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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

21,4 (1980) 

A NOTE ON p-ADIC COMPLETION Ol- TORSION FREE ABELIAN 
GROUPS 

Ladislav PROCHAZKA 

Abstract: In this note some structural properties of 
p-adic completion of torsion free abelian groups are studied. 
Particularly, there is described a connection with the quasi-
splitting of mixed groups. 

Key words: p-adic completion of a group, quasi-isomorp
hism, quasi-9plitting of mixed groups. * 

Classification: 20K20, 20K21 

If G is an abelian group and p a prime then G denotes 

the p-adic completion of G. In this note we shall describe 

some properties of the group A of a torsion free group A. 

For example it is shown that if A is such a group then for 

each torsion group T a quasi-i3omorphism G ~ A <£ T impliee 

the splitting of the group G preci3ely if the group A/pA is 

finite. Thus the p-adic completion is a group-theoretical ope

ration giving a pos3ibility to construct splitting groups 

with non-splitting quasi-isomorphic images. 

All groups here are supposed to be abelian and p denotes 

always a prime. If G is a group the symbol G(p) i3 used to de

note the p-primary component of G. For other terminology and 

notation we refer to C2J. If 0-fcI is any set and G a group 

then G is the group of the vectors x * *tg.j^ ixl with g^* G 
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for each ielj by Qt]n ( G ( I ) resp.) we shall denote its sub

group of all elements x = igA such that for each positive in

teger n<=N the relation g^e nG holds for almost all iel (the 

equality g^ - 0 holds for almost all ie I resp.). Evidently 

we have 

G ( IW XW. 
For a cardinal n the groups G , Gv ' and G are constructed 

in a similar way. Finally recall that the p-adic completion 3 

of a group G is defined by the equation G * lin^ G/pnG (see 

[23). The p-divisibility of G implies GL = 0. 

If J denotes the additive group of the ring of p-adic 

integers 0* then we are ready to prove the following lemma. 

Fo 
til 

Lemma 1. For a free group F of the form F = Z^1' (I-f= 0) 

we have F^ ~ J^ „ 
P P 

Proof. Any element ye 3? may be expressed as a sequence 

y s Cyx + pF, y 2 + p
2F,...,yk + p

kF,...) 

where y,e F and y, - y,e p F whenever k^l. Each y k£ F a Z*
1 ' 

is a vector yk » { a.[k'1 icI with a| 'e Z. Without loss of gene

rality we may suppose w 

(1) Oi.a.[k)<:pk (i£l;keN); 

but then the numbers a> ' are determined uniquely by y e F . 

The relations y k + 1 - y ke p F imply 

(2) a P 0 m a|k+1) (mod pk) (ieljkeN). 

Thus if we set <*„ s (afk')kssl then oc.- are p-adic integers. 

Therefore, each element y £ $ defines an element f>(y) * ioC^e 

& J* and we get a mapping p:$ p—> <*p* Evidently, 50 is an in-
CI1 jective group homomorphisa. We shall pro^e that Im<p = J 

796 



To see this, take y€.Fp and p(y) - ^oC^±£l with cc± « 
(k) C-* 

= (a: ) k = 1 . For every k£N let us denote 

Kk) M i ; i € l , a![k)*OS. 

As y k « -Ca^'i i C i G F = Z * (d irect sum), each s e t K k ) i s n e 

c e s s a r i l y f i n i t e . I f me N then for i e 1 ^ 2 , Kk) we have a^k* = 

= 0 ( k = l , 2 , . . . , m ) and hence ^ i ^ P ^ p * 'Thus we conclude j&(y)e 

6 J or Im p £ J . To prove the converse, consider 

U 3 i a e J^ I Jwith cc t = ( a j k ) ) k = s l s a t i s fy ing ( 1 ) , ( 2 ) and de

f ine the elements 

*k = " { a i k ) | i € l £ z I ( k = l , 2 , . . . ) . 

From the cons t ruc t ion of J i t fol lows that for every k c N 

the s e t { i j i e I , cC^ p J ) i s f i n i t e . But i f oC^e pkJ then 

aN> = 0 ( j = l , 2 , . . . , k ) and hence y k c Z^1* = F. Now i t i s obvi

ous that 

y = (y-_ + P*\ y2
 + P2F,...,yk + p

kF,...)e Fp 

and p(y) = toC A ^£ ^. Therefore, p represents an isomorphism 

F ^ J and the proof is finished. 

£ j"^. 

Corollary 1. If n is a cardinal and F = ZVI1/ then F 

Lemma 2. Let A be a torsion free group and let n denote 

ank of A/pA. Then &p^Jp
n:*. 

