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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROL1NAE 

22.2 (1981) 

REMARK ON COMPLETELY BAIRE-ADDITIVE FAMILIES IN ANALYTIC 
SPACES 

Petr HOLICKY 

Abstract: Coapletely Baire-additive families in -ae-ana
lytic spaces are investigated. A characterization of point-
countable completely Baire-additive families in ^-analytic 
spaces is proved. The results and methods follow that af [HI, 
[PJ, and CP-H2]. 

Key words: 9e-analytic apace, Baire set, coapletely addi
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Classification: Primary 54C50, 54H05 
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The aim of this remark is to notify that the result on 

completely Baire-additive families from [P, Prop. 1] proved 

for coaplete metric spaeeo also holds for 3C-analytic spaces 

introduced in iF-H-j] . Essentially it means that it holds in 

the product of a coaplete metric space by a compact space. 

The method combines Pol's proof and Hansen's original proce

dure IH, Th. 21 with Prolik'a result [P, Th. II. A siaiiar 

procedure was used in [F-Hpl to extend a characterisation ef 

point-finite completely Suslin-additive families from comple

te metric spaces tK-P] to analytic spaces* 

The result is used for a characterization of point-ca-wi-. 

table coapletely Baire-additive faailies in cU-analytic spaces 
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(Corollary 2). 

1. PreliMnariea. The topological space X i8 regular 

and Haiusdorff if we do not say more. 

A Sualin set in X is a set of the form L^ . fY, F , 
^ e ^ N >rve N Kin 

where N « •Clf2,...}> & \ n stands for 6^t 6 2 > # # # ># .-^a 

Fg#i are closed in X. 

If S is Suslin in X then there is a "Suslin stratifica-

• of S;, it s 

ncN, such that 

tion" of S;, it means that there are sets (S)^. for €e N*, 

(S)6tn+lc (S)^ln f o r n ^ N and 

We suppose that some such stratification is fixedly chosen 

for any Suslin set in' the corresponding space, and the nota

tion analogical to the above one ((S)^|n) will be used for it 

without other comments. 

Baire sets are the elements of the,smallest g-algebra 

of subsets of a topological (uniform) space that is closed 

under unions of topologically (uniformly) discrete unions and 

contains zero sets of continuous functions. Any Baire aet ia 

Suslin. 

The family $ of subsete of a topological (uniform) apa

ce X is said to be completely Suslin (Baire)-additive if Ufa 

is Suslin (Baire) in X for any Q, c $ . 

Ihe indexed family if s 4F(A) IA e (X\ is said to be H~dd 

or #-discretely decomposable if there are sete -?n(A) for 
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A € a and n e N such that f(A) » U u F (A) and the families 

{?n(A)JAsd?[ are discrete in the topology (uniformity) of X. 

The topological (uniform) space X is called $t-analytic 

if at z. cd is a cardinal number and if there is an upper se

mi-continuous compact-valued (further usco-compact) corres

pondence f:M—>X with f(M) * X such that M is a complete 

metric space of weight ^a£ , and f is {T-dd-preserving, i.le. 

f takes the families with 6* -discrete decomposition to sys

tems with the same property. 

The fundamental properties of analytic spaces and Baire 

sets can be found in [F-H-jl • Especially any Baire set is Sus-

lin«and Suslin subsets of w,-analytic spaces are ae-analytic. 

2. Results 

Theorem. Let f :M—> X be an usco-compact corresponden

ce of the complete metric space M onto the topological space 

X. Let a be a completely Baire-additive family in X. Then 

the family 

f ^ a * »-tf-"1u>iA e a*j 

(here a* = \k* s A W t B e a l & * A 3 U e a§ ) 

i s €> -d i screte ly decomposable. 

The proof of Theorem i s l e f t to sections 3 - 5 . 

According to the def ini t ion of 9t-analytic spaces we can 

immediately derive the following assertion. 

Corollary 1. Let X be a ae -analytic topological or uni

form space and l e t a be a completely Baire-additive family. 

Then the family a* i s 6*-dd in the topology or uniformity, 

respect ively . 
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Corollary 2. Let X be an a>-analytic topolegical apa

ce and let CL be a point-countable completely Baire-additive 

family. Then CL is countably refinable, i.e. there is a count

able family <£ , such that t c CL ,and (J tf * U CL . 

Remarks. Corollary 2 extends a part of a result of R. 

Pol from [PI, where the analogical result is proved for comp

lete metric spaces of weight less or equal to ifi^. 

