly with respect to the class £1133 • 

Remark: It can he shown that the set S:= -(xe.Q.1 lim inf U 

(x,R)>0Hof singular points is small in the following sense. 

Let >| denote the (n-2)-dimensional Hausdorff-measure. S is 

a nullset with respect to this, measure^ i.e. Ji (S) * 0. We 

refer to £93 or £121 for details. 

Now Proposition 1«1 ••ill be derived in a number of steps, 
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following M. Giaquinta and J. Nedas C8, 9, 26]. 

Lemma 1.3: Let bjj(r,s*l,2,... ,mj i, j*l,2,.. .,n) bs con

stant coefficients. Let ucW^»^(B1(0))n L
2(B]L(0)) be a weak 

solution to the strongly elliptic system 

• U *3 "*£"•%ax" °' *e 3(B-(0))» 
with the e l l ip t ic i ty constant * * 0, i . e . b£% * i j j ft tfl % | 2 

for every ij c 1 3 B n . Then the inequality 

(1.4) U(0,$>)-£1C f2 U(0,1) 

holds for f> 4 (0,1), where K is a constant depending only on 

v and max b£j. 

The original proof of this Lemma is apparently due to S. 

Campanato 12J, a shorter proof was given in C8, 93. 

Before we proceed to the next Lemmata we have to introdu

ce a decomposition (1.8) of the solution u to the quaailinear 

system (0.1), (0,2), If u*£M.l is such a solution, there exists 

an R > 0 depending on A and M (but otherwise not on u) such that 

for every x° e .0. and for everv H * J^, with 

(1.5) R2s* min 4B(A,M),dist(x
0
faa)i * l^(4iM,dist(x

0
fail )), 

the following linear elliptic system (1#6) (with L^-c©efficients) 

for the unknown function w is uniquely solvable in trr'^tl^x0)): 

8w R 3<fc $w f i 

(1-6) V > -•i3<-.«> * $ « i j * a i8 (*.- ) REJ <U t a 

In fact , due to the e l l i p t i c i t y of the system and due to Jried-

rieh's inequality 
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6 W1'2(BR(x°)) 

R 
is the bilinear form a(w f <$>) defined by the left hand side of 

system (1.6) is strictly coercive on W*» (BR(x
0)) as long as 

S(AtM) is sufficiently small. Let us stress the point that R? 

(defined by (1.5)) is independent of the class £GMJ and depends 

on x° only via dist (x° f3 .fl .) . Since (1.6) is uniquely solvable 

for R^It, we may decompose any solution u of the qua si linear 

system (0.1),(0.2) in the following manner: 

(1.8) u * vH + wR
f where w

H<£ W*>2(B^)) solves system (1.6). 

H H 
Now we investigate v and w as R —> 0, 

VTTfi 1t^i *** w De defined as above with R<R2» There 

exists a constant c depending on GfAfft and R.-, such that the 

following holds uniformly with respect to x°e H/ccH and uni

formly with respect to the class ECHO; 

(1.9) WH(x°fR)^c(OfAf(ttfH2) R
2-2n/P. 

froof: Since S)(BR(x°)) -= W^
2(BR(x

0)) we may set <f> * wR 

in (1.6). The strict coerciveness of a(w fw ), inequality (1.7) 

and Holder's inequality imply 

X*2(BR(x^)) * * 

and hence (1.9) holds. 

Unfortunately the function v from the decompoaition (1.8) 

has not the same "nice" behaviour. Nevertheless we have at least 

the following result (cf. (1.4)). 

Lemma 1.3. Let u 6 £M1 be a bounded weak solution of sys

tem (0.1),(0.2) and let -e 6 (0,1) be fixed. Then there ex-
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i s t s ^ « €o(tr fM)>0 and RQ * RQ('T ,M) such that for every 

x° a .a and for every R-UR0tTffM)fdist(x0
fa.a)? the implica

tion 

VR(x°fR)< e 0 -"*VRCx°f*R).£2K T£ VRCx°fR) 

holds, where K « K(M,A) i s the constant form (1*4) for the fa

mily of coefficients afjdx0, f ) , x° e £L f If i * M. 