Proof. If B is any p-basic subgroup of A then the sequen

ce—> B > A ->A/B — > 0 

i s p-pure exact with p - d i v i s i b l e group A/B. By E2f Theorem 

39.8 and Exercise 39.613 w<» get the exact sequence 
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0 > Bp ^ Ap > (A/B)p > 0. 

But the p-divisibility of A/B implies (A/B) =0 and we obtain 

B 3.£ As B-*Z(n), the relations A 3i Bp£.J^
1 follow ty Co

rollary 1. 

Lemma 3. Let B be a p-pure subgroup of a torsion free 

group A such that the group A/B is p-divisible• Then for any 

group G the relation Ext(B,G), ^4- 0 implies Ext(A,G), ,4-0. 

Proof. Consider any group G and denote by s , Ĉc , i> the 

natural homomorphisms 

g :G > G/pG, (x :A > A/pA, » :B > B/pB. 

Firstly we shall prove that each homomorphism ft :B —> G/pG may 

be extended to a homomorphism «x :A — > G/pG in such a way that 

the diagram 

B c 5. A 

(3) * 

G/pG 

commutes. Indeed, let us define a homomorohism <p :B—> A/pA by 

setting p(b) =- b + pA for every beB. Evidently, Ker ro = B o 

A pA = pB (in view of the p-purity of B in A) and Im p =- (B + 

+ pA)/pA = A/pA (as the p-divisibility of A/B implies the equ

ality B + p/̂  « A). Thus £D induces a natural isomorphism pi 

:B/pB—-»A/pA defined by p(b + pB) = b + pA for every beB, 

For given ft :B —> G/pG it is pB£Ker/3 and hence, by the ho

momorphism theorem, there is a homomorphism ft :B/pB —^G/pG 

satisfying ft a P == ft • Consequently, we get a ccmmutative 

diagram of the form 
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E c 

Q/
p G

 . g /
p B
 ş 5>A/pA 

and it suffices to put 00= A o jo""1 o ^a, . 

Let oC, /3 be some homomorphisms of t h e commutative dia

gram (3). If there is y e Hom(A,G) satisfying oc = £ o y then 

p may be expressed in the form fl- £ o cp where <p is the 

restriction of y to the subgroup B. Now we are ready to prove 

our implication. By [1, Satz 3.23 the relation Ext(B,G)/ ,# 0 

implies the existence of a fie Hom(B,G/pG) which cannot be ex

pressed in the form f*= & o cp with y>c Hom(B,G), But then the 

corresponding oc e Hom(A,G/pG) of the diagram (3) (its existen

ce was just proved) has no expression of the form oc = £ ° Y 

with y e Hom(A,G). In view of the same [1, Satz 3.2J we conclu

de Ext/A,G)# v^O an^ this completes the proof of Lemma. 

~̂*o 
Recall now that the group Z is usually denoted by P. If 

P(p) represents its subgroup of all x = 4 a^*?„* c P such that 

for every n«£N the relation p
n
 a. holds for almost all i£ N, 

then we have the inclusions 

t*
0
> •* O U 1*1 

(4) Z ° c . . p c j p ° f 2 : ° ^ P ( p ) c j
p
° . 

In what follows, a result of R. Baer [11 will appear very 

useful: 

Lemma 4. If T is a torsion p-primary group then the fol

lowing assertions are equivalent: 1) T is a direct sum of a 

divisible and a bounded groups; 2) Ext(P(p),T), * = 0 ; J) 

Ext(P,T)
(p)
 = 0. 

Proof. See f1, Satz 4.1J. 
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The next proposition is an analogous one. 

Lemma 5. If T is a torsion p-primary group then the 

following assertions are equivalent : 1) T is a direct sum 

ô  a divisible and a bounded groups; 2) Ext (J » ^ ( D ) = °' 

3) Kxt(Jp°fT)(p) = 0. 

