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ON THE EMBEDDING THEOREM SN
LE VAN HOT

Abstract: Radstrom [6], Godet-Thobie and Pham he Lai
L 31, Urbanski [10] have proved that the space of all convex
closed non-empty subsets of a locally convex space can "2 em-
bedded into a locally convex space . In this paper, we con-
sider the properties of the space whlch will be used im
our subsequent papers dealing with the differentiability of
multivalued mappings.

Key words: Embedding theorem, multivalued mapping, lo-
cally convex spaces.

Classification: Primary 58C06
Secondary 5TR35

1. Introduction. Through this work, all linear spaces

are assumed to be real.

We shall consider the space ‘?o(x') of all bounded con-
vex closed non-emp-ty subsets of a locally convex space X, and
the embedding of the space ‘CO(X) into a locally convex space
i. In section 2, we recall some concepts of the space exp X
of all closed nonempty subsets of a udiform space X and the
space € (X) (resp. % (X)) of all bounded (resp. bounded
convex) closed non-empty subsets of a locally convex space
X. Section 3, deals with some elementary properties of the
spaces ‘(o.(x) and X. Our main results are contained in sec-

tion 4.
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2. Preliminaries. Let X be a uniform space and let its
uniformity 9 have a base B of symmetric entourages. We de-
note the family of all closed non-empty subsets of X by
exp X. We introduce & uniformity structure into exp X as fol~
lows: for each U € B , we set exp U = { (A,B)e exp Xx exp X|
AcT(B) and Be U(A)}, where U(B) = {xe X|, there exists an
ye B such that (x,y)e UY. Then the family exp B ={exp UlU &
e BY forms a base of a uniformity of exp X, which is deno-
ted by exp"UL .

If the uniformity YL of X is induced by a bounded met-

ric d then the uniformity exp % is induced by the metric K
defined by:

3(a,B) = max-ii‘;pA l:;’nefa da(x,y), ;\:pb 31:1’,\ a(x,y)%.

Let M be a closed nonempty subset of X and ‘?)(u be a re-
striction of U on M, then it is easy to see that exp?, =

= (exl’%)expha' We shall use the following

Theorem 1. [9] Let X be a metrizable uniform compact

space, then the metrizable uniform space exp X is compact.

Let X be a locally convex s;;ace (l.c.s.), its topology
% is induced by a family of seminorms %= (p). We always
suppose that the family (°® has the following property: for
each p,q € ® there exists anr € P such that r2p and
rzq.
We denote the family of all bounded (bounded closed, bound-
ed convex closed resp.) non-empty subsets of a ;ocally con-
vex space X by 43(X)(<€(X) ‘CO(X)) resp.). Let 9L be a base
of convex circled neighborhoods of zero in X. We define a

uniformity % on HB(X), with & base B={Uy|N e 9} , where
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Ug is defined by

Uy = £(4,B) | AcsB + K and B=a + B},

where X denotes the closure of the set A in X.
The uniformity % is induced by a family of pseudometrics

{dplp ¢ P} defined by

v

inf {4 > 0lacB + A5, and BGA + A S, }

4, (A,B)

max {gup, inf, Plx - 7). Sy iRf, Px - ),
where S, = {xe X|p(x)<1}.
The restriction M. of U on €(X) is a Hausdorff ‘s unifor-
mity; i.e. NU|U eW .} = A = {(4,A)|A e €(X)}.

It is clear that (Ug) n €(X) = €(X) = (exp Vy) .,
where Vy = {(x,y)lix - y&N§ and (exp Vyg). is the restrictiom
of exp Vy on <€(X).

If X is normable with the norm |l | , then the unifor-
mity U restricted on €(X) is induced by the metric 4 defin-
ed by

a(a,B) = inf{l > O|AcB + A5, and Beh + 45,3

= max § s inf -yl » sup inf flx - y i3
x:?ﬂ qeb"x vl qspB xeA" yih

where
8, =ixeX |Uxll £13.
Let A, B be subsets of X, 4 e R; we define
A+B=4{x+y| xea,yeB},

2A ={2x| xeAl,
A+*B=LKA+E8.

Then we have the following theorem (see [61,(3]1 and [101]).



