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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

* 2t,4 (1980) 

ON THE EMBEDDING THEOREM 
LE VAN HOT 

Abstract: Badstrom 1.61, Godet-Thobie and Pham Ihe Lai 
L 31, Urbariaki [103 have proved that the apace of all convex 
cloaed non-empty subsets of a locally convex space can "e em­
bedded into a locally convex space A. In this paper, we con­
sider the properties of the space X, which will be used in 
our subsequent papers dealing with the differentiability of 
multivalued mappings. 

Key words: .Embedding theorem, multivalued mapping, lo­
cally convex spaces* 

Clas3ification: Primary 58C06 

Secondary 57R35 

1. Introduction. Through this work, all linear spaces 

are assumed to be real. 

.We shall consider the space ^(Xfr of all bounded con­

vex closed non-empty subsets of a locally convex space X, and 

the embedding of the space ^0(X) into a locally convex space 
A 

X. In section 2, we recall some concepts of the space exp X 

of all closed nonempty subsets of a uriiform space X and the 

space <t (X) (reap. ^ ( X ) ) of all bounded (resp. bounded 

convex) closed non-empty aubsets of a locally convex space 

X. Section 3, deals with some elementary properties of the 

spaces ^0(X) and X. Our main results are contained in sec­

tion 4* 
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2. Preliminaries. Let X be a uniform space and let its 

uniformity Vi have a base fi of symmetric entourages. We de­

note the family of all closed non-empty subsets of X by 

exp X. We introduce a uniformity structure into exp X as fol­

lows: for each U e ii , we set exp U = { (A,B)e exp Xx exp X | 

AcU(B) and B£U(A)S , where U(B) M x e X | , there exists an 

y e B such that (x,y)el-rt. Then the family exp 53 = { exp UlU € 

e H\ forms a base of a uniformity of exp X, which is deno­

ted by exp *Ut # 

If the uniformity U of X is induced by a bounded met­

ric d then the uniformity exp % is induced by the metric d 

defined by: 

d(A,B) = max i sup inf d(x,y), sup inf d(x,y)£. 

Let M be a closed nonempty subset of X and U L be a re­

striction of *UL on M, then it is easy to see that exp%j. * 

= ^ e xP^) e X Du-
 W e shall use the following 

Theorem 1. [9] Let X be a metrizable uniform compact 

space, then the metrizable uniform space exp X is compact. 

Let X be a locally convex space (l.c.s.), its topology 

% is induced by a family of seminomas (P= (p). We always 

suppose that the family <p has the following property; for 

each p,q e (P there exists an r e <P such that v>p and 

We denote the family of all bounded (bounded closed, bound­

ed convex closed resp.) non-empty subsets of a locally con­

vex space X by <J$(X)(^(X) *£Q(X)) resp.). Let $1 be a base 

of convex circled neighborhoods of zero in X. We define m 

uniformity tyi on 3i(X)t with a base <B = -t Uj-\H % $l\ , where 
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Ujr i s defined by 

B-y » - iU,B) I A£B + K and B s A + BJ, 

where A denotes the closure of the s e t A in X. 

The uniformity % i s induced by a family of pseudometries 

-idp|p £ ^J defined by 

dp (A,B) = inf {A > 0|AsB + X Sp and B i l + T s j j } 

= max -teup inf p(x - j). sup inf p ( x . r \ 

where Sp = { x c X|p(x) & 1} . 

The r e s t r i c t i o n 1ftc of % on ^(X) i s a Hausdorff's uni for­

mity; i . e . fKU|U e% c? -= A = { (A,A)|A e <C(X)J . 

I t i s c lear that (%) n <€(X) ~ <£(X) = (exp VH)C, 

where VN = -C(x,y)|x - y e N j and (exp V-g) i s the r e s t r i c t i o n 

of exp VN on <£(X). 

I f X i s normable with the norm I) il , then the uni for­

mity % r e s t r i c t e d on ^ (X) i s induced by the metric d defin-i-

ed by 

d(A,B) a inf i * > 0 | A £ B + %S% and B s A + XS^ 

= max { sup inf If x - y jj * sup inf II x - y HI , 
x& A yeb % * & **A 

where 

S^ M x e X | MxII 6 -1? . 

