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ON THE DIFFERENTIABILITY OF MULTIVALUED MAPPINGS, I
LE VAN HOT

Abstract: This paper is a continuation of our work [7].
The differentiable selections of differentiable multivalued
mappings defined on an interval [a,b] and having values in
the space of all bounded convex closed non-empty subsets of
a Banach space are investigated.
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3. Differentiable selﬁections. We use notions and nota-

tions introduced in [7].

Definition 1. Let F be a map of the interval [a,bISR
A
into X, then we say that F is positively (respectively nega-

tively) conical at t ela,b] iff F(t )e ae (€ (X)) (F(t,)e

€ (- 2e( €, (X))) respectively) i.e. iff there exist maps A, B
of the interval [a,b) into < (X) such that F =[A,B] and
B(t ) ={0}(A(t ) =10t respectively). We say that F is posi-
tively (respectively negatively) conical om [a,b] if P is
positively (resp. negatively) conical at every point t of
La,b). We say that F is conical on (a,b] if at each point t
of La,b]l F is either positively or negatively conical i.e.
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if there exist maps A, B of interval [a,b] into <, (X) such
that F = [A,B] and A, B satisfy the following condition
(1) for each te[a,b) either A(t) = {0 or B(t) ={0f.

Definitiomn 2. Let F be a map of [a,b] into g and suppo-
se that F is conical on [a,b] and F(t) = [A(t),B(t)] for all
tefa,b]l where A, B satisfy the condition (1). Then the map
f of [a,b] into X is said to be a selection of F if there ex-
ist maps f,, f, of [a,b] into X, such that fy, £, are selec-
tions of A and B, respectively, i.e. fj(t)e A(t) and £,(t) €
€ B(t) for all tela,b), and f = f; - f,. If £ is continuous
(differentiable, respectively) then f is said to be a conti-
nuous (differentiable, respectively) selection of F,

The set ‘'of all continuous selections of F is denoted by
C(F). It is clear that C(F) is a convex family; i.e. if £, g¢
eC(F,Ae[0,1), then AFf + (1-A)geC(F). It follows from
definition 2 that if F is a map of [a,b] into ‘i?o(x), then f
is a selection of F (i.e. £(t)¢e F(t) for all t ela,bl) if and

only if £ is a selection of F.

Now we shall show that the definition of selections of
a conical map F of [a,b] into 5\( does not depend on the choice
of the maps A, B, which satisfy the conditiom (1). Let F(t) =
= [A(t),B(t)] = [A;(¢),By(t)] where A, B and A,, B, satisfy
the condition (1). If £(t) &% (X) ={[ix},i0})=[{0},{-x311| xe
€ X%, then A(t) = A (t) and B(t) = By(t). In fact if A(t) %
+4,(t), then one of these sets is {0}, for instance let A, (t)=
= £0}, then B(t) = {0} and A(t) +* By (t) = 10}, but it is im-
possible, as A(t) is not a singleton. If F(t) e 2¢(X), then it
is easy to see that either A(t) = A, (t), B(t) = By(t) or
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A(t) =-{xt§ =z - Bl(t), B(t) = {0} = - Al(t) or A(t) =40} =
= - B;(t), B(t) = {- x,§ = - A, (t) where F(t) = 3 (ix.%).
let £ = f, - f,, where f,, £, are selections of A, B respec-
tively. Put
£,(t) if A(t) = A (t) £,(t) if B(t) = By(t)
g, (t) = ga(t) =
-fz(t)>if A(t)F4A, (t) -f; (t) if B(t)4 B, (t)

then g,,g, are selections of A,, B, respectively and f = g -
- 85 This shows that the definition 0f selections does not
—depend on the choice of A, B.

In the remainder we always suppose that X is a Banach
space and F is a map of some nrighborhood of interval [a,bl
into € (X). N

If F is continuous on [a,b], then fm f‘\(t)dtsae( ct’c‘(){))
(see [4]) and we put:

_[;fyF(t)dt = 271 j;&ﬁ(t)dt)

Lemma 1. Let F be a continuous map on [a,b], then

o i (b-a) [t i (b=
ij(t)dt = lin {b-a) ( =, Fla + LTAL))

. %
Proof. From definition of integral fw F(t)dt it imme-

diately implies our assertion.

