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COMMENTATIONES MATHEMAT1CAE UN.VER5ITAT1S CAROLINAE 

21,4 (1980) 

A NOTE O N THE SPLITTING LENGTH OF A FINITE DIRECT SUM 
OF MIXED ABELIAN GROUPS OF RANK ONE 

Ladislav BICAN 

Abstract: The purpose of this note is to show that the 
splitting length of a finite direct sum A of mixed abelian 
groups of rank one does not depend on the splitting lengths 
of the summands provided that the rank of A is greater than 1 
and at least one of the summands is non-splitting* More preci~ 
sely, it is shown that the splitting length of a direct -sum of 
mixed abelian groups A, ,A,,,. •. ̂ A^ of rank one with the splitting 

lengths k-,̂  k2—... ̂ k^, m£2f km£ 2f can take an arbitrary va
lue from the set 4-cm>--

:
Ill

+lt • ••, DO \ • 

Key words: Splitting length, p-hei^ht sequence. 

Classification: Primary 20K25 

Irwin, Khabbaz and Rayna £8.3 have studied the splitting 

properties of the tensor product of mixed abelian groups. They 

defined the splitting length of a mixed group G as the infimum 

of the set of all positive integers; n such that the n-th tesor 

0 n = G € > G © n 7 H m ? s © G splits and they constructed a mixed group 

of rank one having the splitting length n for every positive in

teger n. In my previous paper 131 I have characterized the mixed 

abelian groups of rank one having the splitting length n and in 

[43 I have characterized all pairs A, B of mixed abelian groups 

of rank one having the property that the tensor product A ® B 

splits. In this note we are going to prove the following result. 
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Theorem. Let k-, ,k2f ...fkmf m > 2 , be arbitrary positive 

integers, not all equal to 1. Then for each Jt , maxtk^k-,,... 

• ••yk^i £ Z £ co , there exist abelian groups AlfA2,...,Am such 

that each A^ has the splitting length kif i=lf2,...,m, and the 

direct sum A = A-j® k2® ... © Am has the splitting length X . 

Thus, the splitting length of a finite direct sum A of mi

xed abelian groups of rank one does not depend on the splitting 

lengths of the summands provided that the rank of A is at least 

2 and at least one of the summands is non-spl?tting. 

By the word "group" we shall always mean an additively 

written abelian group. As in Ell, we use the notions "characte

ristic" and "type" in the broad meaning, i.e- we deal with the

se notions in mixed groups. The symbols lr(a), x (a) and 

£ (a) denote respectively the p-height, the characteristic and 

the type of the element a in the group A. fr will denote the 

set of all primes. If T is a torsion group, then T is the p-

primary component of T and similarly, if sf'G sr then T^, is 

defined by T^, » H ® T • If sr' £ ff and if A is a mixed group 

•̂*» €• St P 

with the torsion part T(A), T(A) , « 0, then for each subset 
' A 

S£A the symbol <S.>, denotes the JT -pure closure of S in A, 

the existence of which is easily seen. 

For a mixed group A with the torsion part T(A) we denote 

by A the factor-group A/T(A) and for as A, a is the element 

a + T(A) of A. The symbol lâ  means the order of the1 element 

a c A. The rank of a mixed group A is that of A. The set of all 

positive integers is denoted by N, N Q » NuiO*. Other notation 

will be essentially the same as in £53 • 

It has been proved in CX; Theorem 2] that a mixed group A 

of rank one splits if and only if each element acA\T(A) has 
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a non-zero multiple ma such that r̂ (ma) -* £ (a) ami ma has 

a p-sequence whenever hr(a) = oo (i.e. there exist elements 

h^p) « ma, h£p),... such that phn
p£ * nn

P)» n=0,l,...). Recall 

C3], that the p-height sequence of an element aeA is the doub

le sequence 4^, ̂ i w ) of elements of NQ u ico} defined in

ductively in the following way: Put k-̂  * kQ «- X^ * 0 and -0-|* 

• h*(a). If k. %A* are defined and either lA(p Xa) • X. =*<*>> 
p x * k.+k p i 

or -^i< co and h£(p x a) =- ̂ i + k for all kfiN then put 
ki+1 = k^ and ^^ + 1

 s -̂  4 • If *^ < 00 and there are k£N 

A V k 

with h (p a) > xi + k then let k.+-. he the smallest posi-

tive integer for which h£(p i+1a) = ^ i+1 > ̂ i + ki+1 - ^ 

For the sake of simplicity we shall use the notation ar == 

- a6)a®...® a€,Ar, m N , Moreover, the symbols Ar&> B° and 

&r0 b°, r€N, will simply denote A and ar, respectively. 

