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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

22,3 (1981) 

NOTES ON GENERALIZED PRIME AND COPRIME MODULES I. 
Josef JIRASKO 

Abstract: The article continues the study of prime and 
coprime modules which were introduced by L. Bican, P. Jambor, 
T. Kepka, P. Nemec in 17]* The concept of semi prime module 
which generalizes the notion of semiprime ideal as well as 
various generalizations of prime and semiprime modules are 
given. Numerous results known on prime (semiprime) rings and 
prime radical can be transferred to the modules* Rings in 
which every module is generalized prime are characterised. 
The preradical approach makes the dualization of these con
cepts possible; this leads to the definition of generalized 
coprime modules to which the second part of the article is 
dedicated. 

Key words: Prime modules, semiprime modules, their ge
neralizations^" prime radical* 

Classification: 16A12 

In the following R stands for an associative ring with 

unit element and R-mod denotes the category of all unitary 

left R-modules* 

A preradical r for R-mod is a subfunctor of the identi

ty functor i.e. r assigns to every module M its submodule 

r(M) such that every homomorphism f :lf—>N induces a ho»o-

morphism from r(M) into r(N) by restriction. 

A module M is r-torsion if r(M) * If and r-torsionfree 

if r(M) « 0. The class of all r-torsion (r-torsionfree) mo

dules will be denoted by 3*T ( ?^). 
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A preradical r is said to be 

- idempotent if r(M) € jT for every module M, 

- a radical if M/r(M) e $T for every module M, 

- hereditary if for every module M and every monomorphism 

f:A—«>r(M), A e T r, 

- pseudohereditary if for every projective module M and eve

ry monomorphism f :A—> r(M), A c J*r, 

- superhereditary if it is hereditary and J* is closed un

der direct products, 

- cohereditary if for every module M and every epimorphism 

f:M/r(M)—>A, A € 3^. 

The idempotent core F of a preradical r is defined by 

r (M) « S K , where K runs through all r-tors ion submodules K 

of M, the cohereditary core ch(r) by ch(r)(M) • r(R)Mf M e 

€ R-mod. 

The superhereditary (cohereditary) preradical correspon

ding to a two-sided ideal I is defined by s(M) * tmeM; Im =-

= 0} (s(M) * IM), Mc R-mod. The infective hull of M will be 

denoted by E(M). 

A submodule N of a module M is characteristic in M, if 

there is a preradical r such that N = r(M). 

For a non-empty class of modules & p denotes the ra

dical defined by pa (M) « f) Ker ff f € HomR(MfA)f A e & * 

A module M is pseudo-injective if p* J is hereditary. A 

module P is strongly M-projective if P/(0:M)P is projective 

in R/(0:M)-mod. 

A ring R is a left VS-ring if every module is pseudo-in

jective. A ring R is left quasi-hereditary if every two-sided 
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ideal is projective as a left module. 

Proposition 0»1» Let MeR-mod. Then the following are 

equivalent 

(i) p*M* is pseudohereditary (p* * is pseudohereditary), 

(ii) ch(p«) * ch(piE(M») (eh^ 5 5) * eh(p*«>J))f 

Ciii) (0:M) = (0:E(M)) (p*M*(R) * (0:E(M)))f 

(iv) ch(piMi)(E(M)) * 0 ( c h ( ^ ) (E(M)) » 0). 

Proof. Obvious. 

Finally Soc(J) will be denoted the Socle (Jacobson radi

cal) and IN the set of all natural numbers; zer denotes the 

zero functor. 