Let F be continuous on [a,b], then by theorem 3.2" [8]
it follows that C(F)+f and F(t) ={£(t) £&C(F)}. We defi-

ne

°f1’1?(t)dt = {f"’f(t)dtlfecw)g
(<Y @

Lemma 2. If F is continuous on (a,bl, then
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frwae = Prra

Proof. 1) Of course for each f¢c C(F) we have that
& y ¥’
f f(t)dt e f F(t)dt. This means obe(t)dt s [ F(t)at.
N 27 (»7 (* %

2) We shall prove that j“fF(t)dt) c "’ff’ F(t)dt, and
the proof will be complete. Let z & _("fF(t)dt) and let € > O,
€ < b-a be given; then from the continuity of F on [a,b] and
by the Lemma 1 there exists a positive integer n and x5 €
€ F(a;) where a; = a+iA; A, = %(b-a) for i = 0,1,...
«esyn=1 such that

1) hz-a,=xl<%

(2) a(F(1),F(t") < €, = 3-(-5—_3)- for all t,t e [a,b],
lt-t"i=a .

Let M = Sup{llx W | xeF(t), tela,bl}= max{UF(t)lite
¢ la,b)}. Put b; = a;,, - g for i = 0,1,...,n-2 and b, =
= b. But (2) implies that F(t)n S°(xi, e,) + for all

= a
n
teiqi,bi] eand i = 0,1,...,n-1, where So(xi, €,) ={xcX:

tlix - x4 =< Elg. It is clear that the map G defined by

"F(t)N S%(x;, &) for tela;,bd, i = 0,1,...,n-1

o <
F(t) for te U(bi,ai+1)

is lower semi-continuous on {a,bl. By Theorem 3.2" [8] there
exists a continuous selection f of G (8o as of F) on [a,b]. *
Then, of course, [l £(t) - x; Il £ &, for all telay,b;l i =0,
1ye..,n-1 and N £(t) - x;il £ 2M for teU(by,a;,,), whence

m-1 &,
he - [Feati sz - a = x i+ 1S L aw -

m=2 4y &y
g
- xg)at + = f:% (£(t) = xy)atlli< I+ = ,L‘q’ €, dt +
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1
+ 2 [Tamatc g+ (bra) ey +2Um-D)e gEp < @
1

o
This means that d(z, fa, F(t)dt) < € for all €> QO and hen-

o. b 0.4 .
ce z € f& F(t)dt, or L&F(t) e _[;’ F(t)dt. This completes
the proof.

Theorem 1. Suppose that F is continuously positively
or negatively conically differentiable on [a,bl, Then the-
re exists a convex family F of differentiable selections
of the map F'on [a,b] such that

1) £’ is a continuous selection of the map ?', where
F(t) = D F(£)(1) for a1l tela,b] and all £ € F ;

2) At =di£°(W)feF g if B (1) = [A(t),{03]

B(t) = {-£°(t)l£ e Fi if F'(¢) = [0}, B(¢))

3) F(t) =41f(t)|f ¢FJ for all tela,bl.

"

Proof: 1) Let F be positively conically differentiab-
A, . s
le on [a,Bl, F'(t) = DF(t)(1) = [a(t),{0¥]. From the conti-
A, . .
nuity of F~ it follows that A(t) is continuous on [a,bl. Of

course, we have

A t A T
F(t) = F(a) + L F@av = fa)+ [ awar, 103

for all tela,bl.

Hence F(t) = F(a) +* J': A(z)az . By the Lemma 2 it follows
that -

F(t) = Fa) +* °[* aodaz .
Put

t A,
3 = {fx,ngx’g(t) =x + fw g(z)ae | xeF(a), geCfF 4
then it is clear that ¥ has the properties 1) 2) and 3).

2) Let F be negatively conically differentiable on
[a, bl, F'(t) = DF(t) (1) = [{0},B(t)], then
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A ) & A, A LAY 4
F(v) = F(v) + [ Froar = Fb) + [i03, [ Blx)dz)

hence
&
F(t) = F(b) +~* oj'; B()de .
Put

F=4f

) & Ao
x,g:fx,g(t) = x +j‘_ (-g(®))az | xeF(b), geC(F’) =

= - C(B)};
then ¥ satisfies the conditions 1) 2) and 3) and the proof

is comple te.