Let A, B be sub9ete of X, X e R; we define 

A + B =-«fx + y | X £ A , y e B j , 

Xk ={lx\ x c A $ , 

A +* B « m . 

Then we have the following theorem (see [6],£33 and C10.1). 
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Theorem 2 ([63,13] ,C101). Let X be a locally convex apa­

ce with the topology v induced by a family of aeminorme 3* • 

Let fL be a base of convex circled O-neighborhoods in X. We 

put 2 s *^0(
x) * ^0W/ 9 where rv is an equivalence defin­

ed by 

(A,B)rxy(C,D) iff A +* D = B +* C. 

Let CA,B] denote an equivalence cla39 containing the e l e ­

ment (A,B). We def ine: 

CA,B] + CC,Da = [A +* C,B + * D] for LA,B], tC,Dl 6 tf, 

ACA,B] = CAA, AB] for A 2: 0 CA,B]eX f 

ACA,B] =- C1AI B, I A I A ] for A < 0 [ A , B ] £ $ . 

Often: 
A 

1) X i s a l inear (real) apace. 

2) The family 4* of aeminorme 4$lp e &i given by 

p(CA,B]) » dp(A,B) define9 a l o c a l l y convex topology £ , ha-

ving the fol lowing baee of 0-neighborhood9: 

% = -ttjj-jiN * n \ , where \ = UA,B3 | (A,B)6 % $ . 

I f X i 3 normable with norm U • I , then X ia norma ble un­

der the norm |CA,B]|| s d(A,B). 

3 ) The map 3e : <tf0(X) —> X defined by *C(A) = CAf{0$J ia 

an isometry in the fol lowing sense d^(A,B) = p( *e(A) - 9C-(B)) 

and nU +* B) « *e(A) + ae(B) and ae(AA) -» A ^ ( A ) for a l l 

A,B * *eQ(X) and A 2: 0 . 

Example 1 . Let X =- R^ e = C ill , { 0 U ; E = C CO, 1] ,<0U €. JÊ . 

I f A €.<6Q{R1)f then A ia a bounded c losed in terva l of B^; i . e . 

A a- ^a-̂ ja-ĵ  + a ] where a^e B^; a > 0 . For each oo e B^ there ex­

i s t a 1 , b 1 e R 1 , a £ o b .2 o auch that oc=CCa1,a.L + a ] ,Cb 1 ,b 1 + 

+ b3] 06 = (a x - b ^ e + (a - b)E. 
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Of course e and JS are linearly independent. It follows 

that dim it = 2 and R-̂  is complete. 

If we define; (ae + bE)*(ce + dE) « (ac)e + (ad + cb + 

+ db)E,then it is easy to verify that R. is commutative B-al-
A 

gebra with the unit e and the maps y,Y:R,—>• R defined 

by 
y(CA,BJ) = max A - max B, if^A.B.]) = min A - min B 

are homomorphisms of algebra R.̂  onto algebra Rj. If CA,B] = 

= ae + bE, then cp(£A,B]) • a + b, y(CA,B.l) = a. i f a+ 0 and 

a + b 4-0, then (ae + bE) has inverse and 

( a e + bE)"1 - J e + a U
b

+ b) *. 

Example 2, The following example is due to Aumann and 

Kakutani L23, who shows that the space iL is not complete* 

Let ioC-, "5 be a decreasing sequence of positive real numbers 
sf °° 

such that oSi< J > v-jr* sin «,.£< +09 . Given an angle ot> deno-

t e by E^the closed straight line segment, whose extremities 
+> 

have coordinates (0,0). (cos oC,sinoC). Let X 0 * .2"/, 1L -. 

Yp = pEQ; Z p = C Xp,Ypl. Then {ZpJ is a Cauchy sequence in Kg, 

but iZpl does not converge in IU. 

