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AN APPLICATION OF THE HAHN-BANACH THEOREM 
IN CONVEX ANALYSIS 

Ludek JOKL 

Abstract: k new principle (Theorem 7) which is based 
on the Hahn-Banach theorem, i s presented. It i s shown that 
some well-known basic theorems of convex analysis follow 
at once from this principle* 

Key words: Convex function, conjugate function, sub-
differential, inflmal convolution, normal cone, Hahn-Banach 
theorem* 

Classification: Primary 47H99 
Secondary 46A15, 46A55 

Let X, T be linear topological spaces over reals R, X*, 

X* the dual spaces of X, X, respectively, <x,x*> the pair

ing between X and X* . Let A:X—>T be a linear continuous 

operator* The operator A*:T*~>X* ia defined by 

xeX, y * e T * = ^ <.x,A*y> =*<Ax,y*> . 

Let f:X--> C-oo,*oo] be a convex function. The effective do

main TxeX:f(xX<4- oo 1 of f we denote by dom f. By 8f(x) 

we denote the subdifferential of f at the point xeX f 

8f(x) -*4x*cX*:heX -=-*->< h,x*> •£ f(x + h) - f (x ) i . 

The symbol t* stands for the conjugate function of f, de

fined by 
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x * e X* -*=4> r*(x*) • sup-f<x,x*>~ f ( x ) : x e X j . 

Moreover, we use the symbol e n to denote the operation of 

infimal convolution. By the normal cone to a convex se t C at 

x Q € C we mean the set N(x0\C) defined by 

NCx0IO s { x * e X * : x e C ^ < x - x 0 , x * > - 0 } . 

Let Kgf(x ) be a convex cone generated by { 0 $ u 8 f ( x 0 ) . 

The following theorems play an important role in convex 

analys i s : 

Theorem \ (Moreau, Rockafellar, [ 2 , Chapt. 4 , § 2 , Th.13) . 

Let f :X —*• 1 - oo ; +ocl and g:X —>3 - oo t +ool be convex func

t i o n s . Suppose there e x i s t s a point of dom A dom g at which 

f i s continuous. Then, for every x c X , 

9 ( f «• g ) (x) » 3 f ( x ) • 3 g ( x ) . 

Theorem 2 (Moreau, Rockafellar, [2, Chapt. 3* § 4, Th.lJ)* 

Under the assumptions of Theorem 1 it holds 

(f * g)* • f* O g* • 

Moreover, for every x*€dom ( f • g ) * there e x i s t y * c dom f 

and 2* e dom g such that 

y * • a* * x * , f*(y*) • g*C**) » i f * g ) * Cx*). 

Theorem 1 <t2. Chapt. 4 , § 2 , Th. 2 3 ) . Let A:X—> Y be 

a l inear continuous operator and f:T—> 1 - oo f • o»3 be a 

convex function. Suppose there e x i s t s x Q e X such that f i s f i 

n i te and continuous at the point y = Ax • Then, for e^ery 

x e X 
dito A)(x) * A*df(Ax) . 
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Theorem 4 ([2, Chapt. 3, § 4, Th. 33). Under the as

sumptions of Theorem 3 it holds 

f(A)*» A*f* 

and for every x*edom (fA)* there e x i s t s y*edom t* such 

that 

A*y* * x* f (fA)* <x*) * f* (y* ) . 

Theorem 5 (£2, Chapt. 4 , § 3 , Prop. 23 ) . Let f:X —> 

—* 1 - °o t +ool be a convex function which i s f i n i t e and 

continuous at the point x e X. Put 

C » f x c X : f ( x ) ^ f ( x 0 ) l . 

Suppose there e x i s t s x c X such that f ( x ) < f ( x Q ) . Then 

N(x0|C) - Г ^ ) . 
o 

The purpose of th is paper i s to demonstrate that Theor

ems 1 - 5 fol low immediately from the pr incip le expressed be

low i n Theorem !• To prove t h i s theorem we use the following 

version of the Hahn-Banach theorem: 

Theorem 6 ( [ 2 f Chapt. 3 , § 2 , Th. 1, Chapt 4 f § 2, Prop. 