Remark 1. If int F(a) +£ f} (where int F(a) denotes the
interior of F(a)) and if F is continuously positively diffe-

rentiable on [a,b], then we put F' = {f (t) =x +

x,g’fx,g
+ .{jg(z’)dc | xcint F(a),g< C(F*)}. Then for each te[a,b],
{f(t)|f € F’¢ is a convex open subset and F(t) is its closed
hull. It means that int F(t) = {f(L)\f e F7¢ .

Similarly, if int F(b) £ # and F is continuously nega-
tivély differentiable on [a,bl, then there exists a convex
subfamily 3’/ of the family § such that int F(t) =4f(t)|if e
e F'¢ for all tela,bl. '

For each A € I(X), put o(A) = sup{llx-yill xeA,yeAf.
If G is a conical map of [a,bl into X and G(t) = [A(t),B(t))]
where A, B‘satiafy the condition (1), we put:

o'(G(t)) = o7(A(t)) + I (B(t)).

In the remainder of this section we always suppose that

F is continuously conically differentiable on [a,b] and

A,
F'(t) =1A(t),B(t)] where A, B satisfy the condition (1).

Lemma 3. 1) There exists a finite or countable family

of disjoint open intervals (a, ,b )< (a,b) such that F is po-
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sitively or negatively conically differentiable on
A, .
[a,,b,] for all n, and F'(t) e 2e(X) for all te (a,b)\
N\ LN% (a,,bp).
AO
2) If f_ 1is a continuous selection of F on [a_,b ]
n n’' n

for n = 1,2,... then the map defined by

fno(t) for telay.b 1 for n = 1,2,...
f(t) =

x, where Fr(t) = % (ix,}) for tela,bln ORI

is a continuous selection of o on La,b].

Proof. Let [A,{0%1€ 2 (¢ (X))~ 2e(X); then o(A)>0
and for each [10},Ble (-3( < (X))) we have

(3): HLA,£031-T{0%,B1ll = sup{hx+tyhixea,ycB1 2

EX LR

This means that oe( ¥ (X)) \ %(X) is open in (€ (X)) v
v (-2(€ (X))). Similarly (-2e( <€ (X)))\ %(X) is open in
2 (€ (X)) U (=30 € (X)), Then {te(a,b):F (t)e sl (XN
N\ %(X)t and {te (a,b)lﬁ'(t) e (=2( € (X)))\ 2e(X)} are dis-
joint open subsets of (a,b). It follows that there exists a
finite or countable family of disjoint open intervals
(an,bn)g (a,b) such that for each n either f"(t)e 3e( ?O(X))

for all t e(a ,b ), so as for all tefan,bn] (since

n?
% (¢ (X)) is closed and F is continuous), or F (L) e
e (~2e( € (X)) for all te(ay,b,), so as for all tela, ,b 1;
F(t) e 2(X) for all te (a,b) \ U(a,,b, ). This completes the
proof of the first part of the Lemma.

It is clear that the map f defined in 2) is continuous

. : e
at every point t, for which F (t) ¢ (X), If F'(t) =

®(Ax,}) e 2(X) then for each t’¢la,b] we have |f(t)- £(t )ii=
. ooy e Ao . .
ilxt - f(t )N & i P(t) - F(t)H . It shows that £ is
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continuous at t and this completes the proof.

Remark 2: By theorem 3.2" [81 there exists a continu-
ous selection of F (i.e. of A or of B) on [a,,b ] for each n,
and then by the Lemma 3 there exists a continuous selection

of F on [a,b].

Lemma 4. For each € = O there exists a convex family
Fe (F) of continuously differentiable maps of [a,b] into X
such that:
1) £’ is a continuous selection of ¥’ on La,bl for all f ¢
e T, (F).
2) 4(F(v),if(t)If e %, (F)}) £ e (b-a) for all tela,bl
3) If tela,bl and o(F(t) > € then either
Alt) =427 (L) f e T (F)} or B(t) =4- £ (1)(f e 3 (F)} .
Proof: Let A > O be such that for all t,t’e [a,bl,
(4) Yt-t"1<A , we have Il P (t) - F (t)il< % .