3. Some basic propertiee. In C3], Oodet-Thobie and Pham 

The Lai, have proved that if X is an'P-space, then the uniform 

space *20(X) is complete. It is easy to verify that if X is a 

space of type UP, i.e. is a strict inductive limit of sequen­

ce of P-spaces (X = limy ^ where ^ is a subspace of XL^t 

and X^ is an P-space for all n), then the uniform space 5fQ(X) 

is sequentially complete. In fact, let-CA^} be a Cauchy se-
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quence in *if0(X), then it is clear that the set U A is 

bounded in X. (In fact let U be an O-neighborhood in X, then 

there exists nrt such that for all n£ n we have A^ c A^ + U£ o o nA n o m,0 

EA^ + 2U and A^s An + UsA^ ' + 2U. On the other hand, \J A i 

i s a bounded subset of X, hence the re e x i s t s k > 0 such t h a t 

fo r a l l X: X > k, y A i s ^ U. Then 

U A. - U A . U \JL. c ( a U ) u U + 2 U ) £ U U ) U( .^+ 2)U£ 
1 1 4 1 "lfc+1 1 " 0 

e U + 2)u.) 

By theorem II.6.5 £83, there exists an integer.n-̂  such that 

U A ^ X ^ . That is, An e ̂ ( - ^ ) for all.n. Of course {A^? 

is a Cauchy sequence in ^(X^ )• Since we know that ^ ( ^ ) 

is complete C3J, there exists A a ^0^\ ) such that lim A^ = 

= A in %(x
n )• x t follows lim A^ = A in <?(X) and this pro­

ves that *£0W is sequentially complete. 

Proposition 1. Let X be a semi-reflexive locally convex 

space (C81), then the uniform space *£0(X) is sequentially 

complete* 

Proof. Let -CA^ be a CaUchy sequence in ^ ( X ) . We set 
< CO 

B„ = conv (UA.) (where conv A denotes the closed convex 
n /rv i 

hull of set A). We claim that $Bni is a Cauchy sequence and -

if B * lim B then B » lim Arft. In fact, let U be a convex cir­

cled O-neighborhood in X. There exists an integer N such that 

for all n,mirN we have: 

A^sA^ + U5B m + U anđ A^sA^ + ÜSB n + U. 

Then B„ = ifoHv U A. £ Bm + U and Bm = conv U A . c B + U. n TV I m m in ,i EL 

This shows t h a t i B ^ i s a Cauchy sequence. Let B » l im B and 

l e t U be a convex c i r c l e d O-neighborhood i n X. Then the re ex-
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ists N such that for all m,n--.N we have Â s A + iu , L £ 

- \ + 7U» B n & B + ^ a n d B ~ B n + 2 U # T h e n A n s B n £ B + I u 

and B£-Bn + | US (A n + | U) + | USAn~TlJ f w h i c h g i v e s 

lim .A = B. Now our proof w i l l be completed, i f we prove the 

existence of lim Bn . Of course B 2 B f l ^ 2 . . . . Since X i s Se-

miref lex ive , Bn i s weakly compact for a l l n. Then B = Q ^n^ 

4=0, Be *£0(X). I f B4»lim Bn , then there e x i s t s a convex 

c irc led closed 0 -neighborhood U such that for each n there 

e x i s t s x n e B n such that -^ # (B + U) (of course B c B n for a l l 

n ) . Let n be a p o s i t i v e integer such that for a l l n £ n we 

have B n £ Bn + | . U S B n + U. Put Kn == (xfa + U ) n l n + 0 , 

K^ e <if0(X)$ K n 3 K n + r Then Q K̂ -4- 0 because KR i s weakly com-
00 oO 

pact for all n. Let x e ̂  1^ e Q Bn -= B. It is xe Kn c. Xjl + 
o o 

+ U, whence x G x + U £ B + U, a contradiction with the assum-
ption that X- •' B: + U. The proof is complete. no 

Corollary 1. If X is an LF-space or semi-reflexive space, 
A. 

then «e( ̂ 0(X)) is sequentially closed in X. 
It is easy to see that if M is bounded convex subset of 

X, then the set {CA,BJ ! A c B + M and Bfi-A + M? is a bounded 

set of X. 