If rf'si sr and JL e N then we shall say that a torsion-

free group A of rank one is of the type {st'\Jl) if it contains 

an element a such that h*(a) s <& tor each p e sr' and hr(a) • 

» 0 for each p e sr\ sr' . Further, if sr' Q sr and lcf£ ,meN0, 

m>k +£ , then we shall say that a mixed group A of rank one 

is of the type (.Tr'jk,.^ ,m) if -P(A^N #* 0 and A\T(A) contains 

an element a such that for each prime p € sr' the p-height se

quence of a in A is -tkif £$1*0$ where kg * k^ -«•••-* k, JL^ » 

= Z , ^2 * ^3 "*•••* m an^ *or e a c n prime p € JT\ JT' the p-

height sequence of a in A is -ik̂ , ̂ i?i-a0i where kQ « k-̂  * ... 

... * XQ * ^
 s... * 0. 

We start our investigations with some preliminary lemmas. 

Lemma 1. If 2T s Sf and Z e N are arbitrary then there 
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^exists a torsionfree group A of rank one and of the type 

(or'it). 

Proof: Let ar' • -Cpj i c I } , U « <a >® S ? < »4> be a free 

group and V « < • - p^a . j j i€ l> be i t s subgroup. I t i s an easy 

exerc ise to show that the factor-group A » U/V i s torsionfree 

of rank one and the element a = a + V has the desired proper

t i e s . 

Lemma 2. Let sr & sf be an arb itrary se t of primes. I f 

kf>£ ,m sN, m>k + Ji , then there ex is t a mixed group A of rank 

one and of the type i JT';kf £ fm)• 

Proof: Let JT' » ip± l i e l i , U = < a > ® ^ f «a.[ 1 )> 0 

e <a.[2)>) be a free group and V =- <S - P i * i 1 } . P ^ - P i a i 2 > l 

l i £ l > be i t s subgroup. Obviously, the factor-group A * U/V i s 

of rank one and we are going to show that the element a -= a + V 

has the desired propert ies . 

If the equation p8x * pra is solvable in A then p a = 

- P 8 U * Vf i ^i-i1 ' + i i K V i 2 ^ UZi Pi<* - PM1*) + 
-f # Sl j -a^Cp^S - p?a£ ' ) ( a l l the sums have only a f i n i t e number 

of non-zero terms) and consequently 

( i ) p r = P
8 A +gx P i ^ f j p f ^ , 

C2) 0 - p 8 J - i - p-f f . , i c i , 

(3) 0 = p 3 ^ - p £ s i f i e l . 

I f p <£ JT' then p° ljt>if pB l e ^ , i e l , by (2) and ( 3 ) , hen

ce p 8 l p r by (1) and h£(p r«) = r . 

Assume now that p = p . for aome j & I . I f r e - £ 0 , 1 , . . . , k - l l 

then pjtf = P j ^ X ) + pj(3f - / ^ - > ) and ao h j ( p r a ) > r +£ . 

I f a > r +X then (2) and (3) v i e l d rf^ss 0 (mod p 3 ) , 6^ = 0 
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(mod p ) , j + i e l , and p , s 0 / 8 - * 
T k . _ , ° m ° d P >• Hence, by ( 1 ) , 

pr== p* 6^ (mod p a x ) and so 1 ^ k~r ^ - r 
J ej ( m o d P >» a con-* 

t r a d i c t i o n . Thus hlMp a) s r + ^ ^ r^ 
P -* r ° r each r s - £ 0 , 1 , . . . , k - l l . 

Suppose now that r 2 k. Then obviously p** = pm+ r -ka ( . 2 )+ 
± « r - k t J - * r,mftC2K tt . __ K A, r 0 J J 
+ P j ( P j a - p ^ ) and so l y p * ^ m + r _ k . i f a > m + r .. 

- k then (2) and (3) y i e l d p i S o (mod p s ) , e^ » 0 (mod p s ) , 

j - f - i e l , and j>. = 0 (mod p s ~ * ) , p 8 - ^ ' -= ^ f o r a
% sui table 

1"» V tj 

integer 6'y Hence, by (1) , p s p
s " f f l + k 0 / . (mod p

8 ^ ) a n a so 
s-m-r+k _,/ / . s-^-r-. A „, . A, r * 

I s p €Tj imoa p ), a contradiction. Thus hr(p a)* 
= m + r - k for each r2rk and the proof is complete. 