Let (a,,by), n =1,2,... be the intervals constructed in Lem-
ma 3. If there exists a te (ay,b;) such that d"(i‘\"(t))z e ,
then by (3) and (4) we get that b, - a Z A . That is, the-
re is only a finite number of intervals (aj,b,), which con-
tain a point t such that J(F’(t)) = € . This means that the-
re exists a‘finite number of points s, = a<8;<...<8 ,<
<'s, = b such that ?"(ai) e %(X) for i = 1,2,...,n-1, and for
each i = 0,1,...,n-1 either F is positively (or negatively)

- A'
conically differentiable on Ls;,s;, .1 or o (F'(t) < & for

i+l
all t e[si,si+1] . Let ¢ be a continuous selection of # on
[a,b] (the existence of ¢ is guaranteed by Lemma 3), then
it is clear that IF'(t) - [i¢ (£)},40310 £ &*(F'(£)). Let I

be the set of all k, t£k<n, such that there exists a convex
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family of differentiable maps ofﬂ[a,sk] into X, which satis-
fies the conditions 1) 2) and 3) of our Lemma on [a,s,]. To
prove the assertion it is sufficient to prove that l1e I and
if keI, k<n, then k +1cI.

1) a) If F is positively (or negatively) conically .diffe-
rentiable on Ls ,8;1, then take the family 9 constructed in
the Theorem 1 for F on[s_,8,]1. It is clear that T satisfies
the conditions 1) 2) and 3).

b) If Cflﬁ'(t))'< ¢ for all t eﬁé;,alq then we put
Fadifrar (1) =x + f:q('r:)d'u | xeFla), tels ,op]. It
is clear that ¥ satisfies the conditions 1) and 3) and for
each tels _,8,] G(t) ={f(1)I e F% = F(a) + _fi?(’c')dc' €
e €, (x) and (F - O (I =1F(1) - [4g(t)}, 081l <e.
It follows that d(F(t),G(t)) =NF(t) - BC(t)ll < & (t-a) <
£ e(s) - aly
This means that leI.

2) Let keI, kx<n and let _31 be a convex family of diffe-
rentiable maps of ia,sk] into X satisfying the conditions
1) 2) and 3).

a) Let F be positively (or negatively) conically diffe-
rentiable on [Sk’sk+1] amd let EL be the convex family of
differentiable selections of F on Lsy,s, ;] constructed in
Theorem 1. For each g ¢ @; , h e 3 put
~yt)fm'te[aﬁk]

£, (t) ={
g,h h(t) + (g(sy) - h(s})) for t eLSk’sk+i]

Then, of course, fg p is continuously differentiable on
’
. . . . A
La,sk+lj and fg,h is a continuous selection of F on [a,sk+1l.
We write gah for g € § , h e F if liglsy) - his) |l =
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) 1 i T :
4 e(s,~a) + 3E(8, 18, ). Put F= {fg’hlf ef ,hed ,
gah}. Then ¥ is a convex family, since .-JZ ’ 3]'( are con-
vex. On the other hand, d(F(sk),ig(sk)\g € ?k ) =
= d({h(ek)\h = @K§ ,fg(sk)lg € ":ﬁk 1) £elspmal< e (s -a) +
+ % €(sk+1-sk). For each g € F (resp. h € Fe ) there ex-
ists an h < ‘3’k (resp. g € Eﬁ; ) such that gah. Then ¥ sa-
tisfies the conditions 1) and 3) on la,s, ;] and the condi-
tion 2) onla,s ). Let x e{f(t)|f e F¢ for tels,s 1, then
there exists g€ ¥, h e ¥ such that x = £ p(t) and

Mx - n()i = llg, ((8) = h(0) i =lgley) - his )l < e(sy,-a)

If xeF(t) for t e[sk,skﬂl , then there exists h ¢ ¥, such

that jilx - h(t) ) < %(skﬂ'ek)' Let g € ?kﬂ be such that gah,
- V4lix - - ‘

then fix fg’h(t)ﬂ £lix - h(OI +lint) - £, , (W) <

< ¢(8sy, - a). This shows that Ad(F(t),if()If cFs) =

fe(sy 4 =~ a) for all teL\wk,sk+ll. This means that ¥ satis-

fies the conditions 1),2),3).

b) If d'(ﬁ'(t)) < & for all te[sk,sk+lj then for each

e? t
& x PY - g(t) for t ela,s
£,(t) = {

Denote 3 = {fgzg € ?klx. Then it is clesr that ¥ satisfies

k]
t -
g(sy) + ‘l;&?(fc)dc for telsy,s, 7.

the conditions 1),3) on [a,s,,,] and the condition 2) on

[a,8,]. For tels,,s, .1 set

6(1) = {2 et = als)lg e Tyl + [ ¢ (Waw e 7,0,

Then I(F - &) (1) = IF"(¢) - Lig(t)}, {031l <€ -
Hence d(F(t),G(t)) = d(F(t), {£(t)\f e FF) = I F(t) - G
£ 1 B(sy) - (el + & (1 = 8)
£ g (sk-a) + < (t-ay) £ € (8yyq- sk).
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This shows that kX + 1 I and this completes the proof.