Theorem 2 ([61,13),0101). Let X be a locally convex spa-
ce with the topology © induced by a family of seminorms P .

let 7 be a base of convex circled O-neighborhoods in X. We
put R = €o(X) x €,(X)/,  , where rv is an equivalence defin-
ed by

(A,B)ns (C,D) iff A +* D = B +* C,

Let [A,B] denote an equivalence class containing the ele-
ment (A,B). We define:

[A,B)+[C,D1 = [A +* C,B +* D] for L4,B],1C,Dl e X,

2[4,B] = L[4, AB] for Az 0 [A,Ble,

ALa,B1 = [IA1 B, 1A1 4] for 4 < 0 [A,BleX.

Then:

1) ﬁ is a linear (real) space.

2) The femily # of seminorms {flp ¢ P ¢ given by
P([A,B1) = dp(A,B) defines a locally convex topology £ , ha~
ving the following base of O-neighborhoods:

Y ={ﬁN]N €Ny , where ﬁN ={CA,B] | (4,B)e Uyf.

If X is normable with norm fl * § , then R is normable un-
der the norm R[A,Blll = d(A,B).

3) The map 2% : € (X) — X defined by 9(A) = [4,{03] is
an isometry in the following sense d4,(4,B) = B 2e(a) - %(B))
and 2t(A +¥ B) = 92e(A) + 9¢(B) and se(AA) = A 2e(A) for all
A,B € € (X) and & = O.

A
Example 1. Let X = Ry; e =([{13,{0}]; E=[[0,1),108] ¢ R;.
If A ¢ €3(Ry), then A is a bounded closed interval of R;; i.e.
A =1Llaj,ay + al vhere a,& R); a2 0, For each < € ﬁl there ex-
ist a),b, € R, aZob 2o such that a= Flaj,a, + al,lb,by +
+ b1l % = (a; ~byle + (a - b)E.
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Of course e and E are linearly independent. It follows
that dim 31 =2 and Ry is complete.

If we define: (ae + bE)«(ce + dE) = (ac)e + (ad + cb +
+ db)E,then it is easy to verify that ﬁl is commutative B~al-
gebra with the unit e and the maps sy,qr:ﬁl-—» Rl defined
by

¢([4,B)) = max A - mex B, ¥(LA,B]) = min A - min B

are homomorphisms of algebra ﬁl onto algebra Rl. If [A,B] =
= ge + bE, then @([A,Bl) = a + b, ¥([A,B]) = a, If a$0 and

a + b+0, then (ae + bE) has inverse and

-1_1 b
(ae + bE) —ae+m3.

Example 2. The following example is due to Aumann and
Kakutani [2], who shows that the space ﬁz is not complete.
let {ocll be a decreasing sequence of positive real numbers

a
such that o< ‘g ; %§4 sinw; <+ . Given an angle ov deno-
te by E_ the closed straight line segment, whose extremities
g
- 455:'4 E"‘i ’
Yp = pE,; Zp =[X,,%,1. Then {21 is a Cauchy sequence in ﬁz,
but {2Z;1 does not converge in ﬁz

have coordinates (0,0), (coso,sinct). Let Xg

3. Some basic properties., In [3], Godet-Thobie and Pham
The Lai, have proved that if X is an” F-space, then the uniform
space € (X) is complete. It is easy to verify that if X is a
space of type I¥F, i.e., is a strict inductive limit of sequen-
ce of F-spaces (X = 1_'1’;%, X where X, is a subspace of &11-1’
and X, is an F-space for all n), then the uniform space %, (X)

is sequentially complete. In fact, let {%} be a Cauchy se-
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©
quence in ¢ (X), then it is clear that the set L,lJAn is
bounded in X. (In fact let U be an O-neighborhood in X, then
there exists n, such that for all nZ n, we have An [ An +Ue
- ) o m,
€A, + 2U and %EA"o + Uskno + 2U. On the other hand, \ﬂj A
is a bounded subset of X, hence there exists k>0 such that
mn,
for all &: 4 >k, LajA:L € A U, Then
< Ga U O, e (AU 2u U) U <
= N . [=4 &
L“JA:t 4A1 m.t{‘lAl" )U(An°+ le(au)u(a+ 2)u
e (a+ 2)u.)

