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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
22,3 (1981)

A NOTE ON FACTOR-SPLITTING ABELIAN GROUPS OF RANK TWO
Ladislav BICAN

Abstract: The purpose of this note is to prove that
a torsionfree abelian group G of rank two is factor-split-
ting if and only if the set & of all primes decomposes in-
to A=y UvI, in such a way that G @ Z,r_‘ is homogeneous

and G ® Z,,v2 is either a Butler group or it is generated by

the (infinite) set of elements of (all) maximal types. As

a consequence we obtain a characterization of Butler groups
of rank two as finite extensiors of groups generated by ele-
ments of maximal types provided that the type set is not or-
dered.

Key words: Factor-splitting group, Butler group, homo-
geneous group, completely decomposable group, p-rank.

Classification: 20K15

By the word "group" we shall always mean an additively
written abelian group. The symbol s will denote the set of
all primes. If &x'c a then Z,
tionals with denominators prime to every p o’ . If me 2,

will denote the group of ra-

(m,p) = 1 for every p € &’ then we shall write (m,n”) = 1,
Any maximal linearly independent set of elements of a torsi-
onfree group G is called a basis. If G is a torsionfree grou
then the set of all elements g of G having infinite p-height
is a subgroup of G which will be denoted by GI[p®]. It is
well-known (see [12]) that if G is a torsionfree group of

finite rank and F its fre2subgroup of the same rank then
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the number rp(G) of sufmands C(p%®) in G/F does not depend
on the particular choice of F and this number is called the
p-rank of G, Recall [13] that a torsionfree group G is said
to be factor-splitting if each homomorphic image of G splits,
and [ 11,061 that G is called a Butler group (purely finitely
generated group) if it contains elements 81183100048y such
that G =ig‘l< gi)f . The type set of a torsionfree group G

is denoted by Z (G). Other notations and terminology is es-

sentially that as in (8],

We start with some known results on factor-splitting
and Butler groups. If p is a prime then we shall say that a
basis {.u,v} of a torsionfree group G of rank two satisfies
(FSp) if either hp(u) = hy(v) or G® 2, = KuX® 2) @
® Kvo, ® Z,).

1. lemma ([2; Theorem 1]): A torsionfree group G of
rank two is factor-splitting if and only if every basis of

G satisfies (FSp) for almost all primes p.

2. lemma ([2; Theorem 2)): Any homogeneous torsionfree
group of rank two is factor-splittimg.

3. Lemma ([4; Lemma 8] or [3; Lemma 5]): Let &=
”m
= .\, 9r; and let G be a torsionfree group. If G & Z'ﬂ’.;, ,

i=12,...,m, is factor-splitting then G is factor-splitting.

4, lemma (L5; Theorem 4]): Every Butler group is fac~
tor-splitting.

5. Lemma ([7; Theorem 5]): Every Butler group with or-

dered type set is completely  decomposable.
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6. Lemma: Let {g,h{ be a basis of a torsionfree
group G of rank two, If G @Zp = (g >*® zp) ® (<h>x@zp)
for each prime p € ov’S 5 then G ® Zpr = K% ®2,,)®
® Kh®7Z,,).

Proof: If pesr’ and 04 geG are arbitrary then by
the hypothesis there is Osk-{&pe Z with {Spg =X, + ¥p
(BpsP) =1, xpe<g>* » ¥Yp€<hD, « If q,...,r are all pri-:
mes from s’/ dividing (3, then similarly B8 = %Xq * Tq»
(3qgr) =1, xqe(g)* , ch‘(h)*,..., BrB = Xp * Yy
(Bpor) =1, x e<80x ) ¥p€ <h), . Denoting d = (ﬁp.ﬂq,...
ey 3p), we obviously get (@,#9 =1, ag = x +y, xelgd,,
ye<h), and the assertion follows easily.

Now we are ready to prove the main result.