§ 1. Prime and semiprime modules 

1.1. A module MdR-mod is called 

- prime if p* MM) « 0 for every nonzero submodule N of M, 

- pseudoprime if ch(p )(M) * 0 for every nonzero submodule 

N of M, 
-TFJJT 

- i-prime if p (M) » 0 for every nonzero submodule N of M, 

- i-pseudoprime if ch(px 3 )(M) = 0 for every nonzero submodu-

le N of Mf 

semap 

of Mf 

pseud 

submodule N of M, 

i-sem 

of Mf   

-IN? i-pseudo-semiprime i f Nnch(p )(M) « 0 for every nonzero 
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4N? - 3emiprime i f Nn p (M) * 0 for every nonzero submodule N 

- pseudo-semiprime i f Nnch(p *)(M) a 0 for every nonzero 

ill* 
i-semiprime i f No p (M) * 0 for every nonzero submodule 1 



aubmodule N of M. 

For modules M, N and their submodules A&M and B£N l e t 

us define t(AfMfBfN) by t(AfMfBfN) » Z f ( A ) , feHomH(M.B). 

Proposition 1.2. Let Mc R-mod and 0—»KC—* pJ-->M~-> 0 

be a projective presentation of M. Then 

( i ) M i s prime i f and only i f p*M*« p*K$ for every non-

sero aubmodule N of M i f and only i f t(A,M,B,M) + 0 for a l l 

nonsero submodules A.BCM, 

( i i ) M i s pseudoprime i f and only i f ch(p*Mj) = ch(p*Nj) 

for every nonsero aubmodule N of M i f and only i f (0:M) * 

* (OtN) for every nonsero aubmodule N of M i f and only i f 

t(AfPfB,M)#0 for a l l A^p, A 4 K and 04-BS.M, 

( i i i ) • i s i-prime i f and only i f p®** p ^ for every 

nonsero aubmodule N of M i f and only i f t(A,A,B,M)4-0 for a l l 

nonsero submodules AfB£Mf 

( iv) M i s i-pseudoprime i f and only i f t(AfAfB,M)+0 for 

a l l A&Pf A$K and 04=B^M, 

(v) M i s semiprime i f and only i f t(AfMf AfM)*0 for eve

ry nonsero aubmodule A of M i f and only i f t(AfMyBfM)-f 0 for 

a l l submodules A,B£M with AnB+Of 

(vi) M i s pseudo-semiprime i f and only i f Nn(0:N)M » 0 

for every nonsero aubmodule N of M i f and only i f t(AfPfg(A),M)4= 

* 0 for every ASPf A$K i f and only i f t(AfPfBfM)+0 for a l l 

A£P f BSMwith g"1(B)nA*Kf 

(vi i ) M i s i-semiprime i f and only i f t(A,AfB,M)4-0 for 

a l l submodules AfB£M with Ar\B4-0f 

( v i i i ) M is i-pseudo-semiprime i f and only i f t(AfAfBfM)4= 

+ 0 for a l l ASP, BSM with Ar»g-1(B)^K. 

- 470 -



Proof, (i) waa proved in £71. 

(viii). Suppose M is i-pseudo-semiprime, AfeP, B£M f 

Ang"1(B)4.K and t(AfAfBfM) • 0. Then A * p*
Bi(A) and henca 

g(A)Sch(p"tBI)(M). Thus g(Ang 4(B)) » Bn g(A)£Bnch(pIBJ )(M)a 

= 0, a contradiction. 

On the contrary if 04-NSM and N n c h ( p W )(M)40 than sat A * 

» p m (V) and B « N. Then t(AfA,BfM)4-0 ainca Ang" 1(B)#K. 

Hence A.^p^^3(A) a Af a contradiction. 

The remaining assertions can be proved similarly. 

Remark 1.3. In Proposition 1.2 N and B can be replaced 

by N cyclic and B cyclic. 

Proposition 1.4. Let Me R-mod. 

If M is projective then 

(i) M is prime if and only if M is pseudoprimef 

(ii) M is i-prime if and only if M ia i-pseudoprime, 

(iii) M is semi prime if and only if M ia pseudosamiprime, 

(iv) M ia i-semiprime if and only if M is i-pseudo-semiprima. 

