Miroslav Katětov Correction to "Extensions of the Shannon entropy to semimetrized measure spaces"

Commentationes Mathematicae Universitatis Carolinae, Vol. 21 (1980), No. 4, 825--830

Persistent URL: http://dml.cz/dmlcz/106046

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1980

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

21,4 (1980)

CORRECTION to "Extensions of the Shannon entropy to semimetrized measure spaces" Miroslav KATĚTOV

Classification: 94A17

(1) The note mentioned in the title (Comment. Math. Univ. Carolinae 21(1980), 171-192; quoted as ES in the sequel) contains an error due to which (i) two minor assertions (in ES 1.16, 3.7) are incorrect, (ii) the definition of a subentropy (ES 2.1), although correct, is not adequate (to be precise, it is too broad). The error consists in choosing an inappropriate equivalence relation on {WM}. If the relation is replaced as in (5) below, all the statements and proofs remain valid with the exception of ES 1.16, 3.7, the correct version of which is stated in (10),(11).

(2) <u>Notation</u>. If $\langle Q, \varphi, \omega \rangle$ is a WM-space, then $\mathcal{M}(P)$ denotes the set of all measures ω on Q such that dom $\omega' = dom \omega$, $\omega \neq \omega$.

(3) <u>Definition</u>. Let $P = \langle Q, \rho, \mu \rangle$, $S = \langle T, \nu, \epsilon \rangle$ be WMspaces. Let $F \subset \mathcal{M}(P) \times \mathcal{M}(S)$ satisfy the following conditions (for convenience, we write $\mu' \sim \nu'$ instead of $\langle \mu', \nu' \rangle \in F$):

(a) $F(\mathcal{M}(P)) = \mathcal{M}(S), F^{-1}(\mathcal{M}(S)) = \mathcal{M}(P);$

(b) if $\mu_i \sim \nu_i$, $i = 1, \dots, n$, $\sum_{i=1}^{\infty} \mu_i \in \mathcal{M}(P)$, and $\sum_{i=1}^{\infty} \nu_i \in \mathcal{M}(S)$, then $\sum_{i=1}^{\infty} \mu_i \sim \sum_{i=1}^{\infty} \nu_i$; if $\mu_1 \sim \nu_1$, $a \ge 0$, $a_{\mu_1} \in \mathcal{M}(P), a_{\nu_1} \in \mathcal{M}(S), \text{ then } a_{\mu_1} \sim a_{\nu_1};$

(c) $\mu \sim \nu'$ iff $\nu' = \nu$; $\mu' \sim \nu$ iff $\mu' = \mu$;

(d) if $\mu_i \in \mathcal{M}(\mathbf{P})$, i = 0, ..., n, $\mu_o = \sum_{i=1}^{m} \mu_i$, $\mu_o \sim \nu_o$, then there exist $\nu_i \in \mathcal{M}(S)$ such that $\mu_i \sim \nu_i$, i = 1, ..., n, and $\sum_{i=1}^{m} \nu_i = \nu_o$; if $\nu_i \in \mathcal{M}(S)$, i = 0, ..., n, $\nu_o = \sum_{i=1}^{m} \nu_i$, $\mu_o \sim \nu_o$, there exist $\mu_i \in \mathcal{M}(\mathbf{P})$ such that $\mu_i \sim \nu_i$, i = 1, ..., n, and $\sum_{i=1}^{m} \mu_i = \mu_o$;

(e) if $\mu' \sim \nu'$, then $\mu' Q = \nu' T$;

(f) if $\nu_i \sim \nu_i$, then $\hat{r}(\nu_1, \nu_2) = \hat{r}(\nu_1, \nu_2)$, where $\hat{r}(\nu_1, \nu_2)(\hat{r}(\nu_1, \nu_2), \text{ resp.})$ stands for $\hat{r}(\langle Q, Q, \nu_1 \rangle, \langle Q, Q, \nu_2 \rangle)$, $(\hat{r}(\langle T, G, \nu_1 \rangle, T, G, \nu_2 \rangle)$, resp.), as defined in ES 1.11.

Then $\langle F, P, S \rangle$, also denoted by $F: P \longrightarrow S$, is called a conservative measure-correspondence (from P to S).

<u>Remark.</u> The definition can be simplified. E.g., (c) can be omitted, and (a) can be replaced by (a') $\langle \mu, \nu \rangle \in F$. However, we prefer a detailed formulation.