7. Theorem: A torsionfree group G of rank two is fac-
tor-splitting if and only if there is a decomposition #'=

= Wlum‘z such that G@Z% is homogeneous and either

(1) G®2Z, is a Butler group
2
or
g . . A A l N

(2) G® Zq, =;=4<5i>a® zﬁ}, where {7 (g;) =7 li =
=1,2,...} is the set of all maximal elements of <% (G),
’%i" %d =2 for all i,j =1,2,0+.y i4j, and from .xgk =
= gy *+ ¥ 8; it follows hp(agk) = min {hp((“gi)’
hp(vgj)f for almost all primes p with hp(gi)-f:hp(gj).

Proof: Sufficiency. If (1) holds then G is factor-
splitting by Lemmas 2, 4 and 3.

Assume (2)., With respect to Lemmas 2 and 3 we can res-
trict ourselves to the case ; = # (i.e. Z.,,.2 = Z). First

we shall show that G® Z, = Ke®@ 2,)® (g% ® 2,)
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for almost all primes p with hp(gi)'-f-hp(gj). Without loss
of generality we can restrict ourselves to the case k =
= hp(gl)<hp(82) = 1< co (the case 1 = oo being trivial).
In view of @i A 92 = %1 N '92 =T it is hy(g;) = hp(sl)
for almost all primes considered. Moreover, for almost all
such primes the equality o;8; = ;18 *+ 78, (ocgy Biray)=
=1, i = 3,4,..., yields hp(ocisi) = mnfhp([sisl),
hy( ¥38p)% . Then, obviously, 8; = hp(oci)ﬁhp(/}i) and 8; £
<1 - k, for otherwise one easily obtains hp( ¥1)>0 which
contradicts the hypothesis (o¢y, (335 2*3) = 1. Now for each
such prime p there are elements Xy¥9X5 € G with pkx = 81
Py = & kai =g, i=3,4,..., and it suffices to show
that each element ge& G with prg ﬁ-x + my lies in {X,¥70
By hypothesis, »g = A,x +.l2y +. Z 33X, (»,p) = 1. Set-
ting «= 063 4'"°6n = °‘i°‘i we get plyoog = pl koc algf
v ood gy + 2, 01T (B ¢ T8y = (P ¢
+ pl“‘ SRy BEy + (why + MR AT e, =

=p ((o»ﬂ. + g Q\:ioc (ﬁl)x + (otdjy + pl-k% i?'i)y)
and 80 Yo g = (q,a. + - Zsaioc ;)% + (oc,}k +
+ Pl—kiga‘%i <3 ¥3)y = Ax+ yy. Nows '4’,%39:‘. = hp(oC),
PP’ = o s (x%4p) =1, and it is easy to see that p’i/}
iy, B=p°p, v=p°y’. Thus wivg = px + ¥y,
(</»,p) = 1, which together with pPg=Ax + @Y yields
ge<x,y).

Now let {u,v} be an arbitrary basis of G. Since 2(G) =

= {’?f, @1, %2,...§, there are essentially three possibili-
ties. If 2 (u) = T(v) = L then {u,v} obviously satisfies

(FSp) for almost all primes p. If 2(u) = £ and 2(v) = ’Gi
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for some i, then {vD, = {g;>¢ (otherwise <g;,v>x = G and
each non-zero element of G is of the type = %i). Thus
eV = 6g; and gu =Ad g) + «g; for some non-zero inte-
gers @, &,7,A, & . For each prime p relatively prime
to these integers we have g; ® 1 = Ag, ®(1/a) =

= (qu- xg;)) ®Q/A) =u@ (/) - g & (L/w) in
G@ Zp. Hence, by the preceding part, G®& Zp =

.

= Ku>.® Zp) ® Kvy® Zp) for almost all primes with
hp(gl).-.fshp(gi) and {u,v}{ satisfies (FSp) for almost all pri-
mes. Finally, if <ud, = <4g% , <V = <gj>* for some i#j,
then G ® Zp = Ku> & Zp)(-B (Kv>,, ® zp) for almost all pri-
mes p with hp(gi)# hp(g‘j) and {u,v} satisfies (FSp) for al-

most all primes p. So G is factor-splitting by Lemma 1.