Proposition 2. Suppose that (X,tO is a regular inducti­

ve limit of a sequence of metrizable locally convex spaces 

(Xn, i^) (for instance when (Xn, <vn ) is a closed subspace of 

^^n+1' Sx+l^ ̂ or a11 n ^ > M> ̂  are closed convex subsets of X. 
Put W = {U,B1 | A £ M , B C N ? . Then 

1) If M, N are compact, then 7tl is compact, 
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2) If M, N are separable and weakly compact (i.e. 

w(X,X')-compact, where X' denotes -he dual space of X), then 

7tl is w(X,X')-compact. 

Proof: It is easy to see that if p is a continuous se-

minorm on X, A,B €*€(X), then <3L(conv A,conv B)-£dp(A,B), 

where convA denotee the convex hull of A. For each closed 

convex subset M of X, put <£(M) ={ A e <£(X)| A&M$; ^QW S 

« -U e <f0(X)|A£Mj. Then it is easy to verify that £Q(M) is 

a closed sub9et of ¥(M). Since W • *e( <£0(M)) - ^ ( ^ ( N ) ) , 

it followe that the proof of our Propoaition will be comple­

te if we prove that *£(M) and *tf(N) are exp iMkB-compact (res­

pectively exp W^.-compact), where W^ (respectively % w ) is 

the translation invariant uniformity with respect to the to­

pology t (the topology w(X,x') respectively) on X. By Theo­

rem 1, it is sufficient to orove that ^ ^ (respectively ^ w ) 

restricted on M and N is metrizable. But M, N are <tf -comoact 

(w(X,X')-compact respectively), so it is sufficient to prove 

that the topology K (topology w(X,X') respectively) restric­

ted on. M, N is metrizable , because for the Hausdorff compact 

space M(N) there exists a unique uniform structure, which in­

duces its topology. 

1) If M, N are t -compact, then MUN is X-bounded. 

There exists an integer nrt such that MUNSX^ , as (X, ?) is 

a regular inductive limit of {X^, % * , ) • ** follows that the 

topology x restricted on MUN is metrizable, because t 
o 

is metrizable. 

2) If M, N are w(X,X')-compact, then MUN is w(X,X')-

bounded. Therefore MUN is t-bounded. There exists n such 

that MUNa.3^ . To prove that the topology w(X,X') restric-
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ted on M or on N is metrizable, it is sufficient to prove 

that there exists a countable family of real weakly continu­

ous functions, defined on M(N), which distinguish the points 

of M (or N, respectively). 

Let {xA be a dense subset of M. Let p^, j = 1,2,... be 

a sequence of continuous seminorms on X such that p^ ̂  p~ -= • • # 

and {p. X
n
 \ induces the topology f

n
 . For each n,m,j (n,m, 

i = 1,2,...) there exists x ^ ^ e X ' such that x
n > m >

j ( x
n
 -

" *»> = Pj
( x
n -

 x
m>

 a n d
 '

 x
n,m, j

( x )
 '* P j

( x ) f o r
 *

n x c X
*

 W e 

claim t h a M x ' .|n,m,j = 1,2,...J distinguishes the points 
*-»m, ,i 

of M. Let x,yeM, x^
 m>
j<x>

 s xn,m,:j(y) f o r a 1 1 n
»

m
» 0 - ****• 

exist subsequences 4*^ J and *Cx
m
 } of i xni such that 

lim x -= x, lim x
г
 * У 

We have t h a t : 

Pj ( xnk "" V = V ^ * " * " V ~ %••*,/* " ^ 

< pj'% - v x " y ) 

^ P j ( % " x ) + P J ( X M k - y ) * 

P j ( x - y) = l im p j U ^ " ^ ) 

* l im Pj<X- * x ) + l i m P j C : V *" y ) = 0 # 

Therefore p . ( x - y) = ° f o r a 1 1 0» Since -fp. X n J induces the 
*j * J o 

topology t on X n we have t h a t x =- y . This means t h a t 
o 0 # 

w(X,x') r e s t r i c t e d on M i s m e t r i z a b l e . Similar ly w(X,X ) r e s ­

t r i c t e d on N i s metr izab le and t h i s completes the proof. 

