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A NOTE ON p-ADIC COMPLETION Or TORSION FREE ABELIAN
GROUPS
Ladislav PROCHAZKA

Abstract: In this note some structural properties of
p-adic completion of torsion free abelian groups are studied.

Particularly, there is described a connection with the quasi-
splitting of mixed groups.

Key words: p-adic completion of a group, quasi-isomorp-
hism, quasi-splitting of mixed groups.

Classification: 20K20, 20K21

If G is an abelian group and p a prime then Sp denotes
the p-adic completion of G. In this note we shall describe
some properties of the group ﬁp of a torsion free group A.

For example it is shown that if A is such a group then for
each torsion group T a quasi-isomorphism G & ﬁp @ T impiies
the splittfhg of the group G precisely if the group A/pA is
finite. Thus the p-adic completion is a group-~theoretical ope-
ration giving a possibility to construct splitting groups
with non-splitting quasi-isomorphic images.

All groups here are supposed to be abelian and p denotes
always a prime. If G is a group the symbol G(p) is used to de-
note the p-primary component of G. For other terminology and
notation we refer to [2], If #+I is any set and G a group

then ol is the group of the vectors x = {Si}iEI with g;& G

- 79 -



for each ie1I; by o (G(I) resp.) we shall denote its sub-
group of all elements x = {g;} such that for each positive in-
teger nc N the relation g;€ nG holds for almost all i€l (the
equality g; = O holds for almost all i€ I resp.). Evidently
we have

G(I)g G[I] < GI.

fn)

For a cardinal n the groups Gn, G(n) and G are constructed

in a similar way. Finally recall that the p-adic completion ﬁp
. . . = 14 a/oPG

of a group G is defined by the equation ap 1‘13_1111,l /p (see

[2]). The p-divisibility of G implies 8p = 0.

If Jp denotes the additive group of the ring of p-adic

integers Q; then we are ready to prove the following lemma,

lemma 1. For a free group F of the form F = Z(I) (I+4)

F & .
we have P Jp
Proof. Any element ye ? may be expressed as a sequence

P
2 k
y =y +oF, ¥+ PFecu,y + PF,.00)

where y, e F and y, - yi€ ka whenever k<1, Each y € F = z(I)

is a vector y, = {aj(_k)§ jeI Wwith aék)e Z. Without loss of gene-~
rality we may suppose 4

(1) O_L.ai(.k)< pk (ieI;keN);

but then the numbers ai(_k) are determined uniquely by ye ﬁp‘

The relations e+l = Vi € ka imply

(2) ' o) = a1 (moa )  (eljxem.

(k)
1

Therefore, each element y< i:‘p defines an element @(y) = {oje

Thus if we set cCi = (a )k=1 then x; are p-adic integers,

a . .
3 J:; and we get a mapping @ :Fp-——> Jf). Evidently, @ 18 an in-

s !

jective group homomorphisa. We shall prove that Im@ p
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. a s
To see tgls, take yer and P(y) = {“i;ir:l with «; =
= (aj(,k))k=1‘ For every k€N let us denote

1K) ={iie1, of¥% o1,

eEF

i

As yy = {aék)f

i€ ASY) (direct sum), each set I(k) is ne-

m
cessarily finite. If me N then for ieI\\J; I(k) we have a{K) =

= 0 (k=1,2,...,m) and hence %€ pme. Thus we conclude p(y)e

e or mpegtV

11 . - k) o . .
{ .17r se1€ Jp with ¢, = (aé ))k=1 satistying (1),(2) and de-

fine the elements

vy = {alh, el (k=1,2,...).

. To prove the converse, consider

From the construction of J[I:l it follows that for every kxeN

the set {i;ie I, o«¢;¢ kap} is finite. But if o € kap then
aé‘]) =0 (j=1,2,..4,k) and hence ¥ € Z(I) = F, Now it is obvi-

ous that

u

A
y (y1+pF1 32+P2F,n--,yk+ka,...)6F

P
and @(y) = {ac i}ie 1+ Therefore, ® represents an isomorphism
A
Fp'—_" Jgnand the proof is finished,

: . (n) A ~
Corollary 1. If n is a cardinal amd F = 2 then Fp =
~ +[n)
= J .
P

-

Lemma 2. Let A be a torsion free group and let n denote

the rank of A/pA. Then ﬁp%'J;n].
Proof, If B is any p-basic subgroup of A then the sequen-
ce

0O—>» B—>A—>A/B—>0

is p-pure exact with p~divisible group A/B, By [2, Theorem

39.8 and Exercise 39.6] we get the exact sequence
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A A AN,
0—>B > A ,-(A/B)p > 0,

AS .
But the p-divisibility of A/B implies (A/B)_ =0 and we obtain

N ~9 ~ (n) . NS
Bp._Ap. As B=Z'"/, the relations Ap b

rollary 1.

