Petr Hájek Completion closed algebras and models of Peano arithmetic

Commentationes Mathematicae Universitatis Carolinae, Vol. 22 (1981), No. 3, 585--594

Persistent URL: http://dml.cz/dmlcz/106100

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 22,3 (1981)

COMPLETION CLOSED ALGEBRAS AND MODELS OF PEANO ARITHMETIC Petr HAJEK

Abstract: Each model M of PA determines two completion closed algebras: the system of all sets of natural numbers parametrically and nonparametrically coded in M respectively. This paper is devoted to the study of models for which these two systems coincide. They are called thrifty models. A general existence theorem is proved which implies e.g. that in each countable nonstandard model of PA the class of all initial segments that are models of PA is symbiotic with the class of all models that are thrifty models of PA.

Key words: Peano arithmetic, models.

Classification: 03F30, 03C65

§ 1. Introduction; basic notions and known facts. Saying "model" we shall always mean a non-standard countable model of PA; M, M₁, etc. vary over such models. N denotes the set of natural numbers and, at the same time, the standard model. A set $X \subseteq N$ is <u>parametrically coded</u> in M if there is a formula $\varphi(x,y)$ of L_{PA} and a \in M such that $X = \{n \in N; M \models \varphi(\overline{n}, a). X is$ nonparametrically coded in M if there is a $\varphi(x) \in L_{PA}$ such that $X = \{n \in N; M \models \varphi(\overline{n})\}$. SS(M) and SS₀(M) denote the system of all sets of natural numbers parametrically and nonparametrically coded in M respectively. (Standard system and o-standard system; note that SS₀(M) = Rep(Th(M)), i.e. the system of all sets representable (binumerable) in Th(M).) The system SS(M) may be

- 585 -

alternatively defined using the natural M-definable enumeration $D_0, D_1...$ of M-finite sets of elements of M:SS(M) = $\{D_a \cap \cap N; a \in M\}$.

We have the following easy Fact:

<u>Fact 1</u>. (i) $SS_0(M) \subseteq SS(M)$, (ii) $M_1 \equiv M_2$ implies $SS_0(M_1) = SS_0(M_2)$. (iii) $M_1 \subseteq_e M_2$ implies $SS(M_1) = SS(M_2)$ where $M_1 \subseteq_e M_2$ means that M_1 is an initial segment of M_2 .

A set \mathscr{X} of subsets of N is <u>c-closed</u> (completion closed) iff (1) \mathscr{X} is countable, (2) \mathscr{X} is closed under Turing reducibility, i.e. if Y is recursive in some elements X_1, \ldots, X_n of \mathscr{X} then $Y \in \mathscr{X}$ and (3) for each $X \in \mathscr{X}$ which is (codes) an infinite dyadic tree there is a $Y \in \mathscr{X}$ which is an infinite path through X (cf. [3, 6, 7]). Scott [6] was the first to investigate c-closed algebras. The situation may be summarized as follows:

Fact 2 (Scott, cf. [7] 3.3). Let \mathscr{X} be a set of subsets of natural numbers. Then the following are equivalent: (i) \mathscr{X} is c-closed (ii) there is a model M such that $\mathscr{X} = SS(M)$ (iii) there is a model M such that $\mathscr{X} = SS_{0}(M)$

In more details, we have the following

<u>Fact 3</u>. (1) (Scott) If T is a consistent axiomatizable extension of PA in the same language and if \mathscr{X} is c-closed then there is a model M = T such that $\mathscr{X} = SS_{n}(M)$.

(2) (Friedman, modified by Guaspari): If \mathcal{X} is c-closed and T is a consistent extension of PA such that $T \in \mathcal{X}$ then there is an $M \models T$ such that $\mathcal{X} = SS(M)$.

The following well known theorem of Friedman shows the

importance of the notion of a standard system.

<u>Fact 4</u> (Friedman). (1) \mathbb{M}_1 is isomorphic to a submodel of \mathbb{M}_2 iff $SS(\mathbb{M}_1) \subseteq SS(\mathbb{M}_2)$ and $Th_{\Sigma_1}(\mathbb{M}_1) \subseteq Th_{\Sigma_1}(\mathbb{M}_2, (2) \mathbb{M}_1$ is isomorphic to an initial segment of \mathbb{M}_2 iff $SS(\mathbb{M}_1) = SS(\mathbb{M}_2)$ and $Th_{\Sigma_1}(\mathbb{M}_1) \subseteq Th_{\Sigma_1}(\mathbb{M}_2)$. (Here $Th_{\Sigma_1}(\mathbb{M}_1) = \{\varphi \in \Sigma_1; \mathbb{M}_1 \models \varphi \notin .)$

The importance of SS₀ is illustrated by the following theorems:

<u>Fact 5</u> (Jensen-Ehrenfeucht; Guaspari; cf. [7] 3.4). Let \mathscr{X} be a c-closed algebra and let M_o be a model. There is an $M \equiv M_o$ such that $SS(M) = \mathscr{X}$ iff $SS_o(M_o)$.