It follows that for any 33 c (X in Corollary 2 the fami

ly CB is count ably refinable. If a family CL consists of Bai-

re sets, and # is count ably refinable for 33 c 0* then Ob 

is completely Baire-additive, so that Corollary 2 gives a cha

racterization of completely Baire-additive families among 

point-countable families of Baire sets. 

Let us remark that in the one-point compactification K 

of an uncountable discrete space D there is a completely Sua-

lin-additive family CL such that Cl? is uncountable. Put e.g. 

d ={-tx,dil deD,X€K\D$. 

Proof of Corollary 2. Suppose that 0/ is not countably 

refinable. Let the points x.eX and the sets A^ c CL be cho

sen for fi<c6 < 4*-̂ . The family CL^ * ik s &\x e. A for some 

(S<oci is countable. Therefore ( Q, \ 0^)u-ik» I (3 < ocS is 

not count ably refinable, and there is a set k^ e CL such that 

we can choose an x_6 A \\Jikn I (h < *** . We construct in this 
aC oC fi > 

way A^c a for cc < 44 x such that xoCe4>c\U{A/i i/5 4*oc, fl< 

< ^ . This contradicts Corollary 1. 

Corollary 2 can be used for an assertion concerning se

parability of the range of a measurable correspondence. Ka-

tice that the following corollary enables us to use the ae-
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lection theorem from tK-RN] for such correspondences: 

Corollary 3. Let P be a Baire-measurable separable- and 

closed-valued correspondence from the o>-analytic space X to 

a complete metric space M. Then there is a separable subspace 

5 of M such that P""1(S) (si x€ XlP(x)n S#01) * DP (sat x e X I 

P(x)*0j). 

Proof. Let ^C^ be a* ̂ -discrete closed cover of M by 

sets with diameters less than /n. Then P *€n * i P (C)ICc 
6 ^aJ ifl a completely* Baire-additive point-countable family 

which covers the o -analytic space DP c <X • According 

to Corollary 2 the family F Sf, has a countable refinement, 

i.e. there is a countable family 2P^C ̂  such that P*"1^ 

covers DP. Por any S^e Sf^ consider the restriction PQ •v 

i ^ sl 

:P""x(Sf)---> S.and construct Sf2 *Tom ^2 * ̂ 2 a % 8i|ailarly 
as Sfn was constructed from *£- • By induction we construct 

S S 
families 9nt .fn+£ •»<- * n+l

 for S n s ^n 8uch *--** 

(i) *n+1«^Sy.\.e*n-

Cii) W ^ - . - <<?n+1nSn 

( i i i ) y i - c ^ , and n+1^ n+1 

n + 1 W * A o * w n , Civ) P~lcif J£n covers P ^ C S ) . 

I t su f f ices to put S * C\ U ^^ for example. 

Remark. I t cannot be proved tha t P(X) i s separable i n 

ZPC. Assume tha t tf-^ » 2 . Let i x ^ l o t x ^ r^ » CO,11, and 

put F(xo C) * 4x ^ I [h & <c\ • Ihen P i s a correspondence from 

Corollary 3 i f X » 110,11 with i t s usual topology (uniformity) , 
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and M = [0,1] is endowed with the discrete metric. However 

F(X) = M is not separate. 

3. Auxiliary assertions. We suppose that the assump

tions on f, M and X of Theorem are satisfied. 

Lemma 1. Let tf be a family of subsets of X and let 

f # be not e'-dd. Then there are families $1% $2 such that 

^ l u ^2 3 ^ * ^ln *2 s ^ a n d ^^i i s n o t Samd& f o r i s 

= 1,2. 

Proof. The family t $ -= SO can be divided into two 

subfamilies 3>1$ 3>2 such that 3i1n3>2 = 0, &1uS>2 - S and 

3 i is not €f-dd for i = 1,2 (see [K-PJ). Put 

Lemma 2. Let f(Wn)n 1^4=0 and A^^c A^ for n = 1,2,... . 

Let -£w$ = A W~ and diam W converge to zero. Then 

f^uK** «** rif(i)cf(w), 
oustf « .<r*eN n 

Proof. Let f(vr)r.JT = 0 for some n, eN. Then there is 

an n2eH such that f(Wn )ni^ - 0. Therefore f(w)nAn i» a 

decreasing sequence of non-empty compact sets and has the non

empty intersection. Thus the non-emptiness of ^\iAZ is Proved. 

Let x e(n f(Wn))xf(w). There is an open set G^f(w) 

such that x^G. However there is an n^eN such that f(Wn )cG. 