AB)p
) %Jl[)“] follow by Co-

Lemma 3. Let B be a p-pure subgroup of a torsion free
group A such that the group A/B is p-divisible. Then for any
group G the relation Ext(B,G)(p)4=0 implies Ext(A,G)(p)# 0.

Proof, Consider any group G and denote by €, « , » the

natural homomorphisms
€ :G—>G/pG, w:A—> A/pA, v:B—>B/pB.

Firstly we shall prove that each homomorphism (3:B —> G/pG may
be extended to a homomorphism < :A —s G/pG in such a way that

the diagram
Berous A

(3) P “
G/pG

comnutes. Indeed, let us define a homomorphism @:B — A/pA by
setting @(b) = b.+ pA for every beB. Evidently, Ker o = Bn
NpA = pB (in view of the p-purity of B in A) and Imp = (B +
+ pA)/pA = A/pA (as the p-divisibility of A/B implies the equ-
Blit}; B + pA = A). Thus (© induces a natural isomorphism {:
:B/pB —> A/pA defined by (b + pB) = b + pA for every beB.
For given (3:B —»> G/pG it is pB&Ker/2 and hence, by the ho-
momorphism theorem, there is a homomorphism 3 :B/pB —>G/pG
satisfying /?o Y = [3 . Consequently, we get a ccmmutative

diagram of the form
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Be A

» I

B/pB —L  sn/ pPA

and it suffices to put & = (So 5?5'1 o .

G/pG

let «, (3 be some homomorphisms of the commutative dia-
gram (3). If there is < Hom(A,G) satisfying «c= € o % then
(3 may be expressed in the form (3: £ o ¢ where ¢ is the
restriction of y to the subgroup B. Now we are ready to prove
our implication., By [1, Satz 3.2] the relation Ext(B,G)<p)$ 0
implies the existence of a 3¢ Hom(B,G/pG) which cannot be ex-
pressed in the form (3= € o ¢ with ¢ Hom(B,G). But then the
corresponding o ¢ Hom(A,G/pG) of the diagram (3) (its existen-
ce was just proved) has no expressiom of the form oc= € o ¥
with ye Hom(A,G). In view of the same [1, Satz 3.2)] we conclu-
de Ext/A G)(p)¢-0 and this completes the proof of Lemma.

Recall now that the group 2 o is usually denoted by P, If
P(p) represents its subgroup of all x ={a; g ;=1 ¢ P such that
for every neN the relation pn a; holds for almost all i¢ N,

then we have the inclusions

(%) * () I+ 1
(4) Z °c.-szp°,z °5p(p)ng°.

In what follows, a result of R. Baer [1] will appear very

useful:

Lemma 4. If T is a corsion p-primary group then ths tol-
iowing assertions are equivalent: 1) T is a direct sum of a
divisible and a bounded groups; 2) Ext(P(p),T)(p) = 0; 3)
Ext(P,T)(p) = 0,

Proof. See [1, Satz 4.1).
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The next proposition is an analogous one.

r
Lemma 5. If T is a torsion p-primary group then the

following assertions are equivalent : 1) T is a direct sum
o® a f.:iiviiible and a bounded groups; 2) Ext(Jp o ,T)(p) =0
3) Ext(Jpo,T)(p) =0

Proof. If T satisfies 1) then T is a cotorsion group
and hence 2) and 3) hold; therefore, we have 1) =>2) and
1) ==> 3)., If T does not satisfy 1) then we shall prove that
Ex t(JL ol
shall observe some properties of the groups P and P(p).