4. Main r e s u l t s 

P r o p o s i t i o n 3 . Let X, Y be l o c a l l y convex spaces , T e 

L(X,Y), where L(X,Y) denotes the space of a l l l i n e a r c o n t i -

- ?85 -



nuous mappings of X into Y. We define a map Tc: 5? 0U)—* *€Q(Y): 

Tc(A) = T(A) for all A e ? 0U). 

Then; 

1) TC(A +* B) = TC(A) +* TC(B) for all A,B e ^(X); 

2) Tc(AA) = &TC(A) for X ^ 0 and A £ t^U),* 

3) If Z is anl.c.s., PcL(Y,Z), then 

(Pol _ = PcoTcj 

4) If X, Y are normed spaces then 

d(Tc(A),Tc(B)) & II TH d(A,B) for A,B e ^ U ) . 

Proof. 1) TC(A +* B) = T(A + B)2T(A + B) = T(A) + T(B) 

= T (A) +* T (B). On the other hand we have: c c 

T(A +* B) = T(A + B)£T(A + B) = TQ(A) +* TC(B) 

Hence Tfi(A + *B) = TC(A) + * TC(B). 

The proofs of 2),3) and 4) are obvious. Q.E.D. 

Let A, B, C, D 6 ̂ (X) and £A,B.l = CC,DJ, then A +* D = 

= B +* C and TC(A) +* TQ(D) = T,(B) +* TC(C). This shows that 

£TC(A),TC(B)3 = CTC(C),TC(D)]. So, we can define a map T;X—* 

by: 

T(U,B1) = CTC(A),TC(B)]. 

Proposition 4. The following conclusions are valid: 

1) TeL(X,Y); 

2) If PeL(Y,X), where Z is a I.e.space, then (P-T) = 

= P P T ; 

3) If X, Y are normed linear spaces, then 11$ ii = il T H . 
A 

Proof. 1) I t i s easy to ver i fy t h a t T i s a l i n e a r map 

of X i n t o Y and i f V i s an O-neighborhood i n Y, N i s an 0 -

neighborhood i n X such t h a t T(N)£V, then T(UN) fitly. 13his im­

p l i e s $*L(X,Y) . 
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2) The proper ty P o l = P o T follows immediately from 

the equa l i t y ( P o T ) = P o T . 

3) From d(T (A) ,TC(B)) £ HTIJ d(A,B) we have II T IM iTll . 

On the o ther hand 

RTH£ sup II TUixl9iO\l)\\ = sup |T(x)l | = II T l| . 
• flxlU-f llylljsf'f 

Hence tt T l = 11 T (I . Q.E.D. 

It is obvious that Iv = 10 (where I~ denotes the identi­

ty mapping of X). It follows that if T is an isomorphism of X 
A A A 

onto Y, then T is also an isomorphism of X onto Y. 

Remark 1. Let F:X—=• Y be an affine continuous map, 

F(0) = a, then the map T defined by T(x) = F(x) - a, belongs 

to L(X,Y). If we define F:X—>Y by F(CA,B3) = CF(A),F(B)J, 
A A 

then F = T. 

Remark 2. If TcL(X,Y) and T is 1-1 and onto (i.e. an 

algebraic isomorphism), then T need not be either 1 - 1 or 

onto. 

Example 3« Let X = C(£0,13), and Y be a subspace of X 

such that Y = «fx:£0,l3—* R I x is continuously differentiab-

le on L0,13 and x(0) = 0}. We define: 

(Tx)(t) = /* x(x )dr for all x*Xf- t€ 10,13. Jo 

Then, of course , T c L(X,Y); II T i * 1 and T i s a map 1 - 1 and 

onto . 

1) Let Sx « ix\xeX9 l| x H * l j , 

D^ * 4 x | x £ X f - I l x U l and x(0) = O j . 