This Lemma ia a modification of the analogous "main Lam

mas" in [23,13,10,121. k detailed proof was given in t$ f 93. 

Now we are able to prove Proposition 1.1. Recalling (1.5) 

we choose RT< 5 Ro* I n order to derive (1.2) i t suffices to 

show (cf.LU) 

(1.10) U(aCff )£cf> for every I&B« (xQ) and for every p > 0 

in some sufficiently small neighborhood of zero, where the con

stant c(R-LlM,G,A,̂ rx) i s independent of x and p • 

So choose xfcBp (x°) and R^R-^ Then BR (2)cBp_(x°). 

Recalling (1.8) yields 
R_ R_ R_ 

V *(xfR ) £ 2 U(x,R ) • 2 W *(xfR ) £ 2 H(x°f2R1) + 2 W x(x fR ) . 

X X x x X 

By assumption (1.1) U(x°, 2R1) —> 0 as R,—v 0, and the last 

term converges to zero uniformly with respect to xtBp (x ). 

This follows from Lemma 1.4. Hence after a possible change of 

R, (which may depend on x° unless (1.1) holds uniformly) 

(1.11) for every fc0>0 there exists a sufficiently small 

R ( e )c (OjR,) (but R independent of x) such that 
x x 
R_ 

V *(x,R )<€>*. 
x 

For the remaind^f of this proof choose 1? e (0f gr) such 

- 668 -



that 4Kc< ^, with K from Lemma 1.5* According to this 

determine £ 0 ( f t*) and due to (1.11) alao H_ such that 
* . * **, 

V x(x fR )^t2* We want to find an estimate for V x (x f tH ) 
x i 

in terms of X . To this end observe that 
x*L R. R_ 

(1.12) V x ( x , * R j . S 2 * V x (x f xMJ • W x (x f ^H ) • . 
X X X 

-i- W x(x f ^HJJ . 

X 

Due to Lemmata 1.4 and 1.5 the first and the last term on the 

right hand side can be extimated by x and r ^ reapecti-

vely, whereas a calculation similar to the proof of Lemma 1.4 

yielda 
H_ 

W x(xf «B )£ c(OfAfftfH.) <z2~n & - 2n/p, 
x A x 

so that (1.12) implies 
**L a-

(1.13) V x(xf x* )&4Hx2 ? x(if R ) • 4c(OfA,^fRl)^
2ll/P. 

X X X 
In order to reiterate (1.13) we have to show that alao 

(1.14) V x(xf XXJ-**>1. 
x 

However the choice of x and (1.13) imply 
**L 
V x(x, x* ) * e?/4 • c H2-2n/P, 

*i x 

hence after a possible change of R» the second lerm involving 

R_4(0IR1) is sufficiently small. Recall that t Q was chosen 

independently of R_f so (1.14) does not hold and we may reitera-
x 

te (1.13). By induction it can be shown that for every positive 

integer k we have 
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V x ( x f * k R J * ( 4 K <fc2)k V x(x9R_) + 4 U222n/p oM 
X x *x 

( r k ^ T k ( 2 - 2 t i / p ) ) 

and 

*£ *L 
V x(xf tkRjíícU f e0 ,K fG fA f (u, fR1> ( * k • t W 2 - & i / p ) ) 

holds with c independent of x and k. This and Lemma 1.4 y i e V 

U(xf - c k RJ * 2 4 V x ( x t * k R J + W x ( x f r k R j > 
X X X 

^ c i r k
+ r k ( 2 - 2 n / P ) ) } 

wi th c independent of x and k, and consequently 

(1.15) U(x,t*R )£ c r***, where cG-* min 4 i f l - ~ ? . 
x F 

Recall t h a t we want to prove ( 1 . 1 2 ) . Now choose jo a r b i t r a r i l y 

small and k e U such t ha t t k + 1 R < p^fc^R . Clear ly t k «: 
x x 

<• f /^R_, and so (1.1) implies the desired inequality (1.10). 
x 

§ 2. Liouville's property implies regularity (R)> and some 

sufficient conditions for L( fRn) 

Theorem 2.1. Let U £ £M1 be a bounded weak solution of sys

tem (0.1), (0.2). If the system (0.1) has property L(JRn)t then 
<** I 

(R) h o l d s , i . e . u i s Holdercontinuous in i l with Holder-expo-
. « • • 

nent <-c = min- (4 ,1 - g } f and fo r every SL' c Si the a p r i o r i 
es t imate (1 .3) h o l d s . 