<u>Fact 6</u> (see [8] 3.14). Let M_1 , M_2 be models. M_2 has an initial segment elementarily equivalent to M_1 iff $SS_0(M_1) \subseteq SS(M_2)$ and $Th_{\Sigma_1}(M_k) \subseteq Th_{\Sigma_2}(M_2)$.

We shall investigate the question under what conditions the two standard systems - parametrical and nonparametrical coincide. Let us call a model M such that $SS(M) = SS_0(M)$ a thrifty model. We can give some immediate examples.

Examples. (1) Each minimal model of a complete extension of PA (term model) is thrifty. Thus each model has an elementary thrifty submodel. Each elementary end extension of a thrifty model is thrifty

(2) Each recursively saturated model is non-thrifty (since if <u>M</u> is rec. saturated then $Th(M) \in SS(M) - SS_0(M)$). Thus each model has an elementary extension which is nonthrifty. Each elementary end extension of a non-thrifty model is non-thrifty.

- 587 -

In the next section we shall prove a general existence theorem for thrifty models; in section 3 we shall prove some corollaries.

§ 2. <u>An existence theorem</u>. Let φ^1 be φ and φ^0 be $\neg \varphi$. A formula $\varphi(\mathbf{x})$ with exactly one free variable is <u>flexible</u> over T if for each g:N \rightarrow N, To $\{\varphi(\bar{n})^{g(n)}; n \in N\}$ is consistent. $\varphi(\mathbf{x})$ is \sum_{k} -flexible over T if for each set S of \sum_{k} sentences such TUS is consistent $\varphi(\mathbf{x})$ is flexible over TUS.

<u>Lemma</u> (Jensen-Ehrenfeucht [5]). For each axiomatizable consistent theory T2PA in the language of PA and for each k there is a formula $\varphi(x) \geq \frac{1}{k}$ -flexible over T.

<u>Theorem</u>. Let $T \supseteq PA$ be a consistent extension of PA (in the language of PA), let $T = T_0 \cup T_1$ where T_0 is axiomatizable and $T_1 \subseteq \sum_k$ for some k. Let \mathscr{X} be c-closed and such that $T \in \mathscr{X}$.

Then there is an $M \models T$ such that $SS_0(M) = SS(M) = \mathcal{X}$ and such that M is <u>not</u> an end extension of its minimal elementary submodel.

<u>Proof.</u> Clearly, T is incomplete and hence we may assume that $T \cup Th(N)$ is inconsistent and that there is a formula $\chi(x)$ such that $T \cup (\exists lx) \chi(x)$ and for each $n \in N$, $T \models \neg \chi(n)$. Our proof will consist in defining a completion of T. Let d, c_0 , c_1 , c_2 ,... be new constants, $\mathscr{X} = Y_0$, Y_1 , Y_2 ,...

 $\mathcal{G}_0, \mathcal{G}_1, \mathcal{G}_2, \cdots$ be a natural recursive enumeration of all formulas in $L_{PA}(d, c_0, c_1, \cdots)$. For each formula $\infty(x)$ of L_{PA} with just one free variable let $Def_{\infty}(d)$ be the formula saying that

- 588 -

d is the unique x satisfying $\infty(x)$. Put

 $T_{\alpha} = T \cup \{ (\forall \mathbf{y} \leq d) \neg \neq (\mathbf{y}) \} \cup \{ \neg \text{ Def}_{\alpha} (d) ; \alpha(\mathbf{x}) \in \mathbf{L}_{\mathbf{p}_{\mathbf{x}}} \}.$

(The formula $(\forall y \leq d) \neg \gamma(y)$ says that d is less than the unique element satisfying γ and $\neg \text{Def}_{\alpha}(d)$ guarantees that d is not defined by α in any model of T^{0} .)