3 3 ) . Let g>:X—-* £ -co f + ool be a convex function such 

that <p i s bounded from above on a neighbourhood of the o r i 

gin and 9?(0) = 0. Then there e x i s t s a l inear continuous 

functional x * e X * such that for every x £ X 

<x f x*>^9(x) . 

It should be noted that Theorem 6 is equivalent to the Sidel-

helt theorem on separation of convex sets. 

Theorem 7. Let U be a linear space, 7 a linear topolo-
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gica l apace, f:V - > J -«> f * *>3 and h:U —• 3 -<*> , • -x>3 

convex funct ions, and T:U<—• ? a l inear mapping. I f 

( i ) there i s uQe dom h such that f i s f i n i t e and con

tinuous at the point vQ « Tu and 

( i i ) i n f 4 f ( T u ) • h ( u ) : u e U i » Of 

then there e x i s t s a l inear continuous functional v* e V* such 

that 

(1) u e U , veV~ .><v,v*> - f ( v ) £ h ( u ) -t-<Tu,v*>. 

Proof. Put 

F * 4L(v,^.) .cVxR:f(vX^ «M* 

H * {(Tu,<uO€V*R:u6U, <<rx4- h ( u H , 

M * F - H. 

Because F and H are convex s e t s , M i s also convex. Therefore 

the function y :V —> I ~co t +ool defined by 

(2) w € ? « ^ 9 > ( w ) • inf\&e R: (w f JUsM} * 

• inf < f (v ) • h ( u ) : u e U f v c V f v - Tu » wj 

i s convex. From (2) and ( i l ) i t fo l lows 

y(O) * inf <f(Tu) • h(u):u£U$ =- 0 . 

from (2) we conclude that 

(3 ) u e U , v e V *-=><y(v - Tu)^f (v ) • h (u) . 

According to (i) there exist a constant oc e R and a neigh

bourhood of the origin Ncv, such that 

(4) f € M ^ f ( w * Tu0J * «c . 

Let weN. Then according to (3) and (4> 

cf(w) « <$>((w + Tu0) - Tu0>^f(w • TuQ) • h(uQ)^ ac • h(uQ). 

Therefore the function g> is bounded from above on N. 
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By Theorem 6 there exists a linear continuous functional 

v*e V* such that 

(5) w c 7 * » < w fv*> £ g>(w). 

Let ueUf veV. Putting w -=* v - Tu in (5), then accor

ding to (3) we have that 

< v - Tu,v*> £ f(v) + h(u) f 

which implies ( l ) . 

Theorem 1 contains a non-trivial part, which can be ex

pressed as 

Lemma. In addition to the assumptions of Theorem 1 sup

pose that f(O) » g(0) » 0. Then 

3(f + g ) (0 )c af(O) + 3 g ( 0 ) . 

Proof. Let w* e Bit • g)(0) . Therefore 

inf-£f(x) • g(x) -<'xfw*> : x 6 X | = 0. 

Now we put U • V «. X, Tx « xf h(x) » g(x) - < xfw*> in Theo

rem !• By Theorem 7 there exists v * e X* with the property 

x£X f ycX ;*=->< y fv*> - f(y)^g(x) - < x , w * - v*> . 

From this relation it follows 

v*e 3f(0), w*- v * e 8g(0)f 

hence, w* • v* • (w*- v*)e #f(0) * 3g(0). 

Proof of Theorem 2. First of all 

(6) (f • g>*£ f*C3 g*. 

By the assumptions of Theorem 2 

(7) (f • g>* > - oc • 
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I f x * 4 dom ( f + g ) * , then by (6) 

(81 (f • g ) * (x*) * ( f * C 3 g*) (x*) . 

Let x * c dom ( f • g ) * . Put 

(9) e c . ( f • g ) * (x*) . 

By (7) we see that o C e R , Now from (9) i t fol lows 

inf * f ( x ) +- g(x) • c c - < x , x * > : x e X j = 0. 