T)(p)#:o and also Ext(J p ,T)(p)q:o. To this end we

a) The subgroup P(p) (P resp.) is p~pure in the group
°:0 N . ¢ 2 J'{o k o
Jp . In fact, if -Locl§l 1€ Jp and p --Locii ;=1 €P(p) (P
resp.) then for each ie N we have pk - 3 €2 and hence o, €

& Qf\Jp =Q ; but then the relation pk-eCiE Z implies odie: A

(ie N). ’I‘hus from p et sd
{0‘13 i=1
b) The group J °/P is p~divisible. To see this take any

i 1_15 P(p) (€ P resp.) we conclude

€ P(p) (eP resp )e

(canonically expressed) p-adic integer o« = (a(k))k_.1 (compare

with (1) and (2)); then & - a(k)e ka for every ke N. But this

s: % P
o _ ko
means that Jp P+ p Jp for every keN,
¢) The group Jp °1/P(p) is p-divisible. Indeed, from
,,I o) m°1 ‘%)
the definition of the group it follows that Jp Jp
¥,
ka ol for ev?ry)k eN. ?ut)by the game argument as in b)
¥ #
we deduce that 2 ° + kap = Jp °" and hence, in view of
(4)we get Chor
541 (¢) ol [%.1
J§°=Z°+kap =p(p)+kapo.

"
This guarantees the p-divisibility of J}E °]/P(p).
Suppose now that the group T does not satisfy 1). Then
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by Baer theorem reformulated in Lemma 4 we get Ext(P(p),T)(p)#

+0 and Ext.(l_’,'l‘)(p)#= O. In view of a) and c) and Lemma 3 we
deduce Ext(J;soj ,T)(p)#o. Analogously, the assertions a),b)
amd the same Lemma 3 imply Ext(J;to,T)(p) #+0., This concludes
the proof of our lemma.

As an immediate consequence we get

lemma 6., Let n be any infinite cardinal and T a torsion
p-primary group. Then the following assertions are equivalent:
1) T is a direct sum of a divisible and a bounded groups; 2)
Ext(J]';n],T)(p) = 0; 3) Ext(3h,m) () = O.

Proof. The implications 1) =>2) and 1) = 3) follow as
in the proof of Lemma 5. If T does not satisfy 1) then it suf-
fices to use Lemma 5 together with the fact that J;ﬁoj(J;‘o
resp.) is a direct summand of Jr[’n-J (J;;l resp.).

The proof of the following theorem is based on some ear-
lier author s results [4, 5]. Before we formulate it we recall
that two groups G, H are said to be quasi-isomorphic (p-quasi-
isomorphic resp.) if there are subgroups USG, V£H and a po-
sitive integer n such that nGSU, nHEV (pnGS—U, anQV resp.)
and UV (see [5]). The relation of the quasi-isomorphism (p-

quasi-isomorphism resp.) will be written by GH (G %’ H resp.).

Theorem, If A is a torsion free group and p a prime then
the following a ssertions are equivalent: 1) The group A/pA
is of finite rank; 2) ﬁp as Q;-module is completely decompo-
sable:, 3) the group Rp belongs to a Baer class Paa ; 4)
Jpv@ 7 ﬁp as Q;-module is comple tely decomposableé 5) for e-
very torsion group T it is E‘xt(ﬁp,'l')(p) = 0; 6) for every

torsion group T and every group G the relation G %’ 'A\p@ T im-
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plies the splitting of G; T7) for every torsion group T and
every group G the relation ol'vin ® T implies the splitting
of G,

Proof. The implication 1) =>>2) follows by Lemma 2., If
the Q;-module 3p is completely decomposaltle then it is a di-
rect sum of the groups isomorphic either to Jp or to Kp whe-
re Kp is the additive group of the field of p-adic numbers.

Then the group X, belongs to a Baer class . and hence 2)=>

= 3). The impl::.)cation 3) => 4) is proved in [4, Théoréme 4%]
and 4) = 5) follows by [5, Proposition 5]. From [5, Proposi-
tion 3) we get the equivalence 5)&=6), the implication
T)==>'6) is evident. Suppose now that 6) is fulfilled, take &
toraion group T and consider any group G containing ﬁpﬁ-} T as
a subgroup such that G/(RPG) T) is bounded. Without losa of
generality we may suppose that T is the maximal torsion sub-
sroup of G, As qﬁp = ﬁp for every prime q#p, we deduce that
Gfiﬁp@ T) is p-primary, therefore, G % Rpe T, and in view
of 6) the group G splits. In fact, this proves the implication
6)=> 7). Finally, the implication 5)==51) is a consequence
of Lemma 6 and Lemma 7. The proof of Theorem is complete,

To ronclude this remark we mention that [3, Corollary 4]
ccncerns also the equivalence 1) <=>4). But the proof methods
here and in [ 3] are fully different. '
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