Then S-., Du e ^ Q (X) and £ S l fBjJ 4s 0 . I t i s easy to ve r i fy t h a t 

for each % > 0 and each x c S^f t he re e x i s t s x c D ^ , such 

t h a t x ( t ) = x ( t ) for a l l | . 4 t * l . Then ttTx - Tx I ^ e . This 

shows T ^ D ^ S T C S ^ . I t follows T U S ^ l ^ H ) = [TC(S1),TC(DLM» 
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35 0 , which shows t h a t T i s not 1 - 1 . 

2) Let Q = { y e Y | By H 4 l j ; then [Q,iO$ J e Y. Suppose 

t h a t T i s onto ; then the re e x i s t A,B e *t0(X) such t ha t 

T([A fBJ) = CTc(A),Tc(B)J = LQf-lOH or T j A ) = Tc(B) f * Q ^ 

3 T C ( B ) + Q. I t follows t h a t 

QcT c (A) - TC(B)£T(A) - T(B). 

Let M be a p o s i t i v e number such t h a t for a l l xeAuB> 

|i x l 4 M. Then l y ( t ) - y ( t ' ) \£ 2M it - t ' j for a l l y£T(A) -

- T(B) and for a l l t f t ' c C 0 , l J . The s e t -[ye Y( l y ( t ) - y ( t ' ) | - £ 

£ 2 M l t - t ' l for a l l t , t ' f e CO,13} i s closed in Y. Hence fo r 

• 1 1 y e Q$T(A) - T(B) and fo r a l l t , t ' e £0 ,1 ] we have 

l y ( t ) - y ( t ' ) l * 2 M l t - t ' l , 

a c o n t r a d i c t i o n with the f a c t t h a t fo r a l l k > 2 t h e r e i s y e Q 

and t l f t 2 6 C 0 , 1 3 such t h a t iy(t ] L) - y ( t 2 ) l r k i t - - t 2 L For 

i n s t a n c e , put y ( t ) = f x ( t ) d t , where: 

r K fo r O ^ t ^ l ^ , 

x ( t ) = / | K - K 2 t fo r 5 R ^ t ^ ^ , 

\ 0 fo r t £ * ^ f 

then y€ Q and lyCjjj) - y(0)l » K ^g . Hence T is not onto. 

Let X, Y be locally convex spaces, TeL(X,y). We denote 

the adjoint operator of T by T'f the range of T' by R(T'), the 

strong topology in the dual space X' by (1(X',X). 

Proposition 5. Let X, Y be locally convex spaces, T c 

ft L(XfY). If R(T')'
KX >X) -= X' , then T i s l - 3 , 

Proof. Let £AfBJ4-0f then Ai^B or B^A. Assume for in­

stance A^B* There is x QeA and x04 B. By the Huhn-Banach the­

orem is x'c X' such that < x'fxQ)
 s fi > <*> = sup -i<x*fx>| x c 
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e B\. Set 6 = j ( p - o 6 ) > O f V a (AuB)°={x '€ X ' | | < x ' , x > | £ l 

fo r a l l X E A U B J . Then V i s an O-neighborhood i n the t opo lo ­

gy I5(X',X) in X ' . By our assumption we have (x '+ eV)f. H(T')4-

+-0 . Let y ' c Y' be such t h a t T ' ( y ' ) e x ' + eV, then K x ' -

- T ' ( y ' ) , x > I ^ e for a l l xe A u B . We have 

<y ' ,Tx o > = < T ' y ' , x o > = < x ' , x o > + < T ' y ' - x ' , x Q > > fi - 6 -

- 2fl+*0 

- ~Y~ • 
For a l l x e B we have 

< y ' , T x > = < T ' , y ' , x > = < x ' , x > + < T ' y ' - x ' , x > ^ o G + £ = -

- fl + 2oC 

- —3 . 

Therefore <y' ,TxQ> > sup-[ < y ' , T x > I x e B } . Hence TxQ^ 

f f(B) = TC(B); which shows t h a t T(£A,BJ) = I TQU) ,TC(B)3# 0 . 

This completes our proof. 