Proof. If T satisfies 1) then T is a cotorsion group 

ard hence 2) and 3) hold; therefore, we have 1) -=^2) and 

1) = > 3 ) # if T does not satisfy 1) then we shall prove that 

Ext(J ° ,T), s+0 and also Ext(J °,T), ̂ 0 . To this end we 

shall observe some properties of the groups P and P(p). 

a) The subgroup P(p) (P resp.) is p-pure in the group 

Jp°. In fact, if ^ ^ c J 0 and pk- i ^ i ^ = l € P ( p ) U P 

k resp.) then for each ieN we have p • oC^ c Z and hence oc.e 

k Z e Q o j = Q * but then the relation p * oC^e Z implies oC^e 

(i£ N). Thus from p ^oC^^jC P(p) (e P resp.) we conclude 

<oC.l. -ep(p) (cPresp.). 
*o 

b) The group J /P is p-divisible. To see this take any 

(canonically expressed) p~adic integer 00= (a /V-T (compare 

with (1) and (2)}; then oc - a*k)€ pkJ for every keN. But this 
SK Si 

means that J ° = P + p J ° for every k£N. 
c) The group J ° /P(p) is p-divisible. Indeed, from 

rev -1 ft^ -j (vft; ) 

the definition of the group J °* it follows that J ° = J ° + 
k ->y P P P 

+ p J_ for every keN. But by the same argument as in b) 
p (#0) k (* ) (** ) 

we deduce that Z + p J = J and hence, in view of 
(4)we get . 

Ĉ nJ ^ A > k C>o1 v r n̂i j ; ° = Z ° + pkJp - P(p) + pkJp ° . 

This guarantees the p-divisibility of J ° /P(p). 

Suppose now that the group T does not satisfy 1)# Then 

- 800 -



by Baer theorem reformulated in Lemma 4 we get Ext(P(p),T)( ,+ 

4-0 and Ext(P,T)( x=#0. In view of a) and c) and Lemma 3 we 

deduce Ext(J ,T)(D)+
:0# Analogously, the assertions a),b) 

amd the same Lemma 3 imply Ext(J ,T)( * 4=0. This concludes 

the proof of our lemma. 

As an immediate consequence we get 

Lemma 6. Let n be any infinite cardinal and T a torsion 

p-primary group. Then the following assertions are equivalent: 

1) T is a direct sum of a divisible and a bounded groups; 2) 

Ext(J p
C nV) ( p ) « 0; 3) Ext(Jn,T)(p) = 0. 

Proof. The implications 1) z=p 2) and l)-=r>3) follow as 

in the proof of Lemma 5, If T does not satisfy 1) then it suf-
C4*03 **0 

fices to use Lemma 5 together with the fact that J (J 

reap.) is a direct summand of J n (J resp.). 

The proof of the following theorem is based on some ear

lier author's results E4, 5J. Before we formulate it we recall 

that two groups G, H are said to be quasi-isomorphic (p-quasi-

isomorphic resp.) if there are subgroups U£G, V-^F and a po

sitive integer n such that nG£U, nH£V (pnG£U, p^c V resp.) 

and U^V (see 151). The relation of the quasi-isomorphism (p-

quasi-isomorphism resp.) will be written by G—H (G -̂  H resp.). 

Theorem* If A is a torsion free group and p a prime then 

the following assertions are equivalent: 1) The group A/pA 

is of finite rank; 2) A as Q*-module is completely decompo

sable:, 3) the group A belongs to a Baer class P^ ; 4) 

J €> 2 A as Q!_-module is completely decomposable; 5) for e-

very torsion group T it is Ext(AofT)( \ = 0; 6) for every 

torsion group T and every group G the relation G &'& 8) T im-
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plies the splitting of 6; 7) for every toraion group T and 

every group G the relation G—A 0 © T implies the splitting 

of G. 

Proof. The implication 1)^=^2) follows by Lemma 2. If 

the Qp-module Á is completely decomposahle then it is a di-

rect sum of the groups isomorphic either to J or to K whe-

re K is the additive group of the field of p-adic numbers. 

Then the group A belongs to a Baer class Q^ and hence 2)«^ 

=^ 3), The implication 3) =£> 4) is proved in C4, Théorěme 4*J 
and 4) «£> 5) follows by C5, Proposition 53. From C5, Proposi-
tion 3) we get the equivalence 5)4=*>6), the implication 

7)=5>6) is evident. Suppose now that 6) is fulfilled, také a 

torsion group T and consider any group O containing A €) T as 

a subgroup such that G/(A 0 T) is bounded. Without loss of 

generálity we may suppose that T is the maximal torsion sub

group of G. As qA = A for every prime q4=P, we deduce that 

G/í ž £> T) is p-primary, therefore, G i* & ® T, and in view 

of 6) the group G splits. In fact, this proves the implication 

6)=^ 7 ) , Finally, the implication 5)*aB»l) is a consequence 

of Lemma 6 and Lemma 7. Oie proof of Theorem is complete. 

To conclude this remark we mention that C3, Corollary4J 

ccncerns also the equivalence 1) <==3>4). But the proof methods 

here and in í3j are fully different. 
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