Proof: According to Corol lary 1.2 we only need to show 

tha t (1 .1 ) holds uniformly with r e s p e c t to x° e I P .^-Let us 

assume in the cont ra ry t h a t there e x i s t s a sequence ^x^fce f r i c 

c &' , xk—> xQ , and \ \ l c P."1", B^—-* 0 such tha t 
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U(x R, ) >• e • N o w c o n s : ' L d e r t n e fo l lowing family of t r a n a f o r -

x—x 
(У = - S Г ' u я _ ( y ) = u ( x k + V» 

i l x W 1 / 2 ( n ) n I / * ( X l ) - ^ J l p > < W 1 / 2 ( i l p ) A L ^ ( i I p ) ' 

Remark 2.2: Observe that SlR blows up as R tends to zero 

and that -0.
R
 shrinks as R tends to infinity. Using an analogy 

from optical lenses, taking R small amounts to looking at the 

neighbourhood of x° with a magnifying glass, and the whole fa

mily t^H^R>0
 a c t s o n ®" "-i*6 a

 zoom-lense. If one observes an 

optical object through a zoom-lense at different focusses, its 

size appears different, but not its colour. The family ^ J ^ H > O 

has a similar property: The "size** of -Q-D and Vu
R
 varies with 

R, but the IP-norm of u
n
 stays invariant. In fact i|u)l * 

R
 1̂ (12) 

s ^
u
^j«o/jr| ) for every R=*0. If one wants another norm of u to 

stay invariant under a similar family of transformations one 

has to modify the definition of T
R
. This was done in C8, 9, 26J 

where iiVuli s tayed i n v a r i a n t . A technique of t h i s type seems 
V° 

t o be known as blow-up-technique. 

We cont inue the proof of Theorem 2 . 1 . Using the t r a n s f o r 

mation T« the system (0 .1) can be r e w r i t t e n as 

ЗДь л . s 

(2 .1) 4ч-ľK + ^ V г ^ J * 
'к 

ч < v^V5^**1^ 

J% ë«3 0\V4 * % 
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Prom the ellipticity of the system we obtain in a standard way 

for B 2 Q ( O ) c .dp 

i a /(o)
l vy uR k

| 2 d y" c ( a , A ,^ , G K 

1 2 
So Uj, ------ p weakly in W > (Ba(o))« Hence for every a:̂  0 there 

exists a subsequence *Uj-,? R - > O s u c n that u« —> p in L (B (0)) 

as well as point-wise a.e. on Ba(0). Since T^ leaves the L35-

rorm of u invariant, psU^CR11) with Ipl^M. If we send 1^ to 

zero in (2.1), p solves the system 

This limiting procedure can be justified using the continuity 

of the coefficients and Lebesgue's dominated convergence theo

rem. Now Liouville's property implies that p = const, and us

ing'the fact that u« -> p strongly in L2(B (0)), we obtain 

*k a 

UCxk,iyi. R^
n /B|?(^lu(x) - pi

2 dx -J^^luj^Cy) - pi2 dy-> 

—* 0 (q.e.d.). 

Theorem 2 . 2 . L i o u v i l l e ' s property L( lRn) holds for n s 2 , 

i . e . for plane domains. 