By theorem II.6.5[81, there exists an integer.n; such that
w 3

L“) Ay e )Sll. That is, A, ¢ ?o()gll) for all n. Of course {A %
is a Cauchy sequence in ‘CO(}%I). Since we know that ‘60(&1)
is complete [3], there exists A & <e0<xnl) such that lim A =
= A in Zo(xnl). It follows lim A = A in %(X) and this pro-
ves that <€°(x) is sequentially complete.

Proposition 1. Let X be a semi-reflexive locally convex
space ([8]), then the uniform space ‘t.’o(x) is sequentially
complete,

Proof. Let {An‘l, be a Cauchy sequence in ‘t’o(X). We set
B, = tonv (Q A;) (where Conv A denotes the closed convex
hull of set A). We claim that {B, 3 is a Cauchy sequence and
if B = 1im B, then B = lim A. In fact, let U be & convex cir-
cled O-neighborhood in X. There exists an inteéer N such that
for all fx,mzN we have:

Ack +UeB +Uand A s + UsB + 0.

Then B, = Tonv LZAiEE;—ITI and By = Conv (:.2 A.iggn—ﬁl.

This shows that {Bn’; is a Cauchy sequence. Let B = lim Bn and

let U be a convex cix:cled O-neighborhood in X. Then there ex-
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ists N such that for all my,nZ N we have ApsaA, + %-U, i c
cA, +3U, BB+ 30 and BeB + 3 U. Then A €B €B + 3 U

and BEB + 3 US(A, + £ U) + 3 USK, + U, which gives

lim An = B, Now our proof will be completed, if we prove the

existence of lim B). Of course B 2B ,12... . Since X is se-
[+

mireflexive, B is weakly compact for all n. Then B = QB +

+#, B e € (X). If B$lim B, then there exists a convex

circled closed 0 -neighborhood U such that for each n there

exists x, € Bn such that x 4 (B + U) (of course BEBn for all

n). Let n, be a positive integer such that for all 1'1Zno we

1 =
have BnOE Bn + ?-UEBn + U, Pc\;t K, = (JS'IO + U)nﬂn4-.¢ )
Ky e €,(X); K 2 K 4p+ Then ) K # ¢ because K is weakly com-
@ 0
pact for all n. let x e N K € I;\Bn = B, It is xeK =x, +

(o] (o]

+ U, whence x, e x + UcB + U, a contradiction with the assum-

)
ption that x ¢ B + U, The proof is complete.
0

Corollary 1. If X is an LF-space or semi-reflexive space,
A
then 2¢( ¢ (X)) is sequentially closed in X.
It is easy to see that if M is bounded convex subset of

X, then the set {LA,BJ}AcB + M and BSA + M} is & bounded

A
set of X.

Proposition 2. Suppose that (X,~ ) is a regular inducti-
ve Li.mit of a sequence of metrizable locally convex spaces
(X, ¥,) (for instance when (X,,,) is a closed subspace of
(xn+1’
Put M = {fA,B1| AcM,BecNi, Then

1) If M, N are compact, then M is compact,

Tp4q) for all n), M, N are closed convex subsets of X.
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2) If M, N are separable and weakly compact (i.e.
w(X,X’)-compact, where X’ denotes .he dual space of X), then
WL is W(X,X’)=-compact.

Proof: It is easy to see that if p is a continuous se-
minorm on X, A,B € €(X), then d,(conv A,conv B) < 4,(4,B),
where convA denotes the convex hull of A. For each closed
convex subset M of X, put (M) ={A € €(X)|AsM}; %, () =
= {4 e € (X)|ASM}. Then it is easy to verify that ¥ (M) is
a c]:osed subset of ¥ (M), Since 7 = 9¢( ‘Co(lﬁ)) - ae(‘foiN)),
it follows that the proof of our Proposition will be comple-
te if we prove that ¥ (M) and €(N) ere exp U ,-compact (res-
pectively exp ’Ulw—compact), where W, (respectively ‘?lw) is
the translation invariant uniformity with respect to the to-
pology © (the topology w(X,X’) respectively) on X. By Theo-
rem 1, it is sufficient to vrove that A, (respectively "uw)
restricted on M and N is metrizable. But M, N are « -compact
(w(X,X")-compact respectively), so it is sufficient to prove
that the topology @ (topology w(X,X’) respectively) restric-
ted on. M, N is metrizable, because for the Hausdorff compact
space M(N) there exists a unique uniform structure, which in-
duces its topology.