Let T^n be given; we define T^{n+1} . The construction of T^{n+1} , guarantees that

- (1) φ_n is decided and witnessed;
- (2) $Y_n \in SS_n(\underline{M})$ for each $\underline{M} \models T^{n+1}$;

(3) $Dc_n \cap N \in \mathscr{X}$ for each $\underline{M} \models T^{n+1}$.

Assume that $T^n \in \mathfrak{X}$ and has the form

Touto Def (d); of uA

where A is a set of formulas in $L_{PA}(d,c_0,\ldots,c_p)$ for a certain p and $A \subseteq \Sigma_q(d,c_0,\ldots,c_p)$ for a certain q. (Each element of A has the form $\psi(c_0,\ldots,c_p,d)$.) We may assume that A is closed under conjunction.

Point (1) is handled in the usual manner: at most two formulas are added to T^n and we obtain a theory T['] of the form

Toly Def (d); af UA'

where A' satisfies the same conditions as A did (with possibly other values of p, q; the constants c_i are used as witnessing constants).

Concerning (2): We want to use a \geq_q -flexible formula; but the trouble is that T' is a theory in $I_{PA}(d,c_0,\ldots,c_p)$, not in I_{PA} . Form the following theory T": T" = $T_0 \cup (\exists^m y)(\exists x_0,\ldots,x_p) \psi(x_0,\ldots,x_p,y);$ $\psi(c_0,\ldots,c_p,d) \in A', m \in \mathbb{N}$.

Here \exists^{m} is the quantifier "there are at least m elements such

- 589 -

that...". Certainly, $T' \vdash T"$ (if **M** is a model in which there are at most m elements y satisfying $(\exists \underline{x}) \psi(\underline{x}, y)$ and at the same time $(\exists \underline{x}) \psi(\underline{x}, d)$ then d is definable in <u>M</u>).

Claim. T' is a conservative extension of T".

Let $\underline{\mathbf{M}} \models \mathbf{T}^*$; it suffices to find a $\underline{\mathbf{M}}_1 \in \underline{\mathbf{M}}$ expandable to a model $\underline{\mathbf{M}}'$ of \mathbf{T}' . To show this it is sufficient to observe that, by compactness, diag($\underline{\mathbf{M}}$) $\cup \mathbf{T}'$ is consistent. Indeed, finitely many axioms $\psi_i(\underline{\mathbf{c}}, \mathbf{d})$ may be combined into one, $\psi(\underline{\mathbf{c}}, \mathbf{d})$; and if $\boldsymbol{\infty}_1, \ldots, \boldsymbol{\infty}_m \in \mathbf{L}_{\mathbf{PA}}$ then using $\mathbf{T}^* \vdash (\exists^{m+1}\mathbf{y})(\exists \underline{\mathbf{x}}) \psi(\underline{\mathbf{x}}, \mathbf{y})$ we may expand each model of \mathbf{T}^* to a model of

 $T^{*} \cup \psi(\underline{c}, d) \cup \bigwedge_{i=1}^{m} \neg \operatorname{Def}_{\alpha_{i}}(d).$

This proves the claim.

To complete the point (2), let $\delta'(\mathbf{x})$ be a $\mathbf{I}_{\mathbf{PA}}$ -formula \sum_{q+1} -flexible w.r.t. \mathbf{T}_{0} . Let $\mathbf{B} = \{\delta'(\mathbf{m}); \mathbf{m} \in \mathbf{Y}_{n} \} \cup \{\tau_{\tau} \sigma'(\mathbf{m}); \mathbf{m} \notin \mathbf{Y}_{n} \}$. B is consistent with T^{*} and therefore with T'; put $\mathbf{T}^{+} = \mathbf{T}' \cup \mathbf{B}$. Then for each $\underline{\mathbf{M}} \models \mathbf{T}^{+}$ we have $\mathbf{Y}_{n} \in SS_{0}(\underline{\mathbf{M}})$. This completes the point (2); observe that $\mathbf{T}^{+} \in \mathfrak{X}$.

Concerning (3): To handle c_n, let

S = {s dyadic word; there is no proof of contradiction of length $\leq lh(s)$ in $T^{\dagger} \cup \{m \in Dc_n; (s)_m = l\&m = lh(s)\} \cup \cup \{m \notin Dc_n; (s)_m = 0\&m = lh(s)\}.$

Then S is recursive in T^+ and hence in \mathscr{X} ; if Y is an infinite path through S belonging to \mathscr{X} then we put $T^{n+1} = T^+ \cup \{m \in Dc_n; (Y)_m = 1\} \cup \{m \notin Dc_n; (Y)_m = 0\}$. Then $T^{n+1} \in \mathscr{X}$ and has the desired form.