Lemma 3. Let A be a mixed group of rank one. If 5r'-£ tf 

is infinite and if A is of the type ( jr';k-l,l,k+l+m), k.>2, 

m & N , then A has the splitting length k and for each r<sil,2, 

,..,k-lj the tensor power Ar is of the type ( ̂ x|k-r,r,r(m+l)+ 

+k). 

Proof: Obviously, (k-1)(k+l+m-(k-l))-(k-l) = (k-l)(m+l)> 

^ 0 and A has the splitting length k by [3; Theorem]. 

If a&A\T(A) is an element having the properties stated 

in the definition of the group of the type ( ar',k-l,l,k+l+m) 

then the assumption T ( A L #= 0 obviously yields h^ (p
8ar) * 

jf\jf p 

= s for each prime p e. si \ sr'. 

Assume now that p = p : for some j e l . I t i s easy to s e e 

that for each a ' c A the p -he igh t s of the elements a ' , a '+ T . -, 

in the corresponding groups are the same and from t h i s i t ea

s i l y fo l lows that we can r e s t r i c t ourselves to the case of T(A) 

p-primary. I f pa^ = a, P a2 = pk~ a and t = pm a 2 - m^ 

then by C4; Lemma 83 and C3; Lemma 83 the group A decomposes 

in to A = < t > © V©<a 2 >fMpj» where <t>€>V -» T(A). Moreover, 
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 _ - _
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Г
, Гv -ял^-i^ k-г r A v k—r r 

a
2
 - pt and so h" (a ) = r. Finally, p a 

- p
M
l i 8 a*"

1
) - pk+1+m(a2€) a'"1) =...= p ( m + 1 ) r + kaf, from 

which the assertion follows easily. 

Lemma 4. Let of'-5 rf be infinite and A, B be mixed 

groups of rank one and of the type ( sr' ;k-l,l,k+m+2), ( sr' \ 

(m-l)(>e-1), ̂ - l , m ^ ) , k>-2, X * m £ 3 , respectively. Then 
£-2 A % B does not split. The same holds if A is a torsionfree 

group of rank one and of the type (jrr'jm-l). 

Proof: If i - 2<:k then A 2 is of the type ( :rr'.jk-i + 

+2,i-2, (£-2)(m-2)+k) by Lemma 3 and if I - 2£k then A^"2 

splits and its torsionfree direct summand is of the type (sr'\ 

(m-l)(X-2)). In both cases we have (>£-2)(m-2)+k - (k-vf+2) -

- (m-D(i-l) = (m-l)U-2) - (m-D(^-l) =- - (m-l)< 0 and 
j£—2 A <8> B does not spl i t by [4; Theorem.3 (or 14; Corollary 3.1). 

The rest i s similar. 

Lemma 5. Let A^jAg,... ,Am be mixed abelian groups, m€ N. 
p r l r 2 

Then (A-, €> A2© . . . @> kmr sp l i t s i f and only i f A.̂  <g> A2 ® 
rm *ru /» 

6) . . . ^ A . ^ splits for all rx,r2» *** »rm€-o w i t i l-^ ri ~ * • 

Proof: The assertion follows easily from the simple fact 

that A t£ B splits if and only if both A and B are splitting. 

Proof of Theorem: With respect to Lemma 5 we can suppose 

that k̂ ** fc2-fe .. • ---TO^ CO • N°w we shall divide the proof into 

several cases. 
I. X «< co . 

1, Let l^i 3 and let j6tofl,..Mm-l} be such that 1 = 

a kx = k2 -...= kj<k. + 1^ ... ̂ k m. For each i € 4.1,2,..., j? let 

A.£ be a torsionfree group of rank one of the type (^;k -1), 

for each i e-Cj+l,...,m-l^ let A^ be a mixed group of rank one 
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of the type ( if ;k^l, 1,^+^-2) ani let A^ be a mixed group 

of rank one of the type ( ar ; (k^-lHi -1), Z -lfk^.£ ). The 

groups A^, i=l,2,...,m, have the splitting length k^ by Lemma 
i-2 "~ 

3, the group A ^ ® A^ does not split by Lemma 4, so that with rm 1 2 i 
r e s p e c t to Lemma 5 i t remains to show t h a t A-,x<g> Ap ® ...€§> A_ 

s p l i t s whenever r ^ r ^ . . . , r m £ NQ
 a n d • 2 " ^ r i = ^ # B y ^ 1 i T heo-

