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REMARK ON A NEWTON-MOSER TYPE METHOD
Hana PETZELTOVA

Abstract: The Newton-Moser method for finding the roots
of a nonlinear equation f(x) = O is discussed and the rate of
convergence of this method is established.
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ton s method. ! ’

Classification: 4600 , 65J05

Introduction. In the present paper we will discuss an
iterative technique, due to J. Moser, improved by O. Hald (1],
for finding the roots of a nonlinear equation f(x) = O, Consi-

der the following method:
(1) X4l = X = Vp f(xn)
(2) Yn#1= Yn = Y (x vy - 1)

The first equation is similar to the Newton’s method, in which
case y, is equal f'(xn)'l. The second equation is the Newton's
method applied to g(y) = y-l - f'(xn+l) = 0, This method was
developed as a technical tool for investigating problems in-
volving small divisors, where the application of the Newton’s
method is dubious since it is not clear whether f£°(x;) is in-

vertible.
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In a series of papers, V. Ptdk has proposed a new method
of estimating the convergence of iterative processes. Instead
of defining the rate of convergence as a number, he introduces
the following

Definition. Let T be an interval (O,t,) for some positi-
ve t,. A rate of convergence on T is a function w defined on
T with the following properties

1. wmaps T into itself

2. for each teT the series t + co(t) + w2(t) +... is
convergent.,

¥e use the abbreviation o™ for the n-th iterate of the
function w , so that wz(t) = w(w(t)) and so on. The sum of
the above series will be denoted by & . It is clear that if
some Sequence ixn’scg,_,oc X, X being a Banach 8pace, satisfies
the implication |x;, - x _,lér=>lx ., - x, | £ @ (r) for each
n and w is a rate of convergence, then the sequence ix,} con-
verges to some element xec X and lxo ~-xle G’(ro) where r_ =

. °
= \xo - xll.

The Newton-Moser process. Let E and F be two Banach spa-
ces. Let x ¢E and U = U(x_,q) =ixcE,lx - x l< qf. Let £ be
a mapping of U into F twice Fréchet differentiable for each
xe U and let

(3) 1f£"(x)} <M for all xe U

We sl{all use the following notations:
alx,x’) = £(x") = £(x) - £°(x)(x"~ x)
b(x,x") = £°(x) - £'(x)

B

As a consequence of (3) we get the estimates
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2

. 1 ’
(4) la(x,x)|¢ 5 Mix-x"| X
I 2 for x,x €U

Ib(x,x )| < Mix-x"’|
Take x¢ U, y ¢ B(F,E) such that
(5) JyexIér, Jye (x)-TV £ 8, jylet am 1et
(6) x" = x - yf(x)
vy o= y-y (£ (x")y-1) ‘
Let us estimate the norms |y £(x")l, |y¢ (x")-1l,lyle£(x") =
= £(x) + £7(x0)(x"-x) + a(x,x") = £(x) - £ (x)yf(x) + alx,x’)

vy = y(£ (x)y-1) - yb(x,x )y ,
Py £ )= HI-y£ (x))yf(x) + yalx,x") + (y£ (x)-1)% yo(x) -
- (yf (x)-I)yalx,x’) + yb(x,x") (y£ (x)-I)yf(x) - yb(x,x )yalx,x M

£ rs + %- Mrlt + rs? + % Mr28t + Mrzst + % M2r32 = r(s + % Mrt)-

’

{1+s+Mrt) = r’ = w(r)
|y'f'(x‘)-1|=1yf'(x')-y(f'(x')y-x)f’(x’)-xl=|(yf'(x')-1)2|=
= [(y2’ (x)-I + yb(x,x )2l & (s+krt)? = o*
ly [t (L+a+rt) = t°

It is easy to verify that i

2
/
(7) tr = Ll—%a-L - t24 for some 4z0, i.e.

{ 3x(-r + Praula(1-8)9)22) for azo
¢ =

) 2
%ﬁ% for 4=0

then the same is true for r’,8”’,t’.

For such t we get the inequality

2
Mrt < S%g)_ which yields
2 2
w(r)&r (—15-9-) %g_

22
s £ (32

) 03 2
1f s = |y, £(x)=T <1 and s*< 1 satisfies s* = (-l-'i-g-f)
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then the last inequality shows that during all the process
848 = max(so,a"‘). Now, it suffices to choose s  such that
(l'%-s-o)2 3-;—'§o<1 for @ to be a rate of convergence. (For s¥*

this inequality is satisfied.)