Theorem 2. Let € > O and let Fy(t) = F(t) +*¢S,, whe-
.re Sy ={xeX|ilxh£1%. Then f"(t) = (1) for all tela,bl
and there exists a family F of differentiable selections of

Fe such that

Y

A, A
1) £’ is a continuous selection of F’ (soc as of F

)

®

for all f ¢ § ;

2) F (t) = {f(t)Ifed} for all tela,bl.

3) For each tela,bl either Aft) =4i{f (t)Ife F? or
B(t) ={-f (Ife 3.

Proof. Without loss of generality we can suppose that

b=a+1l, It is clear that I?é(t) = $°(1) for all tela,bl
%)

andmL g > 0. Let r, >0 be such that ¢= § r,. Put €, =
= Z r.. By Lemma 4 there exists a convex family % (F. )

i
of differentiable maps of [a,b] into X such that:

Thel En

1) f° is a continuous selection of ﬁe' (so as of ﬁ') for
n
f e 6“ (F )-
Th+l 8n
2) a(F. (L), 4f(t)fted (F. )})4#r
€n ' Thtl én n+l

A, .
3) If tela,bl, I (F'(t))>r then either

n+l’
A(v) =47 ()it ed (E, )} or B(t) ={-£'(t)lte & (F, )5
© n+l “n n+l °n
Put =0 F (F. ). Then ¥ is a convex family of diffe-
0 rn+1 En

rentiable selections of F, satisfying the conditions 1) 3)
and for te¢la,b]l we have {f(t)|fe 4} = F (), and '

A(F (t),{f()If e F} )< d(Fa(t),{f(t)lf.eﬁ'rn+1(Fan}) £

éd(Fe(t),Fen(t)) + d(Fen(t),if(t)\fe £ uejen)}) P

n+l
£(e-¢,) +r,,, for all n, Hence A(F, () 4f(t)ILeFg) =0

and this completes the proof.
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Theorem 3. Let (ai,bi) i=1,2,... be the intervals
constructed in Lemma 3 {a;},ibst sequences with at most two
limit points a and b, If int F(t) + # for all tela,b] then
there exists a convex family ¥ of differentiable selections
of F such that:

1) £’ is a continuous selection of F’ on [a,b] for all
fe?

2) F(t) = if(t)ifeF} for all tela,b]
int F(t) = i£(t)ife Tt for all te(a,b)

3) For each te[a,b] either A(t) =4f (t)Ife ¢ or
B(t) ={-£"(t)Ife T .

Proof. It is sufficient to prove the case b is a uni-
que limit point of {bii (so as of {ai7x ), i.e. we can suppo-
se:

a = a< bléaz<...~f—.an<bné...élim a, =limb, = b
Then F is positively or negatively conically differentiable
an [,ai’ai+13 for i = 1,2,... . By the Remark 1 there exist
convex families & n of differentiable selections of F on
La;,a ,,]1, which satisfy themconditions 1),2),3) on
Lay,a,,11. Let WL = 1(£fy) €T ?n\fn(am_l) = £ 4+1884,) for
all n = 1,2,...}. For each (f;) ¢ W put ’H(fm)(t) = £, (t)

for all tela ,a ,.] and all n = 1,2,... . Then Tx(f y is con-
m

n+l
tinuously differentiable on Y/ [an'%+1] = [a,b). It is
clear that F'(b)e %(X). Let F'(b) = 2e({x,}), then

~e . . .
%gmb_h(fm)(t) = xp. It implies that there existe
%.1;1. h(fm)(t), too.
We define:
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) h(fm)(t) for tela,bl

h(fm)(t) = Jl
lim % (t) for t = b
ey IR E A

T2
7 ={h(fm)](fm) e My

-~

Ther. it is easy to see that 3 satisfies tne conditions 1)

2) and 3). This ccmpletes the proof.
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