Let $T^{\infty} = \bigcup_{n} T^{n}$; then T^{∞} satisfies (1),(2),(3) for all n and thus the model <u>M</u> of T^{∞} formed by the witnessing constants c_{i} in the usual manner satisfies $SS(\underline{M}) = \mathcal{X} = SS_{i}(\underline{M})$.

- 590 -

The reduct of <u>M</u> to I_{PA} is a thrifty model of T and is not an end extension of its minimal elementary submodel since d_{M} is an element of M which is not definable in <u>M</u> but is smaller than the least element satisfying $\chi(\mathbf{x})$.

<u>Remark</u>. Using many d's one can obtain a model <u>M</u> as above such that non-definable elements are co-initial with M = N.

§ 3. Corollaries and remarks

<u>Corollary 1</u>. (a) For each model <u>M</u> and each n, there is an initial segment $I \subseteq_{e} M$ such that $I \models PA$, $I \cong_{\sum_{n}} \underline{M}$ and I is thrifty.

(b) For each model M and each n, there is an end-extension K \supseteq_e M such that K \models PA, K \Longrightarrow_n M and K is thrifty.

<u>Proof.</u> Put $T_0 = PA$, $T_1 = Th_{\sum_{m+1}}(M)$, $\mathscr{X} = SE(M)$; let M' be the model guaranteed by our theorem. Then, by Fact 4, M' is isomorphic both to a segment I of M and to an end-extension K of M.

<u>Corollary 2</u>. Let M be a model. Segments $I \subseteq_e M$ that are models of PA are symbiotic with the segments $J \subseteq_e M$ such that J is a thrifty model of PA.

<u>Proof.</u> Let $a, b \in M$, $I \subseteq_e M$, a < I < b, $I \models PA$. Let $I' \subseteq_e I$ be a model such that $I' \equiv_{\mathbb{Z}_2} I$, I' thrifty. Using theorem 10 from [4] we can map I' isomorphically onto an $I^* \subseteq_e M$, $a < I^* <$ < b. (Let $a < I_1 < I < I_2 < b$, $I_1, I_2 \models PA$; there is an isomorphism ρ of I' onto a segment I" of I_2 such that ρ is identical on I_1 .)

Remarks. (1) One can show similarly that the class of

all models of PA is symbiotic with the class of all segments $K \subseteq_{e} M$ such that (1) $K \models PA$, (2) K is thrifty and (3) K is a strong cut in M: given a, I, b, first extend I to an I' as above and then extend I' to $I^{"} \subseteq_{e} I'$ such that I' is strong in I" (and $I' \cong I"$).

(2) Clearly, in the above corollaries we do not use the fact that the model obtained from our Theorem is not an end extension of its minimal elementary submodel; to obtain the corollaries, an obvious simplification (omitting everything concerning d) would suffice.

(3) Corollary 1 cannot be strengthened to $I \equiv M$: elementary equivalence preserves $SS_0(M)$ and $I \subseteq_e M$ guarantees SS(I) = SS(M).

§ 4. <u>An ordering</u>. Consider complete extensions T of PA (in the same language). Recall that, for each $M \models T$, $SS_0(M) = Rep(T)$.

<u>Theorem 2</u>. Let T_1 , T_2 be complete extension of PA. The following are equivalent:

(i) Each $M_2 \models T_2$ has a submodel M_1 such that $M_1 \models T_1$. (ii) Each $M_2 \models T_2$ has an initial segment such that $M_1 \models T_1$. (iii) $\sum_{1}(T_1) \subseteq \sum_{1}(T_2)$ and $\operatorname{Rep}(T_1) \subseteq \operatorname{Rep}(T_2)$. (iv) The minimal (term) model of T_1 is a submodel of the minimal model of T_2 .

(v) There are thrifty models $M_1 \models T_1$, $M_2 \models T_2$ such that $M_1 \subseteq M_2$.

<u>Proof.</u> (i) \Leftrightarrow (ii) by Gaifman's theorem [2]. (i) \Leftrightarrow (iv) is obvious, as well as (iv) \Leftrightarrow (v). We prove (iii) \Rightarrow (iv) and (v) \Rightarrow (iii).