If x,y satisfy (5), then

(8 Je(o] &y tre L0l

The corresponding function 6 can be obtained with the
help of the function g:R—>R, g(z) = %ﬂzz - d, 420 for which

all the above inequalities become equalities, in the following

1/2 such that

- (3412

way: If r , s  are given, we find y_, z > (ﬁg)

¥o8(z,) =1 , ¥,8'(z,) -1 =8,. Then 6(r,) = z,

We get the quadratic equation for z,t
1+s
0,1 2 -
Mz | (5 Mz - d) =1,

= -1 2 -1 2,1/2
Hence z = (1+8,)7" (r +(rg + 2M “d(1+s)) ) ) and
- -1 2 -1 2.1/2y_ (24,1/2
6(r,) = (l+so) (ry + (rg + 21 a(1+s,)%)™" %)~ )
The relation (7) was derived withhelp of the function g as well.
Theorem. Let E and F be two Banach spaces. Let X € E.
Let £ be a mapping of U(xo,q) into F satisfying (3) and the

following assumptions:
1° there exists a linear invertible operator Yo € B(F,E), non-

negative numbers r , 8,y @ such that

ly Blx )l = vy, 1y 8 (x)) - Ii = s,

l-s
20 ]f(xo)\é%n (-]—y;'?)z -d
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3° q?_(1+s°)'1 (r°+(r§ + ot d(1+a°)2)1/2) -

- @t 912 = g(r)
2
3+ 8 1l+s

4 =<2

Then the process (1),(2) starting at X, is meaningful amd con-
verges to a point x such that f£(x) = O, The rate of convergen-
ce w(r) = r(s(r) +  Mr t(r)) (+s(r) + M r t(r)), re(0,r)>
where s(ro) =8, and s(w(r)) = (s(r) + Mr 1:(1'))2

Fx(-r+ (22 + L a(2-8(x))®)M?) for a>0
(9) t(r) ={

2
Q=5 E)) for a = 0

yields the following estimates

1%p,q = Xpl ¢ @2 ), Ix - x 1< 6(r))

Proof. According to what has been said above, it suffices

to prove that )yol £t(r,). From 29 we get |y°| roélyoizif(xo)“—;
-8 \ 2 ;
£ (TEQ) - d|y°|2 which is equivalent to lyol £tlr).

Corollary. In the case that d:>>0, the sequence {yn§ is
bounded, £ (x) is invertible and Yp—> £°(x)™1, The rate of con-

: . . + o0
vergence is almost quadratic, more precisely w(r)£cr 1

for r sufficiently small and o < 1.

Proof. It follows immediately from (9) that Iyn| <
2t )z (M V22K, 8, = sw™(r,))—> 0. Let ¥, ¥°
satisfy (5),(6). Then

ly* =yl (g (x) - Dyl + lyb(x,x)y |£ K(a(r) + Mkr) =

= Kh(r)

(10) h(@ (2)£ (s(r) + MKr)? + MKr(s(r) + 3 MKr). (L+s(r)+ MKr)s
£n@)? 1+ § Q+e(r) + Kr))
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This assures the convergence of the sequence §yn§. Since
Yp—> ¥ and s, —> O, we get y = £ (x)" L.

let cc e (0,1) be given, r, s, t satisfy (5) and
8171 + L’:—11)2< 1 (This can be achieved, as s(w ™ (r))—> 0
and 8(w®™(r))z const.w™(r) for n>1). Let s = kr®® . Then
@(r) + r(s + & Mrt) (L+ssirt) = vs (1 + 3 M 5 (1eestirt) 2
£orl* s’ = (srirt)? = 52(2s MEE)Z = o ()%, H17% (142EY)2,
(2AE)y-%py ()%,

rs

Remark, In the case that f£°(x) is invertible in some
neighbourhood U of the solution and d £'(x) = inf{(£ (x|,
]x)Z1}>m for x€U, we get lyls %—l if {y£'(x) - Il &
£8(r), xeU, Moreover, if s(r) + % ré%, then (10) gives

tlwr) + mam<d (1) + ¥ r)?, see (11,

Corollary. Let d =0 in 2% for all x., Then the sequence
n does not converge, but even in this case (8) assures that
f(xn)-—-> 0. The rate of convergence becomes linear, w(r) <

2
£y ligﬁ). A8(r)y2 019 s(r)—s s¥, s* being the solution of
1+s

the equation (-2-—) = 8.
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