This is a contradiction. Hence O -f (Wn") cf (w). 

4. Proof of Theorem. Suppose that Theorem does not hold. 

The following objects with properties (1) - (5) can be const

ructed in the k-th step of induction for any iel = IT where 
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D - U,2i and ilk stands for ilt...,ik for k c H ("i|0," must 

be ignored): sets a_|k,U_| k'
Filk = *Tlk' a n d n a t u r a l n u m -

bersnj^.n^" 1 n*11 : 

( 1 ) ailk-l,.l^<:liik-l>2
 = ^ilk-l 

(2) a i l k . l t l n o 1 , k _ 1 > 2 - 0 

(3) Xi(k = -ilk.1n(tfft1|1)n5ll|^...A(S£ai,_)ni|^' 

nf(U.,k) 

(We use the notation AT* U&\U ( a \ # ) £ o r any $ c Ob . ) 

(4) The diameter of U.ji_. i s l e s s than / k . 

(5) f ~ 1 ( X i ( k ^ O ' a i | k ) n U i | k i s not tf-dd, where a ^ ( k = 

= a i l k n u a * . 

The first step of the construction can be done as fol

lows: 

Using Lemma 1 we find OT1%Q^^ such that 0^ n &* = 0, 

a\o a\ = Of and f"1^ is not €T-dd. Put ft.={A£ Cb \ 

|A*6 d\li for i = 1,2. Now we can choose n-̂  and n-̂  such that 

f ((<_£&.JI-I) in n ^ili^ *s n o t ^ "<*<*• Since M is paracom-
nl 

pact we can find U-., U 2 such that (4) is satisfied and 

t^HZCa^) i}1n a\^)n V±j1 is not 6*-dd for any id. It 
nl 

is enough to put X.i^ = Xn(& fa*^) illnJ^Uill^ &n^i a 1 1 Pro~ 
nl 

perties from (1) to (5) are satisfied for k = 1. 

The induction continues analogically, and we will omit 

it. 

We will finish the proof of Theorem by proofs of the fol

lowing statements: 
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u ) * s JtVi £ ^ p i i k i a 6 > - « ^ y t i c 

( b ) J^QNI ^ i . k * 0 f o r a n y i € l 

( c ) k&H F i l k n * f ? N P j l k s 0 * h e n * v e r i + j , i , j € l 

(d) t n F . i - l i £ l $ i s completely Suslin-additive in I . 

These four assertions are in the contradiction with 

Lemma 2 from C-̂ -HgJ which says that d i s jo int completely Sus

l in-addit ive families in a>-analytic spaces are countable. 

TSiis lemma i s an immediate corollary of~CF, Th .U . 

5. Proofs of (a) to (d). 

The intersect ion of IL»-, k » 1 , 2 , . . . , i s non-empty with 

respect to the construction. Thus I c ; ^ - * f C O W U J | k ) accord

ing to the second assertion of Lemma 2. Hencefore 

Y c f ( . U .-O U i l v ) aid this i s a compact set because f i s 

usco-compact and (4) holds. 

Obviously Y i s Suslin and thus i t i s €c>-analytic. 

(b) Since X M ^ C f (U^^) and i t i s non-empty we know that 

P i l k n f ^ i l k ^ ^ a n d t n e ^ r s t part of Lemma 2 guarantees 

t h a t A t Q ^ i l k * * -

(c) and (d). Let i + j and x. s. kQN\^, x^ ^ O N ^ U C ' ( 3 ) 

imp l ies that x^e J^^ ^^i\f Especially there i s A. e. d such 

that x^C A i and A^ has to be in &.jik for k * 1 , 2 , . . . . Simi-

.tarty X^CA. with A .* ^ 0 , ^ but ^ d ^ " ^ 0 ^ = 0 . 

Thus Xj+iCj and (c) i s proved. 

We easily see that U i^Q^ F i i k l i £ J c l S « Ui A s a i 

|A e ^ ^ ^ j ^ -̂ OP ^ome i c J j n l , and thus (d) i s ver i f i ed , 
too. 
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The family { r\ . F. i. \i 6 I j i s even Baire-additive in Y. 
Ke N *» K 

6« Problems. We do not know the answers to the following 

natural questions concerning complytely-additive families: 

(a) Can Theorem be extended for completely Suslin-additive 

families in complete (separable) metric spaces? 

(b) Can Corollary 2 be extended to 9e-analytic spaces with 

96 > & ? 

(Consider ®-discretely refinable instead of countably refin-

able !) 

(c) Can Corollary 2 be extended for Suslin-additive families? 
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