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COMMENTATiONES MATHEMAT1CAE UNIVERSITAHS CAROLINAE 
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FUNCTION LIPSCHITZIAN MAPPINGS ON CONVEX METRIC 
SPACES 

Mihai TURINICI 

Abstract: A lipschitziarmess test for closed aappings 
acting on a (metrically) convex metric space, together with 
an application to contractive semidynamical systems is given. 

Key words: Sequential maximality principle, closed map
ping, meTrTcaTly convex metric space, lipschitzianness test, 
contractive semidynamical system. 

Classification: Primary 54F05, 54C10 

Secondary 54H20 

0. Introduction. An important problem concerning a wide 

class of mappings acting on certain subsets of a metric spa

ce is that of finding sufficient conditions in order that a 

"local" Lipschitz property (in a sense precised by an appro

priate context) should imply a "global" one on that subset. 

A first lot of results in this direction begins with the 1977 

Kirk-Ray's lipschitzianness test 122] proved - in a noraed 

framework - by a "local" method, involving the transfinite 

induction principle; later, in his 1978 paper, P.H. Clarke 

1133 initiated a second lot of results of this kind giving -

in a metric fraaework - a differential lipschitzianness test 

based on Caristi's fixed point theorem. The main results of 

the present note belong to the first category of lipschitzi-
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anness tests quoted above: more exactly, our main aim is to 

state and prove a "local** function lipschitzianness test for 

a class of closed mappings acting on a convex subset of a 

metrically convex metric space and taking values in a metri-

zable uniform space (extending in thie way Kirk-Ray's result 

from a "functional" as well as a "metri able" point of view) 

the basic instrument in proving such an extension being a 

"sequential" maximality principle comparable with the classi

cal Ekeland-Brifndsted's ones [17J,C9]. As an application, a 

function lipschitzianness test for a class of contractive 

semidynamical systems is presented extending in this way a 

similar Crandall-Pazy 's result [14] obtained by a direct met

hod. 

1. A "sequential" maximality principle. Concerning ma

ximal elements in an abstract ordered set, a fundamental re

sult obtained in this direction in the last few years is, un

doubtedly, the so-called Brezis-Browder's ordering principle 

T8] (see also I. Ekeland [18]). However, in case of a "se

quential" type additional structure, the above result seems 

to be - technically speaking - somehow difficult to be direct

ly applicable, at least in its original form. It is the first 

objective of this section,to formulate a "sequential" variant 

of Brezis-Browder#s ordering principle; as a second objecti

ve, a "sequential" maximality principle will be stated and 

proved, extending in this way to metrizable uniform spaces 

the clas3ical Ekeland-Br^ndsted's contributions quoted in the 

Introduction, al well as those of J. Caristi [12] and W.A. 

Kirk [ 21]. 
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Let X be a given (nonempty) set and let ^ be an order

ing on X (that iaf a reflexive antisymmetric and transitive 

relation on X). A sequence (x^jneN) in X is said to be in

creasing iff x. ̂ x . whenever i-=jji,jeN, and bounded above 

iff x n4y, all neN, for some y e X; also, a function f :X —> R 

will be termed decreasing iff x^y implies f(x)£f(y), and 

bounded below iff f(x)^b, all xeX, for some beR. Our main 

intention is now to establish the following wsequential" or

dering principle on the abstract ordered set (Xf^r). 

Theorem 1. Under the above conventions, suppose the or

dering ^ on X and the denumerable family (f.jieN) of func

tions from X into R are such that 

(i) any increasing sequence in X is bounded above, 

(ii) f. is monotone decreasing and bounded below for 

any i eN. 

Then, for every xe X there is an element z&X with x£z 

and, moreover, for any y e X with ziy we have fj(z) =? f*(y)f 

all ieN. 

Proof. Let xe X be given. By the classical Brezia-Brow-

der's ordering principle, there is an element x-,>x such that 

ye X and x-j, y imply f^x^) a f^(y); furthermore, given x-̂ e X 

there is, by the same ordering principle, * an element Xg^x-^ 

with the property y e X and x 2^ y imply - ^ ^ = *2^» *nd so 

on. % induction, we get an increasing sequence (x^neN) im X 

satisfying 

(1) neN, ye X and x̂ -fe y imply f^a^) » fn(y). 