Theorem 3 . Let X be a l o c a l l y convex space , with the t o ­

pology X, induced by the family of seminomas CP= ( p ) , M'a sub-

space of X, p« the r e s t r i c t i o n of p on M. Let i:M—» X be an 

i n c l u s i o n map of M i n t o X. Then: 
,S A A 

1) i:M—> X i s i somet r ic i n the fol lowing sense : 

p ( i ( U , B 3 ) ) = ^j( tA,B3) fo r a l l [A,B3cM and p e <P . 

2) I f X i s a normed l i n e a r space , then the isometry i 
A A —. 

i s an isomorphism of M onto X i f and on3y i f M = X. 

Proof. 1) Let tA fB 3 c ft, then 

p ( f ( U , B 3 ) « p t t I , B 3 ) * dp(A,g) = dp (A,B) 

• %(£A,BJ) . 

2)A) Let X be a normed l inear space and M = X. We denote 

by &, * ix\x cX; II x U 4 l\ e ^0(X> the unit c losed b a l l of X 

and the unit open ba l l o f X b y s£ = { x € X | l x l < l } . Let 
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U , B : U X , then tA,B3 = [A +* S1,B +* S^]. We se t - ^ * U +* S-^o 

r\ M € <if0(M) and B^ » (B +* S ^ n M e * 0(M). We have ^ * 

= (A +* S 1 ) n M 5 ( A + s J ) n M 2 ( A + S ° ) n l = A + S° an<a hence 

2^2 A + S° = A~+~S^ = A +* S x . On the other hand, A-^ A +* S-̂ . 

Therefore A-̂  = A +* S-,. Similarly one can obtain B-̂  * B +* S-j. 

Then 

i( t A1,B11) aLA^BjJ) = [A +* S-^B +* S^ 

= CA,B]. 

This shows that i is an isomorphism of M onto X. 

b) Let i be an isomorphism of M onto X, we shall prove that 

X£ M. Suppose xeX, then [-txl,{OD e X. By our assumption, the­

re is an CA,Bl€.M such that i([A,B3) =[!,§]= L{x!t{oi]. This 

implies A = B + {x\9 whence x eix\ £A - BSA - BSM. The proof 

is complete. 

Remark 3. If X is a normable linear space, then X has the 

following property; 

(#.) If X is the completion of X and i:X—y X is the in-

elusion of X into X, then i:X—=• X is an isomorphism of X on­

to X. 

If X is not a normable linear space, then X need not have 

the property (#). Suppose, for instance, that X is a locally 

convex space, which is quasicomplete (i.e. every bounded clo­

sed subset A of X is complete (see [83)) but not complete. We 

claim that X has not the property (*). Let X be the completion 

of X; i:X—>-X be the inclusion of X into X. Suppose that i-

is an isomorphism of X onto X. As9ume that xeX but x^X. The­

re i3 an CA,B3€.X 9uch that i(CA,BJ) =11,13 =tix\9<Ottf whe-

re A denote9 the cloeure of A m X. Then x + B = A. By the as-
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sumption A, B are complete, it follows that A, B are closed 

in X. Then we have x + B = A and x €. A - B£X. This contradicts 

x<£X. 

Theorem 4. Let X be a strict inductile limit cf a se­

quence of locally convex spaces X (i.e. X -= lia 4 ) . If X 

has the property (*) for all n, then X possesses the property 

Proof: Let X^ be the completion of X^, i n-X n—> X^, i : 

: X n — ^ ^h.i the inclusions. We set Y = lim̂  X . By theorem 

II 6.6 C8J the soace Y is complete and it is easy to see that 

X is dense in Y. Then Y = X. 
A & r*> 

Let CA,B3&Y = X, the re e x i s t s n such tha t A&X and 
B&x^ (Theorem I I 6.5 C83). That i s C A J B J C ^ . According to 

o A o A 

our assumption the re e x i s t s CA, ,B,3 £. X such t ha t i ( C A - J B , ] ) = 

= CA,BJ. Of course CA-,0 X ^ n XlcX and I C C I J O X,.§1n X]) =-

= i n (CA-,,B,1) = CA,BJ. This completes our proof. 