(4) <u>Proposition</u>. Let $F:P \rightarrow S$, $G:S \rightarrow U$ be conservative measure-correspondences. Let G * F consist of all $\langle \omega', \Lambda' \rangle \in \mathcal{E} \mathcal{M}(P) \times \mathcal{M}(U)$ such that, for some $\nu' \in \mathcal{M}(S)$ and some a > 0, we have $\langle a \ \omega', \nu' \rangle \in F$, $\langle \nu', a \Lambda' \rangle \in G$. Then $\langle G * F, P, U \rangle$ is a conservative measure-correspondence.

<u>Proof.</u> I. Put $P = \langle Q, \varphi, \omega \rangle$, $S = \langle T, \varepsilon, \nu \rangle$, $U = \langle V, \varphi, \lambda \rangle$. Put $\Phi = G \times F$. It is easy to see that $\Phi \subset \mathcal{M}(P) \times \mathcal{M}(U)$ satisfies (3a) and (3e). Clearly, $\langle \omega, \lambda \rangle \in \Phi$. Hence, if $\langle \omega, \lambda' \rangle \in \Phi$, then $\lambda' V = \mu Q = \lambda V$, which implies $\lambda' = \lambda$. Thus Φ satisfies (3c).

II. Let $\langle u_i, \lambda_i \rangle \in \Phi$, i = 1, ..., n; let $\sum_{i=1}^{\infty} \langle u_i \in \mathcal{M}(P), \sum_{i=1}^{\infty} \lambda_i \in \mathcal{M}(U)$. Then there exist $\nu_i \in \mathcal{M}(S)$ and $a_i > 0$ such that $\langle a_i, u_i, \nu_i \rangle \in F$, $\langle \nu_i, a_i \lambda_i \rangle \in G$, i = 1, ...

- 826 -

..., n. Choose a > 0 such that a < 1, $a < a_i / n$, i = 1, ..., n. Put $\nu'_i = (a/a_i) \cdot \nu'_i$. Then $\langle a \ \mu_i, \nu'_i \rangle \in F$, $\langle \nu'_i, a \ \lambda_i \rangle \in G$, i = 1, ..., n. Since a < 1, $\sum_{i=1}^{m} \nu'_i \leq \frac{1}{n} \sum_{i=1}^{m} \nu_i$, we get $\sum_{i=1}^{m} a \ \mu_i \in \mathcal{M}(P), \sum_{i=1}^{m} \nu'_i \in \mathcal{M}(S), \sum_{i=1}^{m} a \ \lambda_i \in \mathcal{M}(U)$. Hence, $\langle a \ \sum_{i=1}^{m} (\mu_i, \sum_{i=1}^{m} \nu'_i) \in F$, $\langle \sum_{i=1}^{m} \nu'_i, a \ \sum_{i=1}^{m} \lambda_i \rangle \in G$ and therefore $\langle \sum \mu_i, \sum \lambda_i \rangle \in \Phi$. Thus Φ satisfies the first part of condition (3b). It is easy to see that the second part is satisfied as well.

III. Let $\mu_{ij} \in \mathcal{M}(\mathbf{P})$, i = 0, ..., n, $\mu_{o} = \frac{m_{ij}}{i} + \mu_{ij}$, $\langle \mu_{o}, \Lambda_{o} \rangle \in \Phi$. Then, for some $\nu_{o} \in \mathcal{M}(\mathbf{S})$ and some $\mathbf{a} > 0$, we have $\langle \mathbf{a}, \mu_{o}, \nu_{o} \rangle \in \mathbf{F}$, $\langle \nu_{o}, \mathbf{a}, \Lambda_{o} \rangle \in \mathbf{G}$. Since (3d) holds for **F**, and a $\mu_{o} = \frac{m_{ij}}{i} + \mathbf{a}, \mu_{ij}$, there exist $\nu_{ij} \in \mathcal{M}(\mathbf{S})$ such that $\langle \mathbf{a}, \mu_{ij}, \nu_{ij} \rangle \in \mathbf{F}$, i = 1, ..., n, $\frac{m_{ij}}{i} + \nu_{ij} = \nu_{o}$. Since (3d) holds for **G**, there exist $\Lambda'_{ij} \in \mathcal{M}(\mathbf{U})$ such that $\langle \nu_{ij}, \Lambda'_{ij} \rangle \in \mathbf{G}$, i = 1, ..., n, $\frac{m_{ij}}{i} + \Lambda'_{ij} = \mathbf{a}\Lambda_{o}$. Now put $\Lambda_{ij} = (1/\mathbf{a}) \cdot \Lambda'_{ij}$. Then $\frac{m_{ij}}{i} + \Lambda_{ij} = (1/\mathbf{a}) \cdot \mathbf{a}\Lambda_{o} = \Lambda_{o}$, hence (due to $\Lambda_{o} \in \mathcal{M}(\mathbf{U})$) $\Lambda_{ij} \in \mathbf{G}$ and therefore, due to $\langle \mathbf{a}, \mu_{ij}, \nu_{ij} \rangle \in \mathbf{F}$, $\langle \mu_{ij}, \Lambda_{ij} \rangle \in \Phi$, i = 1, 2, ..., n. Thus Φ satisfies (3d).