1) If M, N are « -compact, then MUN is < -bounded.

o such that MUNQXno, as (X, v) is
a reguler indvctive limit of (X, %, ). It follows that the

There exists an integer n

topology ¥ restricted on MUN is metlrizable, because 'l:no
is metrizable.

2) If M, N are w(X,X’)-compact, then MUN is w(£,X’)-
bounded. Therefore MUN is ¢/ -bounded. There exists n, such

that MUNGXAO. To prove that the topology w(X,X’) restric-
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ted on M or on N is metrizable, it is sufficient to prove
that there exists a countable family of real weakly continu-
ous functions, defined on M(N), which distinguish the points
of M (or N, respectively).

Let {xnﬁ be a dense subset of M. Let Pj» J=1,2,... be
a sequence of continuous seminorms on X such that plé Py £..,
and {p; Xnoi induces the topology %, . For each n,m,j (n,m,
j =1,2,...) there exists x;’m’jEX' such that x;x,m,,j(’% -
- xp) = pj(xn - x;) and lx;’m’j(x)lépj(x) for all xe X. We
claim that {’ﬁ;,m,j’n'm’j = 1,2,...% distinguishes the points
of M. Let x,yeM, xx;,m,j(x) = xt;'m’j(y) for all n,m,j. There
exist subsequences { xnk3 and 'fxmki of {x,% such that
lim xnk =x, limx_ =Y.

mk

We have that:

x_ ) y)

- = x’ . - - x’ (x -
Dj(xnk xmk) X s % " Tmy xnk’mk,j x
Pjln, ~ Fm X V)

(

1L

<pjixy - x) + Pj(xmk =),

pj(x = y) = lim py(x, - xmk)

1im pj(xnk - x) + lim p.i(xmk -y) =0.

Therefore p;j(x - y) = 0 for all j. Since {pj Xnoi induces the

W

topology T, on X, we have that x = y. This means that
°©
w(X,X’) restricted on M is metrizable. Similarly w(X,X’) res-

tricted on N is metrizable and this completes the proof.

4. Main results

Proposition 3., Let X, Y be locally convex spaces, T e

L(4,Y), where L(X,Y) denotes the space of all linear conti=-
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nuous mappings of X into Y. We define a map T,: €o(X) —> ‘fo(Y)=
TC(A) = T(A) for all A e ‘fo(X).

Then:
* = x .
1) T.(A +¥ B) = T (A) +* T (B) for all A,B e € (X);
2) T,(AA) = AT, (A) for A 2 O and A € fo(x);
3) If Z is snl.c.s., Pe L(Y,Z), then
(Pol =P oT;
4) If X, Y are normed spaces then

d(T,(A),T,(B)) £ I THha(4,B) for A,B & € (X).

Proof. 1) T (A +*B) = T(a + B)2 T(& + B) = TA) + (B) =
= T,(A) +* T,(B). On the other hand we have:

T(A +¥ B) = T(A + B)e T(A + B) = T (a) +* T (B)

Hence T (A +*B) = T (A) +¥ T (B).

The proofs of 2),3) and 4) are obvious. Q.E.D.

Let A, B, C, D € € (X) and [4,B] = [C,D], then A +¥D =
=B +*% C and T, (A) +¥ T.(D) = T,(B) +¥ T.(C). This shows that
[T,(A),T,(B)) = [T (C),T (D). So, we can define a map T:X — ¥
by:

f(r4,B1) = [T,(A),T,(B)].

Proposition 4. The following conclusions are valid:

1) 'i‘eL()?,?);

. P

2) If Pe L(Y,X), where Z is a l.c.space, then (Peo T) =

A A

= PoT;

3) If X, Y are normed linear spaces, then ITH =W T} .