If M ia uniform than 

(v) M ia prime if and only if M ia semiprime, 

(vi) M ia i-prime if and only if M is i-semiprime, 

(vii) M ia psaudoprime if and only if M is pseudo-semiprime, 

(viii) M ia i-pseudoprime if and only if M ia i-pseudo-semi-

prime. 

Proof. Obvioua. 

Proposition 1.3. Every completely reducible module is ea

rn! prime. 

Proof. Obvioua. 
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Clearly, the classes of all prime, i-prime, paeudoprime, 

i-pseudoprime, semiprime, i-semiprime, pseudo-semiprime and 

i-pseudo-aemiprime module a are cloaed under submodules. 

Proposition 1.6. Let N be a aubmodule of M and 

0—.»Kc—-• P— ff> M — > 0 be a projective preaentation of M. 

Then 

(i) M/N ia paeudoprime if and only if t(AfPfBfM)^N 

whenever g(A)^N and B$N, 

(ii) M/N ia pseudo-semiprime if and only if t(A,P,B,M)^. 

£ N whenever g(A)r\B$N; 

if M is projective then 

(iii) M/N ia prime implies t(A,M,B,M)^N whenever A^N 

and B£.Nf 

(iv) M/N ia semiprime implied t(A,M,B,M)$N whenever 

A A B ^ N ; 

if N ia a characteristic aubmodule of M then 

(v) if t(A,tf,B,M)$N whenever A$N and B$N then M/N ia 

prime, 

(vi) if t(A,M,A,M)^N whenever A^N then M/N ia semi-

prime. 

Proof, (iii) and (v) were proved in £73 • 

(ii). Suppose M/N ia pseudo-semiprime Ae.P, Bill and g(A)o 

AB#N. Thent(A,P,(B+N)/N,MVN) + 0 aince (g(A)+N)/Ho(B+N)/N + 

4-0 and M/N ia pseudo-semiprime. Thus f(A) + 0 for some f:P—-> 

—*-(B+N)/N. Therefore there ia a homomorphiam h:P—> B auch 

that JToh * f, where rf ia the natural epimorphiam. Thus 

h(A)^N and consequently t(A,P,B,M)4 N. 

On the other hand if ASP, B/NsM/N auch that (g(A)+N)/Nn 

AB/K40 then t(A,P,3fM)4N aince g(A)AB<$.N. Hence there is 
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a homomorphism f :P—> B with f (A)4N« $nus f* » f- f :P—>B/tf, 

where st is the natural epimorphism, f (A)^O and consequently 

M/N is pseudo-semiprime since t(A,P,B/N,M/N)40. 

The remaining assertions can be proved similarly • 

(Left) ideals I with the property R/I to be prime (pseu-

doprime) were described in E7J. 

Proposition 1.7« The following are equivalent for a left 

ideal I in R: 

(i) R/I is semiprime, 

( i i ) for every xeR\ # I there i s yel+Rx with I y £ I and 

xy<fcl, 

( i i i ) for every xe R V I there i s ze R with IZXJSI and 

xzx^ I . 

Proof. The equivalence of ( i i ) and ( i i i ) i s cbvious. 

( i ) implies ( i i ) . If x€ R \* I then there i s a homomorph

ism f :R/I —> (I+Rx)/I with f(x+I)4-0. Set f ( l+I) « y+I. Then 

Iy£ I and x y ^ I . 

( i i ) implies ( i ) . If 1$ KSR and x€K V I then there i s 

y€ I+Rx£K with Iy£ I and x y + I . Let us define a homomorphism 

f:R/I—>K/I by f(r+I) » ry+I. Then f(x+I) + 0. 

Proposition 1.8. The following are equivalent for a le f t 

ideal I in R: 

( i ) R/I i s pseudo-semiprime, 

( i i ) i f A, B are l e f t ideals then A* B t l implies A n B S I , 

( i i i ) i f A i s a twosided ideal and B is a le f t ideal with 

A- BSI then Ar\BSl, 

(iv) i f A i s a l e f t ideal then A2S I implies Ai~I, 

(v) i f acR, aRasI then a £ l . 
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Proof, (i) is equivalent to (ii). It follows immedia

tely from Proposition 1.6 (ii). The rest is clear. 