By (i)f an element z eX may be found with x n^ z, all neN. 

We claim z is our desired element. Indeed, by the choice of 

our sequence, we evidently have x ^ z . Now, suppose y e X is 
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•uch that z£y than, elaarty, x ^ T * ^ ****• **& this gi

ves, by (1), fn(xn) * f n U ) - ^rn(y)»
 a 1 1 n € N > completing 

the proof. Q.B.D. 

Let X be an abstract (nonempty) set and let D * (d^; i e. 

£N) be a denumerable and sufficient family of semimetrics 

on X (that is, d .£(x fy) = 0 for all ieN imply x = y). In 

this case, by a well-known construction, (X,D) appears as a 

metrizable uniform space. A sequence (x ;neN) in X is said 

to D - converge to x c X (arid we write xR —5-> x) iff it d. -

converges to x for any icN, and a D - Cauchy sequence iff 

it is a di - Cauchy sequence for any ieN. Also, a function 

f:X—-> R is called d- - lower semicontinuous iff it is lower 

semicontinuous as a function from (X,d-) into R (here ie K 

is an arbitrary fixed element). Finally, X' being another ab

stract (nonempty) set and D' = (d^jieN) a denumerable and 

sufficient family of semimetrics on X', a mapping T:X—> x' 

will be termed closed iff for any sequence ( x n . ; n e N ) in X and 

any couple xcX, x'c X' with x > x and Tx >x' as n —> 

—> oo we have Tx = x'. Suppose in what follows (X,D) and 

(X',D') defined as above are complete metrizable uniform spa

ces (that is, every D (D#) - Cauchy sequence in X (X') is a 

D (D#) - convergent one) and let T be a closed mapping from X 

into X'. In such a situation, as an important application of 

Theorem lf the following "sequential** maximality principle 

may be formulated. 

theorem 2. Suppose the denumerable families ( y^jieN) 

and (^•ifcN) of functions'from X into R are such that 

(iii) fjp . and -y± are d* - lower semicontinuous and 

bounded below, for any ieN. 
- 292 -



Then, for any x e X there is an element z e X such that the fol

lowing conclusions hold 

(a) di(x,z) & ̂ ( x ) - 9±(z)t d .{(Tx,Tz) ^ ^ ( x ) - Y±(z)t 

all ieN 

(b) for every yeX, y4=.z, either &±(zty) z? cp±(z) -

- 9^(y) or d^CTz,Ty) > Y±(%) - ^ i ^ y ) *or s o a e element ieN. 

Proof. Let us define an ordering ^ on X by 

(2) x^y iff d±U,y)4 y±(x) - g^Cy) and d^(Tx,Tir)^yi(x) -

- r 7!^)* all ieN. 

Firstly, <p± and if± are decreasing and, by hypothesis, 

bounded below, for any ieN, proving (ii) holds. Secondly, let 

(x ;ncN) be an increasing sequence in X, that is, 

(3) di(xn,xm) ̂ i ' V - SPi(x
n), d:{(Txn,Txm)^ T i < V ~ 

- yi(xJB)> all ieN, all n,meN, n^ m. 

It immediately follows ( <y±(xn);neW) and ( yjL(xn);nc N) 

are decreasing sequences in R hence (by the second part of 

(iii)) Cauchy sequences in R, for every ieN so that, by (3), 

(x ;neN) and (Tx ;ncN) are D (D') - Cauchy sequences in X 

(X*). By completeness hypothesis, x n —~> x and Tx J 1— * x* as 

n—=» GO for some xeX, x'e x' and this gives (by closedness 
T\* 

hypothesis) Tx s x' that is, Tx^—-> Tx as n ~ » oo • In such 

a case, taking the limit as m — > oo in (3) and remembering 

that first part of (iii) we get the evaluations 

di(xn,x) ̂ ? i ( x n ) - 9±(x)t d ^ T x n f K ) ^ y i ( x ^ ) - ri<x)» 

all i€ N, all ne N 

that is, x ^ x , all ncN, proving Xi) holds, too. Consequent

ly, Theorem 1 applies and this completes the proof. Q.E.D. 