Proof. 1) It is easy to verify that T is a limear map
of X into ¥ and if V is an O-neighborhood in ¥, N is an 0-
neighborhood in X such that T(N)g V, then %‘ﬁn)gﬁw This im-
plies ? sL(f,?).
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AN A A . .
2) The property PoT = Po T follows immediately from

the equality (Po'l‘)c =P,eT..
3) From a(T,(A),T,(B)) < ITH d(A,B) we have ITH&UTU,
On the other hand
A A
Th = {ot = T = |Tl.
T JSR, T([{x%,1081)N 1S58, ITGN = Tl

A
Hence I Th= IT}. Q.E.D,
It is obvious that /fx = Ii (where Ix denotes the identi-
ty mapping of X). It follows that if T is an isomorphism of X

A
onto Y, then T is also an isomorphism of X onto ¥.

Remark 1, Iet F:X~—> Y be an affine continuous map,
F(0) = a, then the map T defined by T(x) = F(x) - a, belongs
to L(X,Y). If we define F:X — £ vy F([4,B1) = [F(A),F(B)J,
then F= %.

Remark 2. If TelL(X,Y) and T is 1-1 and onto (i.e. an
algebraic isomorphism), then T need not be either 1 - 1 or
onto.

Example 3. Let X = C([0,1)), and Y be a subspace of X
such that ¥ ={ x‘:IO,ll —>R | x is continuously differentiab-
le on [0,1) and x(0) = O}. We define:

(Tx)(t) = j;t x(x )dr for all xeX; tel0,11.

Then, of course, T€ L{X,Y); W Tl £1 and T is amap 1 - 1 and
onto.

1) Let s; =ix|xeX, IxHh£13,

D ={x|xeX; x| £1 and x(0) = OF.
Then Sy, Dy & €,(X) and [S;,Dy140. It is easy to verify that
for each € > O and each x¢ 8, there exists X<D;, such
that %(t) = x(t) for all $4t &1, Ten UTx - ™xh< € . Tis
shows T_(D,)2 TS;). It follows NS, u3) = [T4(8;),T (D))=
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= 0, which shows that 7 is not 1 - 1.

2) Let Q={yeY|Nyll£1}; then [Q,{O}]e?. Suppose
that T is onto; then there exist A,B & € (X) such that
T((A,B]) = [T (A),T,(B)] = [Q,403) or T, (A) = T, (B) +¥Q2
2T,(B) + Q. It follows that

Qe T (4) - T (B)e T(A) - (B).

Let M be a positive number such that for all »xeAuB
lxl &M, Then ly(t) - y(t )l£2Mit - t°| for all ye T(4) -
- T(B) and for all t,t’el0,1]. The set {ye ¥[ly(t) - y(t )&
£2MIt - t°l for all t,t°e¢ [0,11} is closed in Y. Hence for
all ye Qe T(A) - T(B) and for all t,t’€ [0,1) we have

. ly(t) - y(eN&2mle - ¢°1
a contradiction with the fact that for all k> 2 there is ye Q
and t,,t,€[0,1] such that ly(t;) - y(t,)Izklt. - t,l. For

i
instance, put y(t) = j; x(x )dx , where:

K for Oété%i ’
x(t) = { 3 K- ¥ for Jpstédy ,
a for t?.%k ’

then ye Q and ly(%k) -yl =K %—K . Hence T is not onto.

Let X, Y be locally convex spaces, T e L(X,Y). We denote
the adjoint operator of T by T°, the range of T’ by R(T’), the
strong topology in the dual space X’ by (3(X’,X).

&opgeitioﬁ 5. Let X, Y be loc;lly convex spaces, T €
¢ L(x,1). Ir RIHFE X 2 x* | then Fis 1 - 3.