Corollary 1.9. The following are equivalent for a twoai-

ded ideal I in R: 

(i) Jt/I is semiprime, 

(ii) R/I is paeudo-semiprime, 

(iii) if A, B are twosided ideals then A • Bsl implies 

kr\B£lf 

(iv) if A is a twosided ideal then A £ l implies A£l. 

Proof: It follows immediately from Propositions 1.6 and 

1.8. 

Remark: J. Dauns showed that if M is pseudoprime and K 

is a complement in M then M/N is pseudoprime (C8J, Prop. 2.7). 

Proposition 1.10. If I is a twosided ideal in R and s is 

the superhereditary preradical corresponding to I then 

(i) M is pseudoprime implies s(M) * M if s(M)4-0, 

(ii) M is ps eudo-semiprime implies s(M)nIM = 0. 

Moreover if I is idempotent then 

(iii) M is i-pseudoprime implies s(M) = M if s(M) + 0, 

(iv) M is i-pseudo-semiprime implies s(M)oIM » 0. 

Proof, (iii). Let 0—> K c_> P.-JU U—.• 0 be a-projec

tive presentation of M« As it is easy to see IPsp*8*1*'* (p) 

and hence IP£p* a W* (P) since I is idempotent. Now IM « g(ip)4. 

£g(p4s(M)i (pjj m ch(p^»(MB j(Mj a n d consequently IM « 0 if 

s(M)4-0 and M is i-pseudo-prime. 

The rest can be proved similarly as above. 

The following lemma has a technical character. We present 

it here without the proof. 
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Lemma 1 . 1 1 . Let McR-mod and 0 —* K «£—• P .-JL* M—>0 

be a p r o j e c t i v e p r e s e n t a t i o n of M. For A S P , B£ M l e t us d e 

no te T(A,P,B,M) «* ^ f ( A ) , f€HomR(P,P) and Im g o f £ B , Then 

( i ) g(T(A,P,B,M)) = t(A,P,B,M) for a l l A<-=P and B^M, 

( i i ) t (T(A,P,B,M),P,C,M)c t (A,P , t (g" 1 (B) ,P ,C ,M) ,M) for a l l 

A£ P and B,CcM, 

( i i i ) t(t(A,P,B,M),M,C,M) = t(A,P,t(B,M,C,M) ,M) for a l l A S P 

and B,CSM. 

Proposition 1.12. Let N be a submodule of M and C be 

the largest characteristic submodule of M contained in N. Then 

(i) if M/N is pseudoprime then M/C is so, 

(ii) if M/N is pseudo-semiprime then M/C is so. 

Moreover if M is projective then 

(iii) if M/N is pseudoprime then M/C is prime, 

(iv) if M/N is pseudo-semiprime then M/C is semiprime. 

Proof, (iii) and (iv). It follows from (i) and (ii) and 

Proposition 1.6. 

(ii). Let 0 —?K <-—> P —§-*> M — * 0 be a projective presen

tation of M, A&P and BB M such that g(A)n B-£C. Suppose 

t(A,P,B,M)£ C. Then t(T(A,PtMfM) fPft(B,MfMfM),M) S 

.S t(A,P,t(P,P,t(B,M,M,M),M),M)s t(A,P,t(B,M,M,M),M) * 

- t(t(A,P,B,M),M,MfM)ct(C,M,M,M)cC£N by Lemma 1.11 (ii) and 

(iii) since C is characteristic in M. Now M/N is pseudo-semi

prime, hence X * t(A,P,M,M)o t(B,M,M,M) « g(T(A,P,MfM))n 

nt(B,M,M,M)£N. Further, t(A,P,MfM) and t(B,M,M,M) are charac

teristic in M, hence X is characteristic in M. Thus XcC and 

therefore g(A)n3SX£C, a contradiction. 