Necessity. Put ] = {peaml r(G[p“"J)<rp(G)§ and
o', = o \ar,. Suppose, first, that the set of all maximal
elements of 2(G) is finite, say {%l, ’«3’2,..., 'f:}ng, and
let g1,85,+++,8, be the elements of G of types %1, "L\’z,...

. P ,
eeey 2y, respectively. If Ty s {p s.ﬂ’zlhp(gi)< hp(gj)_;,
i,j =1,2,...,n, i3 j, then Lemma 1 yields G&® Zp =
= (<B37% @Zp)@ ((gj >,‘®Zp) for a cofinite subset i of
"T’i.j' Putting o7, =4‘,\,';:"ﬁ‘ij and ) = 'Jr'lu(ar"z\ 7y) we
easily see by Lemma 6 and [5; Theorem 2] that G® Z,. is
1
a Butler group. Further, for p e.rri the group G ® Zp is ob~
viously indecomposable and so Lemma 1 yields the homogeneity
of G® Z_,;.g . The set or’,\ a7, decomposes into
’ s ’

(4;—2\(%\,_‘);: grij))u((zgy- ‘”ij)\ ( H”; "‘-ij)) where the last
subset is finite. For each p eaﬂ’;\(‘% ;rr’ij) it is hp(gi) =
= hp(gj) for all i,j = 1,2,...,n. Now, if g€ G is such that
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hp(8)>hp(gi) for an infinite set of primes p from

"12\(4'-% a’;;), then, obviously, hp(g) = hp(gj) for al-

J
most all primes p € 754 and so =(g) Il 'Qi for each i =
=1,2,...,n (the sets oy are infinite owing to the in-

comparability of 2;, ??J-). However, 2(g) is maximal in
2(G), G being of rank two, which contradicts the choice

of %1, %2,..., % . From this contradiction it immediately

n
follows that G & Z,,:‘ is a homogeneous group.

Now we proceed to the infinite case. Let {%1, ’?-’2,...§
be the set of all maximal elements of 2(G). If ¢,,c,e@
are elements of types %l’ %2, respectively, then, by Lem-
ma l, G®Z, = (Key> & 20 @ (Lep%® 2Z,) for almost all
primes p with hp(cl)f{shp(cz) and so we can choose suitable

multiplies g1 & of ¢4, ¢, such that

(3) 6B Z, = Kegpy @ 2,) ® (g5, B 2Z))
for all primes with hp(gl)# hp(gz). Since {g,,8,} is a ba-
sis of G we can choose elements c3,c4,... in G of types
‘33, ‘34,..., respectively, which are linear combinations
of g, 8. Put © = '::(gl) n’c(gz) and assume we have const-

ructed the elements 8118010 +458, such that

(4) R(gy) = %5, 1=1,2,...0n,

(5) =z(g)n wlgy) =, i, = 1,2,..0,n, i,

(6) GO, = K& >s® 2))® (<85, ® Z)) for all i =
= 2,.00,n and all primes p with hp(g1)< hp(gi).

If for each i,j = 1,2,...,n, i#%Jj, we denote ;55 =
={pew lhp(gi)< hp(gj)i and 3, = ¥y, v ar,,, then by

Lemma 6 we have
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(7) 6@ zf2 = (g ok ® 27, ) ® Kgy>x® Za-z)
and

8) GBZ, = (& x® Zay; ) ® Kepx ® Iy )
for all i = 3,...,n.

Further, for i,j = 1,2,...,n, i4j, and PE Iy :n y
we have by (5) minfh(g;), h,(g;)% = h,(g;)< minth (g;),
hp(gj)§ , a contradiction showing Ty ﬂ‘lj = f. Similar-
ly we shall show

) MSTRANEY I

9
g oo I -
="y "
for all 1,3,2,3,...,n, i .