Proof: Let v e l ^ (1R2) A IPi IR2) be a weak so lut ion of 

the system ( 0 . 3 ) . We have to show that v i s constant. Let T> 0 

be f ixed and l e t % e, SD ( B 2 T ( o ) ) , where 0 .£ i£ £ 1 , ^ s 1 in 
C 2 

BT(o) and IV^I -*• ^9 .Furthermore put 4?s
 s ^ v . Using the 

e l l i p t i c i t y , equation ( 0 . 3 ) and Holder's inequal i ty we obtain 

^ H V v I r 2 x A . l i v i i • & IbtfviL 
^ L^(B2T(o)) V> T L2(B2 T(o)) 

•{meas B ? r p ( o H 1 / 2 ^ c II ^ V• I 7 
2 1 L2(B2 T(o))» 
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with c independent of T. This estimate works for n*2 only. 
2 2 ** 

T —><-<? y i e l d s Vv € L ( B, ) . But there e x i s t s a sequence yne 
e ffl( iR2) with Vifn —> V v in L L 2 ( E 2 ) 3 2 m . Therefore 

t rs ^VT» **% 
^a a i j ( x tv) 5xT5x^" d x = ° h o l d s > a n d n e n c e v i * c o a ~ 
fR i 0 

stant. 

theorem 2.3. Liouville's property £( E n ) holds for msl, 

i.e. for quasilinear equations. 

J. Moser proved this the.orem in t24f p. 4653 for linear 

equations with L^-coefficients. His proof extends without any 

changes to our quasilinear equation. 

Theorem 2,4. Liouville 's property L( IKn) holds for sys

tems with principal part in diagonal form. 

Proof: System (0.3) takes the (diagonal) form 

3v 3<t> 

with A?- = cf a> .. But system (2.2) is a system of m single 
J.fJ i S I.J. 

equations for each component v of v. Hence l:heorem 2.3 applies. 

§ 3. Continuity (C) implies Liouville s property. In con

trast to 1263 we do not make use of a maximum principle for pro-

ving that already (C) and not only (R) implies L( IR ). 

Theorem 3.1. Suppose that system (0.3) has property (C)f 

i.e. every bounded weak solution u of system (0.3) is continu

ous in Si and the modulus of continuity of u depends on U but 

+) For nondiagonal systems see L2Sf 29, 303. 
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otherwise no t on u . Then L i o u v i l l e ' s proper ty L( % ) h o l d s . 

Proof: Let x° e XI be f ixed and v ^ w i 0 f ^ n ) ^ - ^ R n> 

be a s o l u t i o n of system ( 0 . 3 ) . We in tend to show t h a t v ( x ) s 

s v ( x ° ) for any x € l R n . To t h i s end we choose a number a such 

t h a t B (x°) c SI and x e iRn. Then the re e x i s t s a s u f f i c i e n t l y 
x~x 

l a r g e RQ such t h a t y := ~̂ -~--i £ BQ (o) for every R*-RQ. We define 
v R(y) = v (x° + By). For every R^O the funct ion v« i s again a 

s o l u t i o n of ( 0 . 3 ) . By assumption, i t s so lu t ions a r e cont inuous . 

Hence fo r y c B (o) we have 

(3 .1) I vH(y) - V R ( ° > I —> 0 as y —> 0 uniform^ w . r . t . R>R 0 . 

Observe t h a t i t i s important to assume a uniform modulus 

of con t inu i ty i n (C) . For f ixed x e SI and for R tending to i n 

f i n i t y , y converges to ze ro . Writing (3.1) i n the x -ccord ina tes 

we ob ta in 

I v(x) - v(x°) \ = 0, which completes the proof. 

Remark 3 . 2 : In the proof of Theorem 3 .1 we use again the 

blow-up-technique from § 2 £cf. Remark 2 .23 , however wi th R-> 

—> oo . Here we appl ied TR to the so lu t i on v of system (0.3) 

and used i t to l e t IRn shr ink i n s i d e Si , whereas i n § 2 we ap

p l i e d i t to the s o l u t i o n u of system ( 0 . 1 ) , ( 0 . 2 ) i n order to 

spread -XL out over the whole E • E s s e n t i a l l y the same t ech 

nique was used ( in a d i f f e r e n t s e t t i n g ) by J . Frehse with h i s 

"fr iendM in t 5 J . 
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