rem 23 i t s u f f i c e s to show t h a t 

A 1 ® . . .<S> A ^ r r r 

h p
X ( a ^ a / o . . . ^ e^111) - J t t c ^ - l ) ( a ^ a , , , . . . , ! ^ 

a r e the elements having the p r o p e r t i e s s t a t e d i n the d e f i n i t i o n 

of the groups of the corresponding t y p e s ) . For each p e ir we 

have p m a p ^ a j . , a | 1 > 6 A i f i € { 1 , 2 , . . . , : j j , p a | 1 ) = a i f 

p W a(2) = p i ^ a i l ) ^ a ( 2 ) £ ^^ ±€{^xtmmm9mr.1J9 and 

-^•i-> - H . p ^ - p
( V - ) ^ - » v ^1)^2). v ^ l e t 

k be the f i r s t i n t e g e r with r k > 0 . I f k * m then a^ * p ^ " 1 ) 

( a ( 1 ) ) ^ , p m a i 1 ) = p m a^2) and the induc t ion y i e l d s a* * 

» p ^ ° (e^n owing to the f a c t t h a t Z(A -1 ) - k^Ci-1)=-
k. 

» U - l ) ( X - k m ) - > 0 . Now i f k 6 { j + i , # . . , m - i } then p iaf :L> * 
k«+k —2 

-= p x m a.[2>, i € { k , k + l , . . . , m - i j . I f w e p u t o c = i + r m ( ^ - 2 ) 

and /& =oC + ( k m - 2 ) ( ^ - r m ) then oo 2: I > k.,, i € {k , * + ! , . . . , m - l $ f 

and a j k e . . . @> e£m « p * ( u j 1 * >** <S> . . . © (affl
1> )*•) « 

- p^((42)>rk® ...©(•S>P""1» t^1^^- Por rm = ° we 

are ready and for r >0 the inequality (t- ^ ( ^ -l) =-
rk rm * MK+TnrU 

» u - v ( r « - 1 } - ° y i e l d s ®k ® •••© ** a P 
U a ^ 2 * ) * 3 ^ . . . <8>(42 )> *>• A n a l l y , i f k e { l , 2 , . . . , j 1 then 
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assertion follows as in the preceding case. 

2. k = 2. m 

a) Let ^ 3 and let j € -10,1,... ,m-l? be such that 1 * 

* k^ = k 2 = ...- 3c i^ k4+i =...= 1^ * 2. For each i£ *1,2,..., jl 

let A. be a torsionfree group of rank one of the type (JT ;2), 

for each i e-Cj+1,... ,m-l} let A. be a mixed group of rank one 

of the type ( rt ;1,1,3) and let A^ be a mixed group of rank 

one of the type ( sf j2(X-l), Z -1, 4(*i -1)). The groups Aif 

i=-l,2,... ,m, have the splitting length k^ by Lemma 3 and the 
1-2 group AL n ® .1^ does not split by Lemma 4. The proof of the 

splitting of A is similar to that in 1. 

b) Let I * 2 and let j € 4.0,1,... ,m-l? be such that 1 -

* k-̂  « k 2 =. , .=- k-< k.+1 =-...« k m - 2. For each i£ -Cl,2,... ,$1 

let A^ be a torsionfree group of rank one of the type (jr ;1) 

and for each i £ {j+1,... ,m? let A^ be a mixed group of rank 

one of the type (#;1,1,3). The groups A^, i=l,2„...,m have 

the splitting length k» and the splitting length of A is ob

viously 2. 

II. Z » oo -

Let p be a prime and j e40,l,... ,m-l} be such that 1 ~ 

» kx
 s k 2 »...* kj-ck^^^:...^}^. For each i e -£1,2,... ,j f 

let A^ * Z (the group of integers), for each i e. lj+1,... ,m-l| 

let A. be a mixed group of rank one of the type (3r\{pi; 

k4--l,l,k.+l) and let A^ be the group generated by the ele-
1 x m (k -l)i 

ments a ,a,,..» with respect to the relations p ai c 

<V2)i 
- p a . The groups Aa, i«l,2,...,m-l, have the split-
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ting length k^ by Lemma 3 and the group A^ has the splitting 

length kĵ  by [3; Example] (see also [81). However, for each 
£—1 Jt > 1 the group A* ., is p-reduced, no non-zero element from 

JL— 1 
Aja has a p-sequence and hence the group AJj^ ® ^m doe,s n o t 

split by £4; Theorem.]. Thus the group A is of infinite split

ting length and the proof is complete. 
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