We put U » V » X, Tx » x, h(x) « g(x) • oc - <x,x*> in Theo

rem 7. By this theorem there exists y*£X*with the property 

xeX, yfiX=»«y,y*> - f(y)) + «x,x* - y*>- g(xU^cC. 

Therefore 

f*(y*) * g*(x* - y * ) ^ cc . 

Hence 

y* 6 dom f * , x* - y* e dom g* • 

The definition of the infimal convolution, (6) and (9) imply 

that 

oo £(f*cp g*)(x*Uf*(y*) • g*(x*- y * ) ^ oc . 

The theorem i s proved. 

We formulate the non-tr iv ia l part of Theorem 3 as 

fcejEffia.. In add i t ion to the assumptions of Theorem 3 sup

pose that f (0 ) = 0 . Then 

3 ( f o J k ) ( 0 ) c A * 9 f ( 0 ) . 

Proof. Let x* c 8(f oA)(0). Then 

inf-U(Ax) -<x,x*> :x€Xi»0. 

Now we put U * x, V • Y, T » A, h(x) » -<x,x*> in Theorem 
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7. By this theorem there exists y*£ T* with the property 

xeT, y£X=*><y,y*> - f(y)ir - <x,x*> «-<Ax,y*>, 

i.e. 

xeX, yeX*^<y,y*> - f (y) £<x,A*y* - x*> • 

From this relation it follows immediately 

x* » A*y* , y*£r af(O). 

Our lemma is proved. 

Proof of Theorem 4. It holds - co < (fA)* £ A* f * . Let 

x* Cdom (fA)* . PuteC ~ (fA)* (x*). Then oce R and thus 

inf {f(Ax) «• oc - < x , x * > :xeX$ = 0. 

Define U, V, T in Theorem 7 in the same way as in the proof 

of Theorem 3. Next put h(x) * oo — <x,x*> and proceed simi

larly as in the proof of Theorem 2. 

Theorem 5 contains the non-trivial part, which we state 

as the following 

Lgmjaa. Let f :X —*• C - «o , +ool is a convex function 

continuous at the origin, and f(0) * 0. Put 

C -* ixeX:ftx)*Oi . 

If there exists x±eX such that f(x-L)<.0, then 

M(0lC)cKaf{0). 

Proof*. Without the loss of generality one can assume 

that 

x±e int C. 

Let 0 ~ x * e N(OlC). Then 
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<10) < x l f x * > < 0 , 

xcKer x* » j » f ( x ) S o f 

i . e . 

inf 4 f ( u ) : u € K e r x*J « 0. 

Set U « Ker x* , V * X, h(x) » 0 in Theorem 7. Let T be the 

canonical in jec t ion of Ker x * into X. By Theorem 7 there 

e x i s t s y * e X* with the property 

xeKer x * , y £ X = > < y f y * > - f ( y ) 4 < x f y * . > . 

Hence we conclude that 

y * € 9 f ( 0 ) f 

(11) Ker x * c Ker y * j 

(12) < x l f y * > £ f ( x x ) < 0 . 

According to (11) there e x i s t s t € R such that y*"- t x * . By 

(12) and (10) 

t • < x l f y * > / < x l f x * > *• 0. 

Hence x* » t"Xy* e f ^ ^ O c K ^ Q ) , 

which f in i shes the proof. 

R e f e r e n c e s 

C11 R.T. ROCKAFEUiAR: Convex analys i s , Princeton University 
Press , 1970. 

12] A.D. IOF.FE, V.M. TICHOMIROV: Teorija ekstremalnych zadaS, 
Nauka, Moskva, 1974. 

L31 V. BARBU, Th. FRECUPANU: Convexity and optimization in 
Banach spaces , Editura Academiei, Bucuresti-
Sijthoof & Noordhoff In t . Publ. b . v . , Alpen 
aan de Rijn, 1978. 

806 



Č V U T Praha 

Thákurova 7, 16629 Praha 6 

československo 

(Oblátům 10.4. 1981) 

807 


		webmaster@dml.cz
	2012-04-28T07:36:03+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