IV. Let $\langle u_i, \Lambda_i \rangle \in \Phi$, i = 1, 2. Then there exist $\nu_i \in \mathcal{M}(S)$, $\mathbf{a}_i > 0$, i = 1, 2, such that $\langle \mathbf{a}_i, u_i, \nu_i \rangle \in F$, $\langle \nu_i, \mathbf{a}_i, \Lambda_i \rangle \in G$. Since (3f) holds for F and G, we have $\hat{r}(\mathbf{a}_1, u_1, \mathbf{a}_2, u_2) = \hat{r}(\nu_1, \nu_2) = \hat{r}(\mathbf{a}_1, \Lambda_1, \mathbf{a}_2, \Lambda_2)$. This implies $\hat{r}(u_1, u_2) = \hat{r}(\Lambda_1, \Lambda_2)$.

(5) <u>Notation</u>. If there exists a conservative measurecorrespondence $F:P \rightarrow S$, we put $P \sim S$.

(6) The relation \sim is an equivalence relation on $\{WM\}$. - This follows at once from (4) and from the fact that if F: :P \rightarrow S is a conservative measure-correspondence, then so is

٠,

- 827. -

 $\mathbf{r}^{-1}: \mathbf{s} \rightarrow \mathbf{c}$

(7) <u>Definition</u>. If $P = \langle Q, Q, (u \rangle)$, $S = \langle T, G, \gamma \rangle$ are **FWM-spaces and** $f:Q \longrightarrow T$ is a mapping such that (i) $\gamma t = \omega(f^{-1}t)$ for every $t \in T$, (ii) G(fq, fq') = g(q, q') for all $q, q' \in Q$, then $\langle f, P, S \rangle$, also denoted by $f:P \longrightarrow S$, is called a conservative mapping.

(8) <u>Proposition</u>. If there exists a conservative mapping $f: P \rightarrow S$, then $P \stackrel{*}{\sim} S$.

<u>Proof.</u> Let $S = \langle T, \sigma, \rightarrow \rangle$. For any $\mu' \in \mathcal{M}(P)$ let $F\mu'$ be the measure on T defined as follows: $(F\mu')Y = \mu'(f^{-1}(Y))$. Put $F = \{\langle \mu', F\mu' \rangle : \mu' \in \mathcal{M}(P)\}$. It is easy to prove that $\langle F, P, S \rangle$ is a conservative measure-correspondence.

(9) <u>Proposition.</u> If $P = \langle Q, g, \mu \rangle$, $S = \langle T, g, \nu \rangle$ are FWM-spaces and $P \sim S$, then, for some FWM-space U, there exist conservative mappings f:U \longrightarrow P, f:U \longrightarrow S.

Proof. Clearly, we may assume wP>0, wS>0. Since P&S, there exists a conservative measure-correspondence F:P \rightarrow S. For convenience, we shall write $\mu' \sim \nu'$ instead of $\langle \mu', \nu' \rangle \in$ \in F. For any $q \in Q$, let μ_Q denote the measure on Q defined as follows: $\mu_q(q) = \mu(q), \ \mu_q(q') = 0$ if $q' \in Q, \ q' \neq q$. Since $\mu = q \sum_{e \in Q} \mu_Q, \ \mu \sim \nu$, there exist, by (3d), measures $\nu^{(Q)} \in \mathcal{M}(S)$ such that $\mu_Q \sim \nu^{(Q)}, \ q \in Q, \ \nu^{(Q)} = \nu$.