(i). It can be proved similarly as in (ii). 
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Corollary 1.13* (i) If M is pseudoprime then P/(0;M)P 

is prime for every projective module P. 

(ii) If M is pseudo-semiprime then P/(0:M)P is semipri-

me for every projective module P. 

Proof, (ii). Let 0—**K*—^F—* > U—^0 be a free pre-

aentation of M. As it is easy to see (0:M)F is the largest 

characteristic submodule of F contained in K and F/(0:M)F is 

semiprime by Proposition 1.12. Hence R/(0:M) is semiprime and 

one may check easily that P/(0:M)P is semiprime for every pro

jective module P. 

(i). It can be made similar3y as in (ii). 

Corollary 1.14* Consider the following conditions : 

(i) M is prime (semiprime), 

(ii) M is pseudoprime (pseudo-semiprime), 

(iii) R/(0:M) is a prime (semiprime) ring, 

(iv) R/(0:M) is a prime (semiprime) R-module, 

(v) there is a prime (semiprime) module N with (0:N) == (0:M), 

(vi) every submodule Q with (0:M)PnQ * 0 of a strongly M-

projective module P is prime (semiprime). 

Then the conditions (iii),(iv),(v) and (vi) are equivalent, 

(i) implies (ii) and (ii) implies (iii). Moreover if M =- Ra, 

where (0:a) is a twosided ideal then all conditions are equi

valent . 

Proof. It follows immediately from Corollaries 1.13 and 

1.9. 

Corollary 1.13. Let M be a module without nontrivial cha

racteristic submodules. If J(M)4"M then M is pseudoprime. 

Proof. It follows from Proposition 1.12. 
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Proposition 1.16. Let MeR-mod. Then 

(i) if M is prime and Soc(M) + 0 then J(M) = 0, 

(ii) if M is pseudoprime and Soc(M) + 0 then J(R)M a Q 

(iii) if M is i-prime and Soc(M) + 0 then J(M) = 0 , 

(ir) if M is i-pseudo-prime and Soc(M)4-0 then J(R)M = 0, 

(v) if M is semiprime then Soc(M)o J(M) = 0, 

(vi) if M is pseudo-semiprime then Soc(M)n J(R)M » ot 

(vii) if M is i-semiprime then Soc(M)nJ(M) = 0f 

(viii) if M is i-pseudo-semiprime then Soc(M)nJ(R)M = 0. 

Proof. Obvi ous. 

Proposition 1.17. (i) Every module is prime if and on

ly if every nonzero module is a cogenerator if and only if R 

is isomorphic to a matrix ring over a skew-field. 

(ii) Every module is pseudo-prime if and only if every 

nonzero module is faithful if and only if R is a simple ring. 

(iii) Every module is semiprime if and only if R is a 

left VS-ring if and only if every radical is hereditary. 

(iv) Every module is pseudo-semiprime if and only if 

(0:M) = (0:E(M)) for every module M if and only if every ra

dical is pseudohereditary if and only if every left ideal is 

idempotent. 

(v) Every module is i-prime if and only if p s ser 

for every nonzero module M if and only if R is isomorphic to 

a matrix ring over local left and right perfect ring. 

(vi) Every module is i-pseudoprime if and only if 

p*M5(R) = 0 for every nonzero module M. Moreover if Soc(R)+0 

it is equivalent to: R is isomorphic to a matrix ring over lo

cal right perfect ring and ch(J)(R) » 0; if R is left quasi-
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hereditary it is equivalent to: R is a ring without nontri

vial idempotent two-sided ideals. 
TMJ (vii) Every module is i-semiprime if and only if p 

is hereditary for every module M if and only if every idem-

potent radical is hereditary. 

(vii) Every module is i-pseudo-semiprime if and only if 

nil 
p is pseudohereditary for every module M if and only if e-

very idempotent radical is pseudohereditary. 