Proof. Let [A,B140, then A¢B or B¢A, Aggume for in-
stance A$B. There is X, €A and _x°¢ B. By the Hgnn-Bamach the-
orem is x’c X’ such that ( x’,xy) = B> = sup {x", x> xe
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€ B}. Set €= %((s-oc»o, V= (AuB)’={x"e X"|Kx", x> £1
for all xe Au B{. Then V is an O-neighborhood in the topolo-
gy ((X’,X) in X°. By our assumption we have (x'+eV)n R(T )%
£0. Let y'¢ Y° be such that T(y")ex” + €V, then [<{x’ -
- T(y"),x>14« ¢ for all xe AuB. We have
yyTx ) =<1y x> =<4x",x ) + (Ty" =x"x >z B -¢ =

_ 2R +&

For all xe B we have
{y ,ITx>=<(T,y x> =4x" x>+ (Ty " - x",x>£ « + £ =
= B+ 2
-3

Therefore <y',Txo) > sup{<Cy’,T™x>| xeB}. Hence Tx ¢
¢ T(B) = T,(B); which shows that T([A,B]) = [T (A),T,(B)1# O.

This completes our proof.

Theorem 3. Let X be a locally convex space, with the to-
pology ~ induced by the family of seminorms P = (p), M a sub-
space of X, py the restriction of p on M. Let i:M —> X be an
inclusion map of M into X. Then:

1) $:M -—>)? is isometric in the following sense:
p(3(14,B1)) = $y([4,B)) for all [A,BleM end p e P.

2) If X is a normed linear space, then the isometry $
is an isomorphism of i onto £ if and only if M = X.

Proof. 1) Let [A,Blcfi, then

pi(ra,B)) = E-(LK,EJ) = 4p(%,B) = dPM(A,B)

= ph([A,B]) .

2)a) Let X be a normed linear space and M = X. We denote
by Sy =ix|xcX; I xlé 1} e €y(X) the unit closed ball of X
and the unit open ball of X by S ={xeX|IxN<1f. Let
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[A,BleX, then [A,B] = [4 +* S,B +¥ 5], We set Ay = (A +¥ S))n
nMe € (M) and B, = (B +* §1)n Me ‘C’O(M). We have ‘&1 =
= (A+ 8 )nM2(a + Sg)n M2(A + Sg)nﬁ = A+ Sg ang hence
K)2A +S] = A +5; =A+%S;, On the other hand, Ajc A +¥5,,
Therefore &) = A +* S,. Similarly one can obtain El = B +* s,.
Then

f(tay,B3) =[A,B)) =[A +% 5),B +* 5]

= [ A,Bl.

This shows that I is an isomorphism of ¥ onto X.

b Let 1 be an isomorphism of # onto 2, we shall prove that
Xc M. Suppose x e X, then [{x},{03) e 3. By our éssumptio’n, the-
re is an [4,Blc M such that $([A,B]) =[X,B)= [{x},{0}]. This
implies A = B + {x?, whence x efx}ci - BcA - Bel. The proof

is complete.

Remark 3. If X is a normable linear space, then X has the
following property:

(x) If ¥ is the comple tion of X and 1:X—> ¥ is the in-
clusion of X into S(V, then f?-—r? is an isomorphism of X on-
to Q.

Jf X is not a normable linear space, then X need not have
the property (¥). Suppose, for instance, that X is a locally
convex space, which is quasicomplete (i.e. every bounded clo-
sed sul;set A of X is complete (see [8]1)) but not complete. We
claim that X has not -the property (k). lLet X be the completion
of X; i:X—> X be the inclusion of X into X. Suppose that i
is an isomorphism of % onto ?. Assume that x X but x ¢ X. The-
re is an (A,g]ei such that 2(CA,B1) =1%,B) =({x},{0}], whe-

re X denotes the closure of A in X, Thén x + B = A. By the as-

-«
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sumption A, B are complete, it follows that A, B are closed
in X. Then we have x + B = A and x€ A - BEX., This contradictis

x& X,

Theorem 4. Let X be a strict inducti~e limit cf u se-
quence of locally convex spaces An (i.e. £ = 1,j;,,m 1%). 1f )(n
has the property (x) for all n, then X possesses the property
k).

Proof: Let % be the completion of )S,‘, in:)g,\——', %, 'ivn:
e ~ ~
X —> the inclusions. We set Y = 1j . By theorem
L% Lim, X,. By
II 6.6 [ 81 the snace Y is ccmplete and it is easy to see that
X is dense in Y. Then Y = X.

a_A .
Iet [A,BleY = X, there exists n

~
o suchAthat AE)S,,O and
~ ~
Be X, (Theorem II 6.5 [8]). That is [a,Ble X, « According to
(o] A [¢]
our assumption there exists [Al,Bl] € X such that i\n ([Al,Bll )=
- — o. _ - 0
= [A,Bl. Of course [Aln X,B. A xleX and ?([Aln X,B;n X]) =

= ’i\no([Al,Bll) = [A,Bl. This completes our proof.