For any teT, let ν_t denote the measure on T defined as follows: $\nu_t(t) = \nu(t)$, $\nu_t(t') = 0$ if t's T, t' \neq t. Clearly, for every q eQ, there are $a_{qt} \ge 0$ such that

(I) $y^{(2)} = t \sum_{e \in T} a_{2t} y_{t}$

Since $(u_{q} \sim w^{(q)})$, there exist, by (3d), $u_{qt}^{*} \in \mathcal{M}(P)$ such that $u_{qt}^{*} \sim a_{qt} v_{t}$, $\sum_{t \in T} (u_{qt}^{*} = u_{q}; clearly, there$

- 828 -

exist non-negative numbers $b_{\chi t}$ such that $\mu_{\chi t}^* = b_{\chi t} \mu_{\chi}^*$, hence

(II) $b_{gt} \mu_{q} \sim a_{gt} \nu_{t}$ for all qeQ, teT, (III) $\sum_{t \in T} b_{gt} \mu_{q} = \mu_{q}$ for all qeQ. By (II) and (3e) we get

(IV) $b_{qt} (\mu(q) = s_{ot} y(t)$ for all $q \in Q$, $t \in T$.

For any $q \in Q$, $t \in T$, we put $\lambda \langle q, t \rangle = b_{Q,t} \quad (\alpha(q))$. The space $U = \langle V, g^*, \Lambda \rangle$ is defined as follows: $V = \{\langle q, t \rangle \in Q \times X^* : \Lambda \langle q, t \rangle > 0\}, \quad g^*(\langle q_1, t_1 \rangle, \langle q_2, t_2 \rangle) = g(q_1, q_2), \quad \Lambda(Y) = \sum (\Lambda \langle q, t \rangle : \langle q, t \rangle \in Y)$. For any $v = \langle q, t \rangle \in V$, we put f(v) = q, g(v) = t.

By (III), for any $q \in Q$, $w(q) = \sum_{e \in T} b_{q,t} w(q) = \sum (\mathcal{A} \langle q, t \rangle: \langle q, t \rangle \in V) = \mathcal{A}(g^{-1}q)$. If $v = \langle q_{i}, t_{i} \rangle \in V$, then $\mathcal{G}^{*}(v_{A}, v_{A}) = \mathcal{G}(q_{A}, q_{A}) = \mathcal{G}(fv_{A}, fv_{A})$. Thus f is a conservative mapping.

Since $\nu = \sum_{q \in Q} \nu^{(q)}$, we have, for any $t \in T$, $\nu(t) = 2 \sum_{q \in Q} \nu^{(q)}(t)$, hence, by (I), $\nu(t) = 2 \sum_{q \in Q} \sum_{q \in T} a_{qq} \nu_q(t) = 2 \sum_{q \in Q} a_{qt} \nu(t)$ and therefore, by (IV), $\nu(t) = \sum_{q \in Q} \lambda \langle q, t \rangle = \lambda(g^{-1}t)$.

By (3f) and (II), we have, for any $q, x \in Q$, $t, y \in T$, $\hat{r}(b_{qt}, u_{q}, b_{xy}, u_{x}) = \hat{r}(a_{qt}, v_{t}, a_{xy}, v_{y})$,

hence

 $\mathcal{A}(q,t)\mathcal{A}(x,y) \notin (q,x) = \mathcal{A}(q,t)\mathcal{A}(x,y) \notin (t,y).$ For $(q,t) \in V$, $(x,y) \in V$, this implies $\mathcal{O}(q,x) = \mathcal{O}(t,y)$, hence $\mathcal{O}^*((q,t),(x,y)) = \mathcal{O}(t,y)$. Thus g is conservative.

(10) The assertion (ES 1.16) that the relation \sim (defined in ES 1.15) coincides on {FWM} with the equivalence relation, also denoted by \sim , introduced in QE 1.4 (QE stands

- 829 -

for M. Katětov, Quasi-entropy of finite weighted metric spaces, Comment. Math. Univ. Carolinae 17(1976), 797-806) is to be replaced by the following one.

<u>Proposition.</u> The relation \sim coincides on {FWM} with the equivalence relation introduced (and denoted by \sim) in QE 1.4.

Proof: follows at once from (8) and (9).

(11) The assertion (stated without proof in ES 3.7) that C^* is not invariant with respect to conservative morphisms (introduced in ES 1.13) is to be replaced by the following one: the function C^* is not invariant with respect to conservative measure-correspondences.

(12) The definition of a subentropy (ES 2.1) is to be changed by substituting $P_1 \sim P_2$ for $P_1 \sim P_2$.

Matematický ústav ČSAV Žitná 25, Praha 1 Československo

(Oblatum 26.6. 1980)