As an immediate application of Theorem 2, the following 
*r 
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fixed point result on this class of metrizable uniform struc

tures may be given. 

Theorem 3> Under the same conditions of Theorem 2, sup

pose the mapping U:X —> X is such that 

(4) dt(x,Ux) ** ̂ ( x ) - g ^ U x ) , d.{(Tx,TUx) ̂ fi(x) -

- V±(Vx)f all ieN 

then, for any xcX there is an element z e X such that conci

sions (a) + (b) of Theorem 2 hold and, in addition, z * Uz 

(z is a fixed point of U). 

Proof. Let x c X be arbitrary fixed and let z c X be the 

element indicated by Theorem 2. By (4), z-^Uz so that (taking 

into account (b)), we necessarily have z - Uz and this ends 

the proof. Q.E.D. 

As a particular case of our considerations, suppose the 

denamerable and sufficient families D and D' reduce to a sing

le element (respectively, a single metric on X and X') then, 

Theorem 2 reduces to the author's result [261 while Theorem 3 

to the Downing-Kirk's result [161 (see also D. Downing [15J)# 

Moreover, in case X = X', T =- I (the identity) and <p =* y , 

from the corresponding variants of Theorem 2 and Theorem 3 we 

get Eke land-Brands ted's results quoted above (see also [181, 

[10 J as well'as J.P. Aubin and J. Siegel [21, S. Bishop and 

R.R. Phelps L6], M. Turinici [241, J.D. Weston L27D and res

pectively ,,Caristi-Kirk-Browder 's one© [121,L21],[11] (see 

also S.A. Husain and V.M. Sehgal [193, S. Kasahar* [201, J. 

Siegel L231, M. Turinici L251, C S . Wong [28J). A number of 

extensions to (non-metrizable) uniform spaces of the above 

theorems will be given in a forthcoming paper. 
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2. The main reaults. Let (Xfd) be a given metric space. 

For every x fyeX f let Cxfy] denote the metric segment between 

x and y (the sub3et of all z e X with d(xfz) + d(zfy) « d(xfy)) 

and put also ]xfy] » [xfy]\{x5f ]xfy[ = [xfyJ\4xfyJ. Evident

ly, every segment is a nonempty bounded and closed sub9et of 

X; moreover, for every arbitrary fixed x,yeX and every z e 

e[xfyj we have the inclusion [xfzJcLx,y]f [zfy]c[xfy] (see, 

e.g., W.A. Kirk [21] for more details). A (nonempty) subset 

Y of X is said to be (metrically) convex iff for every xfye Xf 

the segment [ x,y] is contained in Y. Also, the ambient metric 

space (X,d) will be termed (metrically) convex in Menger's 

sense £7, ch. U iff for any distinct x,y€X^ JxfyT is not 

empty. 

In what follows, (X,d) is a complete (metrically) convex 

metric space, X a (nonempty) convex subdet of Xf (X*,D*) a 

(eequentially) complete metrizable uniform apace defined as 

in the preceding section and F « (f^ieN) a denumerable fami

ly of functions from R+ into itself. A mapping T:X-—-> X
# is 

said to be directionally closed iff for any couple x,y£X, the 

restriction T/[xfy] is a closed mapping from (rxfyj,d) into 

(X'fD'). In the same context, T will be termed directionally 

F - lipschitzian iff for any diatinct x,ycY there ie an ele

ment ue]x,y] eatiafying d^(Tx,Tu)^ f^(d(x,u)) f all ieN, and 

globally F - lipachitzian iff d ^ T x , ^ ) ^ fi(d(x,y))f all icN, 

all x,ye.Y. Finally, a function f:R+—> R+ is said to be su

per-additive iff f(t+3)>f(t)+f(9) for all t fseR +. 

From the above definitions it trivially follows that eve

ry globally F - lipschitzian mapping is also directionally 

F - lipschitzian but the converse is not in general true so 
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that, it is justified to look for an answer to the following 

question: under what (supplementary) conditions does a di

rectionally F - lipschitzian mapping become a globally F -

lipschitzian one? In this direction, the main result of the 

present note is 

Theorem 4. Let (X,d), (x',D') and Y be as before and 

suppose the mapping T:Y*—>X# and the family F = (f^;ieN) 

of functions from R+ into itself are such that 

(iv) T is directionally F - lipschitzian 

(v) T is directionally closed 

(vi) fi is super-additive and lower semicontinuous, for 

every ieN, 

Then, necessarily, T is globally F - lipschitzian (on Y). 