Corollary 2. Let X be a locally convex space, M a closed
subspace of X such that M has the complement in X. Then:

1) ?(ﬁl) is a closed subspace of 2, where i:M —> X is the
inclusion.

2) If dim X>2, then % is not complete.

Proof. 1) From the assumption that M has the complement
in X we conclude that there exists P& L(X,M) such that Pei = Iy
where I, denotes the identity of M. Then 3,'{ = Ig. Let [A,Ble
e’i\(ﬁ), then there exists a net {V[A;j'BknjeJ of # such that
{g([Aj’Bj)njeJ converges to LA,Bl. Then {[AJ-,Bj)} jed ={P.1
‘“3»%’”3.} converges to P(LA,B1) = Lp,(a),P,(B)) ¢ N, as P is
a continuous map. Finally {’i([Aj,Bj]ﬂjeJ converges to

1ar ()P (B)1) e L0
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in view of the similar argument. Since X is the Hausdorff
space, [A,B] = ;([PC(A),PC(B)J), for [A,B] is also a limit
of 43((4;,B;1)3 5, ;. Thii oroves that [A,B]ef(M) ana T(M) is
the closed subspace of X.

2) Let dim X2 2 and suppose that ﬁ is comg;lete. Take a
two dimensional subspace X2 of X, then X2 has a complement in
X (see Corollary II.4.2[81). Then 3(?2) is the closed subspa-
ce of the complete space %. Hence 'i\()?z) is comple te. Since EN
is isometric, we conclude that ?(2 is complete. We know that
X2 is isomorphic with R2 Thus '}\(2 is isomorphic with ﬁz This

A
means that R2 is complete, a contradiction with the Example 2.

Corollary 3. Let X be a metrizable locally convex space
and let X have the property (%) (in particular X is a normed
space), then ae( ‘CO(X)) is a closed subset of e if and only if
X is complete,

Proof. 1) If X is an \F-space, then m(‘fo(m) is comp-~
lete (see [31) and hence u(‘CO(X)) is closed in X.

2) Let‘u(‘eo(X)) be closed in X, X be the completion of

X. Then we have the following commutative diagram

i
€, () ————- (%)
nl l ”®
¢ QR W, {

Since 1 is an isomorphism of X onto %, X4 oé( ‘fo(x))) is a clo-
sed subset of 72e( ‘fo(z)). We know that ‘&(‘Co(')‘()) is complete
as X is an F-space. It follows ?on(‘CO(X)) is complete and

hence ‘CO(X) is comple te, since T o9e is isometric. Therefo-

re, X is comple te, too. This comple tes the nroof.
Corollary 4, Let X be a metrizable locally convex space,
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[A,Ble2e (<€ (X)) and suppose that one of two sets 4, B is
weakly compact. Then [4,Ble 2¢( ¢ (X)),
Proof. Let X be a completion of X, then

14,81 e 1 (€ N e Tlae( € (X)) cael € (D)),

There is C € ?O(Y) such that
tc,{031= 1(ra,B)) =[3,B),
where A denotes the closure of A in X. Ten A =B +* C =B + C.
Assume now that 1) A is weakly compact (i.e. w(X,X’)-com~
pact), then A is w(X,¥’)-compact for w(f,‘f')lx = w(X,X"). Her-

ce A is w(?(',')"{')-closed in X and A is closed in X, since A is

convex. Then we have:

A=B+C23B+Cor CcA ~-BeX,

This shows that [A4,B1 = [C,403] ¢ (<€ (X)).

2) If B is weakly compact, then by the same way as in 1)
we prove that B + C is closed in % and we obtain & = B + c,
(B+C)nX=B+CnX, Put C; = CnX, then we have.
(C;,{037 e (€ (X)), which concludes

A=13nX
A=B+C, i.e. [4,B]

the proof.
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