- 592 -

Let M_2 be the minimal model of T_2 ; assume (iii). By Fact 6, there is a model M'_1 of T_1 which is an initial segment of M_2 . Let M_1 be the minimal model of T_1 , then $M_1 \subseteq M'_1 \subseteq M_2$. This proves (iv).

Let \mathbb{M}_1 , \mathbb{M}_2 be as in (v); then $\Sigma_1(\mathbb{T}_1) = \operatorname{Th}_{\Sigma_1}(\mathbb{M}_1) \subseteq \mathbb{Th}_{\Sigma_1}(\mathbb{M}_2) = \Sigma_1(\mathbb{T}_2)$ and $\operatorname{Rep}(\mathbb{T}_1) = \operatorname{SS}_0(\mathbb{M}_1) = \operatorname{SS}(\mathbb{M}_1) \subseteq \operatorname{SS}(\mathbb{M}_2) = \operatorname{SS}_0(\mathbb{M}_2) = \operatorname{Rep}(\mathbb{T}_2)$. This proves (iii).

<u>Definition</u>. Put $T_1 \leq^* T_2$ iff an of (i) - (v) holds.

<u>Fact</u>. \leq^* is a quasiordering (preorder) of all complete extensions of PA; there are continuum-many incomparable elements, ascending chains of the power \mathfrak{S}_1 , and \leq^* is not dense.

<u>Proof</u>. The existence of an antichain of power continuum follows from the existence of a \sum_1 -formula flexible w.r.t. PA; this formula gives continuum many completions of PA with pairwise incomparable sets of \sum_1 -consequences. A chain of power \varkappa_1 is obtained by constructing a chain of \varkappa_1 c-closed systems, which is easy.

We prove that \neq^* is not dense. (Cf. [4], 7(5).) Let S be a maximal set of \geq_1 -sentences such that (PA + Con_{PA} + S) is consistent. Then PA + $\neg \operatorname{Con}_{PA}$ + S is also consistent; let R be a maximal set of \prod_1 -sentences such that PA + $\neg \operatorname{Con}_{PA}$ + + S + R is consistent. Let \mathbb{M}_2 be a thrifty model of PA + + $\neg \operatorname{Con}_{PA}$ + S + R such that S, R \in SS(\mathbb{M}_2) = SS₀(\mathbb{M}_2). Let \mathbb{M}_1 be a segment of \mathbb{M}_2 which is a model of PA + Con_{PA} + S. By Corollary 1, we may assume that \mathbb{M}_1 is thrifty.

Put $T_1 = Th(M_1)$ and $T_2 = Th(M_2)$. If $T_1 \leq T \leq T_2$ then Rep $(T) = Rep(T_1) = SS(M_1) = SS_0(M_1)$ (i = 1,2); if $T \models Con_{PA}$

- 593 -

then $\Sigma_1(T) = \Sigma_1(T_1)$ and if $T \models \neg \operatorname{Con}_{PA}$ then $\Sigma_1(T) = \Sigma_1(T_2)$.

<u>Acknowledgement</u>. The author referred on the results of this paper at the Logic Seminar in Wiesa (German Democratic Republic) in April 1980 and is grateful to the organizers of the Seminar for their hospitality.

References

- [1] H. FRIEDMAN: Countable models of set theories, in Proc. Cambridge Summer School in Logic, Mathias and Rogers, eds. Lecture Notes in Math. 337, 539-573
- [2] H. GAIFMAN: A note on models and submodels of arithmetic, in Conference in Math. Logic London 70, Lecture Notes in Math. 255
- [3] D. GUASPARI: Partially conservative extensions of arithmetic, Trans. AMS 254(1979), 47-68
- [4] P. HÁJEK, P. PUDLÁK: Two orderings of the class of all countable models of Peano stituetic, in Model Theory of Algebra and Arithmetic, Lecture Notes in Math, 834, p. 174-185
- [5] D. JENSEN, A. EHRENFEUCHT: Some problems in elementary arithmetic, Fund. Math. 92(1970), 223-245
- [6] D. SCOTT: Algebras of sets binumerable in complete extensions of arithmetic, in Recursive Function Theory (Dekker, ed.) AMS 1962, 117-122
- [7] C. SMORYNSKI: Recursively saturated nonstandard models of arithmetic, preprint (reworked version)
- [8] C. SMORYNSKI: Nonstandard models of arithmetic, Univ. Utrecht, preprint 153, April 1980

Math. Inst. Czechoslovak Acad. Sci., Žitná 25, Praha 1, Ozechoslovakia

(Oblatum 4.3. 1981)

- 594 -