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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

21,4 (I960) 

A COMPACT FR6CHET SPACE WHOSE SQUARE IS NOT FR6CHET 
Petr SIMON 

Abstract: We shall prove in ZFC only that there- exist 
two compact Hausdorff Fr^chet spaces X-,, X2 such that X-̂ x X̂  
i s not Fr^chet. 

Key words and phrases: MAD family, Ire'chet space. 

Classification: 54D30, 54D55 

In 1977, E. Michael raised the question whether there ex

isted two spaces Xn, X2, both compact Hausdorff and Frechet, 

the product of which was not Fr^chet ([Mil, Problem 3). A to

pological space X is Fr^chet if for each non-void M S X and for 

each x e M there is a sequence ^x^n & o J s M converging to x. 

Assuming various set-theoretical axioms, V.I. Malychin [Mai, 

R.C. Olson 10J, T.K. Boehmeand M. Rosenfeld £BR} gave examples 

of such spaces. All those examples are twin brothers - they are 

Franklin compacta (the definition is given below) constructed 

from some suitable almost disjoint family on N; our example is 

yet another one of the same nature. The heart and soul of all 

the constructions mentioned lies in the existence of a "well-

behaving" maximal almost disjoint system. We shall show that 

the MAD family needed really exists. 

Let us recollect some, necessary notions and facts, N will 
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denote the set of all natural numbers (and, if considered as 

a topological space, its topology is discrete). An almost dis

joint family (abbr. AD) on a set X is a collection ^ £ L x J ^ 

such that Pn P* is finite for any two distinct members P,P*<s 

t (P .A maximal almost disjoint family (abbr. MAD) on X is 

an AD family on X properly contained in no AD family on X. 

Let <P be AD on N, let XctNJ^. Denote XAA <P « iVn X: 

:P e <F> and [PnXl « o> J. Let Cf(fl>) * {XellN^X M <P is fi

nite}, 3*«P) « CN.]^ - J(CP) -MXtftNl" : X M P 1 8 infini

te}, m((P) = -UcLN}^ :X /vA^Pis MAD on X}. 

For A£N, denote as usual A* *= clA - A, where the closure 

of A is taken in £N, the Cech-Stone compactification of inte

gers. Then for XetNJ^, CP AD on N, the set X belongs to mCO*) 

if and only if X*cclU-CP*:P e <P I «-

Let <P be AD family on N. The Franklin compact &($*) is 

a topological space whose underlying set is N u <Pu-Cao$ an3 

whose topology is given as follows: N is a set of isolated 

points, a basic open neighborhood of a point P c :P is {Pi u 

u cofinite subset of P, oo is a point distinct from all ncN 

and all P & <P , which compactifies the space N u <F> . Equiva-

lently, ${<p) is a quotient space of \%N modulo the equiva

lence x~x' iff x,x'c N* and either 4x,x'}£P* for some P6-^ 

br ix,x']r>P* a 0 for all P 6 ^ # Clearly J'( .P) is a compact 

Hausdorff space. 

The crucial properties of Franklin compacta were stated 

by V.I. Malychin in LMaJ: 

(a) ^(CP) is a Fr^chet space iff N* -U-iP*:P & <P ? is 

a regular closed set in N*, equivalently, iff >Ht(<P) g, 3 (#>). 
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(b) If (P= (P1u <PZ is AD on N and <?2 n ̂  * 0, then 

the product ^C 4^) ~ .?( CPg) is not Fr^chet iff N* - LJ* F*: 

:P e 3*J is not regular closed in N*, equivalently, iff 
/Jf!H^)r\ ? + CP)*0. 

(c) In particular, %,(& ) n O + (CP)4-0 if P is an infi

nite MAD system on N, hence it suffices to show the following: 

Theorem. There is a MAD family 3* on N and its partition 

<P0
 u ^1 = ̂  such that m C ^ V £ 3< ̂ Pi) for i » 0,1. 