Proof. Let x,yc Y, x + y be arbitrary. Define a denume-

rable family of functions <j>:X—> R+ and y i:X—> R+ (ieN) 

by the convention 

(5) <j>(u) = d(u,y), r±M = f^dCu-.y)), (i*N), ueX • 

Firstly, by the second part of (vi), <f> is continuous and Y± 

lower semicontinuous for any ic N and the same conclusion is 

valid for the restrictions <y/[x,yJ and Yi/[xfyJ (ieN). Se

condly, by (v), the restriction T/[x,yJ (denoted also by T in 

what follows) is a closed mapping from Cx,yJ into X'. This 

shows that Theorem 2 applies (with (X,D) replaced "by (Cx,y]»d)) 

so that, for xerx,yJ there is an element zeCx,yJ satisfying 

conclusions 

(a)' d(x,z) £<f(x) - 9(z) and d^Tx-TzM f±(x) -

- Yi(z)» a11 i*N 

(b)' for every U6Cx,yJ, u*z, either d(z,u)>q>(z) -

„ f(u) or d.'(T*fTu)>ri(2) . T i ( u ) f f o r 8 o m e i e N # 
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Suppose z4=y. For every u el z,ylc tx,y] , the first relation 

of the conclusion (b)' 

d(z,u) > <?(z) - (p(u) = d(z,y) - d(u,y) = d(z,u) 

is impossible, so we must have (taking also into account the 

first part of (vi)) 

dr(Tz,Tu)> 1/̂ (2) - Y±M = fi(d(z,y)) - fi(d(u,y))e 

fi(d(z,y) - d(u,y)) = fi(d(z,u)) for some ieN 

which is also impossible, because of (iv). Consequently, z = 

= y and then, by the conclusion (a)', 

d^(Tx,Ty) £ Y ^ U ) - Y±(y) = fi(d(x,y)), all i£ N 

and since x,ycY were arbitrary, our proof is complete. Q.1S.D. 

Concerning condition (vi) of the main result, it should 

be noted that an important example of functions from R+ into 

itself satisfying that condition is offered by the choice 

(6) f (t) = k tr, t eR + 

k ? 0 and r^l being arbitrary fixed elements. In the same ti

me, concerning condition (v), it is almost evident that it is 

automatically fulfilled by any mapping T from Y into X' clo

sed in Altman's sense LI] (that is, for any sequence (xn; n e 

£ N) in Y and any couple xe X, x'e X'with x 9-x and 

Txn .> x' as n —> oo we have x e Y and Tx = x'). Finally, let 

(X,d),(X',D') and Y be as before and let K = (k^ieN) be a 

denumerable family of positive numbers. By convention, a map

ping T:Y—> X' will be termed directionally (globally) K -

lipschitzian iff it is directionally (globally) F - lipschi-

tzian, F being the denumera tie family (f.;i€N) of functions 

from R+ into itself defined by: for any icN, f. is that ex

pressed by (6) with r = 1 and k = k^. In such a caae, as a 

direct consequence of the main result, the following (ordi-
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nary) lipachitzianness test on (metrically) convex metric spa

ces may be formulated* 

Theorem 5. Under the same general conventions, suppo3e 

the mapping T:Y — » X* is directionally K - lipschitzian in th 

above sense and closed in Altman's sense. Then, necessarily, 

T is globally K - lipschitzian (on I). 

It should be noted that in case D' reduced to a single 

element (a single metric d' on X') the above theorem reduces 

in fact to Kirk-Ray's result quoted in the Introduction ( se< 

also the author's paper L241 a3 well as S.A. Husain and V.M. 

Sehgal [193). 

-*• Applications to semidynamical sy3terns. Let (X,D) be 

a given complete metrizable uniform space and let il= (<^>±f 

i € N) be a denumerable family of real numbers. By an il-con

tractive semidynamical system on X we mean a mapping (t,x)v— 

I— S(t,x) » S(t)x from R ^ X into X satisfying 

(vii) S(0)x « x for all x e X 

(viii) S(t+s)x * S(t)S(s)x, all t,3£R+, a l l x e X 

(ix) di(S(t)x,S(t)y^(exp (c^t)) &±(x9y)9 for all 

teR +, x,yeT and ieN. 