Corol lary 2 . Let X be a l o c a l l y convex space , M a closed 

subspace of X such t ha t M has the complement in X. Then: 

1) i(M) i s a closed subspace of X, where i:M—> X i s the 

i n c l u s i o n . 
.A 

2) If dim X>2, then X is not complete. 

Proof. 1) From the assumption that M has the complement 

in X we conclude that there exists P£L(X,M) such that Poi = IM, 

where I M denotes the identity of M. Then Poi =- Ig. Let CAfBl £ 

c i(M)f then there exists a net ft^-jf^^-uj ot li such that 

*£(CAj,B.})^ -eJ converges to LA,B). Then -CCA^Bjli jeJ -=<P,i 

(CAj.BjDl^j converges to P(CA,B3) * -.PC(A),PC(B)} € &, as P is 

a continuous map. Finally -tiCCAjjB.lH jej converges to 
ï(tPe(A),Pc(B)Д)eî(M^ 
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i n view of the s i m i l a r argument. Since X i s the Hausdorff 

space , [A,B] - i(CPc(A) ,PC (B)1) , fo r CA,BJ i s a l s o a l i m i t 

of Ai(CAj,B. l )J . j . This nroves t h a t [A,B3 £i(M) and i(M) i s 
A 

the closed subspace of X. 
A 

2) Let dim X>2 and suppose that X is complete. Take a 

two dimensional subspace Xp of X, then Xp has a complement in 

X (see Corollary II.4.2E81). Then ltXg) 1S tne closed subspa-
A A A ri 

ce of the complete space X, Hence i(Xg) is complete. Since x 
A. 

is isometric, we conclude that Xp is complete. We know that 
A A 

X2 is isomorphic with Rp. Thus Xp is isomorphic with Rp. This 
A 

means that R2 is complete, a contradiction with the Example 2. 

Corollary 3# Let X be a metrizable locally convex space 

and let X have the property (•#) (in particular X is a normed 

space), then K(<€Q(X)) is a closed subset of X if and only if 

X is complete. 

Proof. 1) If X is an IP-space, then <ae(«£0(X;) is comp-
A 

lete (see 131) and hence ^ x (X)) is closed in X. 

2) Let »c(c£0(X)) be closed in X, X be the completion of 

X. Then we have the following commutative diagram 

<eAX) £—M£ u) 

-I - i -
t i ,? 

Since i i s an isomorphism of X onto X, i ( ae( itf0(X))) i s a c l o ­

sed subset of ^ ( ^ ( X ) ) . We know t h a t - ^ ( ^ ( X ) ) i s complete 

as X i s an F-sr>ace. I t fol lows i © ae( €€QW) i s complete and 

hence *€Q(X) i s complete, s ince i * $e i s i s o m e t r i c . Therefo­

r e , X i s complete, t o o . This compile tea the nroof. 
Corol la ry 4» Let X be a metri8-abl.e l o c a l l y convex space , 
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£A,BJ6 *e(<£ (X)) and suppose that one of two sets A, B is 

weakly compact. Then tA,BJ c *e( <£Q(X)). 

Proof. Let X be a completion of X, then 

i(U,BJ)€ l(«t(«0U)))cl(9e(«0(X))) C96<£0(X)>. 

There is C 6 ̂ (X) such that 

[C,iOH= i([A,B3) = EA,BJ, 

where A denotes the closure of A in X. Ihen A = B +* C = B + C . 

Assume now that 1) A is weakly compact (i.e. w(X,X')~com~ 

pact), then A is w(5T,3i/')-compact for w(-5T,X')|x = w(X,X'). Hen­

ce A is w(X,X')~closed in X and A is closed in X, since A is 

convex. Then we have: 

A = B + C 2 B + C o r C £ A - B £ X . 

This shows that [A,BJ = LC^OJJ € a e ( ^ 0 ( X ) ) . 

2) I f B i s weakly compact, then by the same way as in 1) 

we prove that B + C i s c losed in X and we obtain A = B + C, 

A = A A X = (B + C ) A X = B + CnX. Put C1 = C A X , then we have* 

A = B + C, i . e . LA,Bi = -.(^,{0111 € ^ ( ^ ( X ) ) , which concludes 

the proof. 
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