Proof. The equivalence of the first and the last condi

tion of (i) was proved in ill. Further every module is prime 

if and only if p = zer for every nonzero module M iff R has 

no nontrivial radicals. 
4 M2 

(ii). Every module is pseudo-prime iff ch(px ) = zer 

for every nonzero module M iff R has no nontrivial coheredita-

ry radicals. 

The rest is clear. 

For (iii) see [13], Proposition 3.1. The rest is clear, 

(vii) and (viii) can be made similarly as in (iii). 

(iv). It follows from Proposition 0.1 and the fact that 

every radical is pseudohereditary iff every cohereditary radi

cal is hereditary. The rest follows from [15], Proposition 

VI.1,29. 

(v). As it is easy to see every module is i-prime iff 

pi"'ss zer for every nonzero module M iff R has no nontrivial 

idempotent radicals. 

Th« r#«t follows from [15], Proposition VI.1.24. 

(•i). Every module is i-pseudoprime iff ch(p* *) = zer 

if M+O iff either r(R) = R or r(R) * 0 for every idempotent 

radical and it suffices to use 15 9 Proposition VI.1.23. 478 



Let & (;B) be the class of all prime (pseudo^prime) mo

dules. The prime radical (L (pseudo-prime radical ^ ) is de

fined as follows: Jp = p& ( ̂  = p 3 ). 

Proposition 1,18, Let Me R-mod and 0 —.»K^—>- P—-=~> M —-> 0 

be a projective presentation of M. Then 

(i) 9(U) = :T\(M) if M is projective, 

(ii) 3*^(11) is the set of all elements m of M with the 

following property: "whenever imifi e HI & M, ̂ b.,i e INiSP 

such that m-̂  = m, g(bi) = m.., bi+1e R^ and n-i+:i€ t(Rbi,P,Rmi,M) 

for all i e IN then there is k e IN with mk = 0 ", provided 

that K = (0:M)P, 

(iii) 3\(M) = p m(M) where W is the class of all pseu

do-semi prime modules, provided that K = (0:M)P, 

(iv) M is pseudo-semiprime if and only if 3\(M) = 0, 

provided that K = (0:M)P, 

(v) if M is projective then (P(U) is the set of all ele

ments m of M with the following property: whenever ̂ nbfi e INIc 

c M such that m-= m and n-i+1 £ t(Rmi,M,Rmi,M) for all i e IN 

then there is k e IN with m^ = 0, 

(vi) <P(B.) = pn (R), where 71 is the class of all semi-

prime modules, 

(vii) if M is projective then M is semiprime if and only 

if &(M) = 0, 

(viii) if M is projective and for every submodule N of 

M Nk is defined inductively as follows: N1 « N, N3**1 = 

= t(Nk,M,N,M) = t(N,M,Nk,M) for k € N then M is semiprime if 

and only if M has no nonzero nilpotent submodules i^e. when

ever ASM and A = 0 for some k e IN then A = 0, 
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Proof, ( i ) . I t fo l lows immediately from Proposit ion 

1.12 ( i i i ) . , 

( i i ) and ( i i i ) . Let X be the s e t of a l l elements m of M 

with the property which i s given in ( i i ) and M/N be a pseudo-

semi prime module. Suppose X^N. Then there are x , £ Xf x-^4 Nf 

b^€ P f g(b-1) = x.,. Suppose ix^9 • . .,XjJ S XV Nf h . , , . . , b ^ £ P , 

g ( b i ) » x i f b ^ H b ^ and x^€. t (Rb i^ l fP fRx i^ 1 >M) for i e i 2 f . . . 

. . . , k } . Then t(Rb^ fP fRxk ,M)^N s ince M/tt i s pseudo-semiprime 

and Rx k $N. Hence there i s ^ e t(Rbk,PfRx:KfM)f x . + 1 4 N # T h u s 

x k+l s a x k f o r s o m e a € R a n d ^t s u f f i c e s to s e t b^-. = ab^. 