Since ¢;,1 is a linear combination of 8,8, it is
hp(°n+1) Z z(p) for all primes p and, by (7) and (8),
hp(cm-l) = 2(p) for almost all primes p € /M, v MipUees
ees Uy, Thus there is d . €<ep 9D with hy(d,,5) = = (p)
for all primes PETHV ”12“"' U JTyne. Further, from the
incomparability of %1' '32,..., %n' %n-rl it follows that
hp(dn+1) > ¢(p) for infinitely many primes p ¢Jr21u Ty v
Ueee U . By Lemma 1, G® Zp = (g7 @ Zp) ® (K4, ,1«®
® Zp) for almost all primes p with hp(g1)< hp(dn+1) and
hence for suitable element &n41€ <dn+1>* the equality (6)
holds for all primes p e.n’l n+l’ Moreover, the relations

?
(4) and (5) obviously hold for all i,Jj = 1,2,...,n+l, izj.
Thus, by induction, we have constructed the elements g1»
855+++ 8such that the formulas (4),(5),(6) (and consequent-
ly (7),(8),(9)) hold for all i,j = 1,2,.e.,i% j. Now, by
Lemma 1, G ® Zp = (C8;% ® Zp) ® (<sj>*®Zp) for almost
all primes p with hp(gi).-#hp(gj) and so for Agy = “8; *
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+ vgj the equality h (2g,) = min-fhp((u.gi), hp(vgj)f
holds for almost all auch primes.

Put J, = "21%‘32 # s and Iy = w\&,. Then
a® ZJL’, is homogeneous, for otherwise we easily obtain an
element from G, the type of which is incomparable with all
the types %1, t’z,... . Concerning the equality G® Z,r
= Z <g1>*@ Z we can without loss of generality suppo-
se that .T‘l = ¢. If O%geG is an arbitrary element then,
by (7), (3,8 = x(2) + Xp, x(Z)e <8 Vx » X3€<8,7 , and
(355 ¥,) = 1. If (3, has components in T3 ;1714,..., T
only, then (8) yields B.g = x(l) + x; with x( )e <g’x ,
x;€<g57% and (33, 9;) =1 fﬂ?lr all i = 3,...,n. Now
(B2y Byreees Bp) = 1yields ; &, ﬁi'yi = 1 for suitable
integers ’3’2, 7‘3,...,’3‘n, so that g =25 %, x§l)
+ Z 5 ¥i%5 e-%,, < 31> and Theorem 7 is proved.

8. Corollary: A torsionfree group G of rank two is =
Butler group if and only if G is either completely decompo-
sable with ordered type set or if the subgroup H =
=1:=ZW4< 8;>x , Where {z (8,7, '3’(52),..., 'Q(gn)} is the set
of all maximal elements of T (G), is of finite index in G.

Proof: Only the necessity must be proved. If Z(G) is
ordered thgn G is completely decomposable by Lemma 5. So as-
sume that {%1, '92,...,:‘8!,1} is the set of all maximal ele-
ments of 2(G), nZ2. By Lemma 4 G is factor-splitting,
so that by Theorem 7 (and its proof) we have a decompositi-
on = oy v .rr2 such that G & Z,., is homogeneous and
G® Z,;r =-Z <81> 12 Z_,~ where 't:(gl) = 1:1, i=1,2,...
«+syn. The group G & 2y, 1is obviously a Butler group and
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80 it is comple tely decomposable by Lemma 5. Then the subgroup
(Lg 2, ® Z,,.1 ) ® ({go 2 ® Z,,-1 ) is of finite index in 0 & Zar,
by [8; Theorem 48.1] and now it is easy to see that H is of

finite index in G.

9. Remarks; (a) If I, J are two p-reduced torsionfree
groups of rank one with incomparable types, then it is not too
hard to show that the subgroup H =<{pI,pJ,u - v> of G = 1 ®'J,
where uel, veJ, hp(u) = hp(v) = 0, is indecomposable. Hence
a Butler group of rank two with exactly two maximal types need
not be completely decomposable, but it contains a completely
decomposable subgroup of finite index.

(b) The situation in the class of factor-splitting groups
of rank at least 3 is more complicated. One of the difficulties
arises from the fact that not all homogeneous groups of rank at

least 3 are factor-splitting (see L[4; Example 2]).
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