Indeed, by (a), #( <PQ) as well as 3 4 ^ ) is Frechet, but 

by (b) and (c), 3*( fQ) * r( 3^) fails to be. 

Before giving a proof, let us state and prove a lemma, due 

to J. Do5k61kov6: 

Lemma ED]. Let (P be an infinite MAD family on N, iXQ £ 

2 X-^XgS...] a countable subset of 3 + C P ) . Then there is a 

set Y£ 3+(CP ) such that for each n e co , Y - X^ is finite. 

Proof. Choose y(0,n)&Xn for each n>0, y(0,n+l).>y(0,n). 

The set Y(0) « -Cy(0,n) :n >0 \ is infinite and (P is MAD, hence 

there is some PQ e P with PQnY(0) infinite. Set X(l)n
 s \ -

- PQ. Since .^e ^ + ( p ) , the set X(l) belongs to y*(<P)f too. 

Choose y(l,n)eX(l)n for each n^l, y(l,n+l)> y(l,n). The 

set Y(l) a 4.y(l,n):n.>l$ is infinite and <P is MAD, hence the

re is some P1 & <P with P^nYd) infinite. Clearly P - ^ P Q be

cause P o x ( D n
 s 0 for all n. Proceeding by an induction 

(y(k,n) € X(k)n are chosen for n > k only), we obtain the set 

Y « Ui* Y(k)n Pfc:k 6 coj , which has the desired properties. D 

Proof of the theorem. Suppose the theorem to be false, 

i.e. 

(#) for each MAD family CP on a countably infinite set and 
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for each par t i t ion (P u 9^ * <P there i s an i s f O , l J and a 

set Xifi a * ( ^ i ) n W( 5>
i)., 

Let (P be a MAD family of s iee continuum on N. Enumera

te (P as <Pm {p f ; f £ ^ 2 .. Let ^ . « {P f : f(n) * i? for n e 

e o> , i Gfo ,U. dea r ly for each n s o , ^ Q ^ ^ 5 ^ , 

* n , 0 ^ * n f l • <• 

Induction, n = 0: Bsy (*), there i s some i 0 e 40 , l j and a 

set X * ?*(<Pni ) A m( ;P 0 , ) . Thus X e 3 + ( P ) . 
*o ^f^O 

n s 1: XQAA -P i s a MAD family on XQ and *CXQAA ^ 0 , 

X 0 AA ^ ^} i s i t s par t i t ion . By (#) , there i s some ^€- (0 ,11 

and a set X1e 3 * ( X 0 A A ^ A ) n T / W ^ M ^ I i >• Clearly 

X ^ ^ ( C P ) . 

n « 2: X-^AA ̂  is a MAD family on X-̂  and ̂ A A 3>2 Q , 

X^AA ^2 i$ ifl it® partition. % (#), there is some i2 6l0,l? 

and ... it is obvious how to proceed further on. 

At the end we obtain a sequence X Q2X-2X 2a... and a se

quence U n:n £ ol of zeros and ones such that .*_£ 3+(CP' . )o 
n n,xn 

A ^(^ n >i ). Let f e^0,li be defined by f(n) =- in, let Y* 

6 3 ((P) be the set the existence of which is guaranteed by 

the lemma : Y - ̂  is finite for each n e o> . Since Y e 3 + (tP), 

we have lYnP ) a co for infinitely many g's from ^-{0,1}, pick 

one such g distinct from f. For some n e. o> , f (n)+g(n), fix 

this n. 

Prom lY- Xnl^^> and lYnPg* » 6> follows that lXnnP != 

« a> . How P $ {Pn f^n), hence lPgnPl< co for each P 6 3*n f,n) 

and X n
A?« i» infinite, yet J^AA ̂ n,f(n) i s ^ ^ on 3^ - a con

tradiction* D 
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Remark. A more detailed examination of the proof just 

given shows that a bit more is valid, namely: 

For each infinite MAD family ^ on N there is some X e 

G. 3+(<P) »uch that X^<P is a MAD family on X having the 

property stated in Theorem. 
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