(Of course, the notion of contractive semidynamical sy3tem ma, 

be compared with that of semidynamical system in Bajaj's sen

se [33 (see also N.P. Bhatia and G.P. SzegO C5, ch. 13) or, 

equivalently, with that of contractive semigroup in Ek*ezis-

Browder's sen9e[83). An important problem concerning this 

class of semidynamical sy3teme is that regarding (function) 

Lipschitz properties with respect to the temporal variable. 
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In order to give an efficient answer in this direction, suppo

se the considered i2-contractive semidynaaical system S on X 

satisfies the following closedness property at every point 

x e X 

(x) for any sequence ( t n ; n . s N ) in R+ and any couple 

t c R+, ye X with t n—> t and S(tll)x —~> y as n —> oo we have 

S(t)x = y 

and let the denumerable family of functions from R+ into it

self P = (f^ie N) be such that condition (vi) of the prece

ding section holds. Denote by X(S,P) the subset of all xe X 

satisfying 

(xi) for any €> .> 0 there is a number 0 -< cf*z e> such 

that di(x,S(c/)x)^fi(or
/), all i€ N 

and, for the sake of simplicity denote also 

(7) f3i(t) = max (exp (ci^t),!), teH + ) ieN 

In such a case, let xeX(S,P) and a > 0 be arbitrary fixed-. 

Given two positive numbers s,tcR+ with 0 ^ 8 < t ^ a , there is, 

by (xi), a positive <f<c t-s such that di(x,S (cf)x)£ f*(o^)f 

all icN so (denoting r = 8 + oO, we get by (viii) + (ix) and 

the notation (7)f the evaluation 

di(S(s)x,S(r)x)x (exp ( ̂ >is))di(x,S(</)x) & /3i(a)fi(cT ) ^ 

& fi±(a)f±(cf) » /^(ajf^r-s), all i<«N 

proving the mapping t \— S(t)x is directionality G - lipschitz-

ian on the interval CO,a J, the denumerable family of functions 

from R+ into itself G * (g^ieN) being defined by the conven

tion gi
 s ft±(a)f±* a H i € N, Consequently, the main result 

applies (with X « R+, Z » CO,a] and X' » the ambient metriz-

able uniform space of the considered semidynamical system) so 

that we proved 
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Theorem 6. Under the conventions stated above, for any 

xeX(S,F) and any a>0, the mapping t i— S(t)x is necessarily 

globally G - lipschitzian on CO,a.] that is, 

di(S(t)x,S(s)x) ^fh±(a)f±(t"B)9 O^s^t^a, i e N. 

An important particularization of the above theorem cor

responds to the case when D reduces to a single metric d on 

X (and, correspondingly, H reduces to a single real number 

co ). In such a case, let us denote 

(8) L(x) = lim inf (1/t) d(x,S(t)x), xeX 

and let the function h:R^—> R+ be defined by 

(9) h(t) = (1/co )(exp (ot)-l), teRff co + 0 

s t , t £ R+ &> = 0 

Mow, X(S) denoting the subset of all points xeX with 

L(x)< + o0 , it is a simple matter to verify condition (x) 

will be satisfied by any mapping f = Mh, M>L(x) being arbit

rary fixed, in which case, as an important consequence of 

Theorem 6 we have 

Theorem 7« Under the particular cases expressed above, 

for any xeX(S) and any a>0, the mapping t .— S(t)x is ne

cessarily globally /3(a)L(x)h - lipschitzian on C0,a3 that 

is, 

d(S(t)x,S(s)x-£ £(a)L(x) h(t-s), O-Ss-^t-Sa. 

It should be noted that the above result proved - in ca

se of • Banach space - by M.G. Crandall and A. Pazy [14] (see 

also V". Barbu £4, ch. Ill J) has a number of important appli

cations to nonlinear contraction semigroups theory; we refer 

especially to the above quoted Barbu's work for more details 

and concrete discussions, 
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