Hence x^ Xf a contradict ion . Therefore X S p ^ ( M ) , where M 

i s the c l a s s of a l l pseudo-semiprime modules. 

On the other hand i f x e ^ (M)f x^X then there are {rn^ie 

e H i s M, **> i fi € IH U P such that x * m l f g ( b i ) = m ^ 0, 
b i + l e ^ i a n d m i + l € t(RbifPfRm^fM) for every i € IK . Put S = 

* i b . } f i e WJ , Let C be a submodule of P maximal in the s e t of 

a l l submodules D of P with DP K, D o S * 0 and D charac ter i s t i c 

in P . Suppose that A S P , B£ M such that g ( A ) ^ g ( C ) , B<£g(C) and 

t(A fP ,B ,M)S g(C) . As i t i s easy to s e e C% C + k£ C + T(AfPfM,M), 

Cf C + g - 1 ( B ) c c + g"1(t(BfMfMfM)) and C + T(AfPfMfM), C + 

+ g - (t(BfMfMfM)) are charac ter i s t i c in P . Hence there i s k e IN 

such that Hbk£ (T(A,P,MfM) + C) n (g""1(t(B,MfMfM)) + C). Thus 
1\+le t(Rbk fP fftak fM)s t((T(AfP,M,M) + C) fP , (t(B,M,MfM) + 

• g(C)),M)£ t(T(AfPfMfM),Pft(BfMfMfM)fM) + t (C f P f t(B,MfMfM) fM)+ 

+ t(T(A,PfM,M)fPfg(C)fM) + t (C,P f g(C) f M)et(A f P f t (P f P f t (B f M f l l f Ai 1 

M)fM) + t(CfP,M,M) + g(C)c t(AfPft(BfMfM,M)fM) + g(C) • 

=- t(t(AfP,BfM)fMfM,M) + g(C)st(g(C) fM,M fM) + g(C)fi g(C) by 

Lemma 1.11 ( i i ) and ( i i i ) # Thus m^+l* g ( C ) n g ( S ) * 0 , a con-
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tradictioa. Therefore M/g(C) is pseudoprime and x€g(C)n 

ng(S) = 0, a contradiction. Thus ^ ( M ^ X . 

(iv). If M is pseudo-semiprime then tP-j(M) = 0 by (iii)% 

Conversely if ^ ( M ) = 0, ASP, A$K then g(A)£ Cr\(M). Hence 

there is a homomorphism f :M-~^ N, where N is pseudoprime and 
Si 

f(g(A))4»0. Let 0—*%^c—*> P.,—=-> N — > 0 be a projective 

presentation of N. Then there is a homomorphism h:P~~^P^ with 

g-t<> h = fog. Further k(h(A))4-0 for some homomorphism k:P-.—> 

—>f(g(A)) since N is pseudoprime. Now f o p = lco h for some 

homomorphism p:P—>g(A) and hence t(A,P,g(A) ,M)4=0. Thus M 

is pseudo-semiprime by Proposition 1.2 (vi). 

(v) follows immediately from (ii) and (i). 

(vi) Follows immediately from (i),(iii) and Proposition 

1.12 (iv). 

(vii) Follows from (i) and (iv). 

(viii). Obvious (see Lemma 1.11 (iii)). 

Proposition 1.19. The following conditions are equiva

lent: 

(i) every pseudo-semiprime module is completely reducible, 

(ii) R/CP(R) is a completely reducible ring. 

Proof, (i) implies (ii). ̂ >
1(R/CP(R)) = 0 hence R/JMR) 

is pseudo-semiprime and R/:P(R) is completely reducible by as--

sumption. 

(ii) implies (i). If M is pseudo-semiprime then 3*-̂ (R)M* 

= pm(R)Msp^(M) = 0 where W> is the class of all pseudo-a**-

miprime modulees by Proposition 1.18 and consequently M is co*-* 

pletely reducible. 
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