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ON TIGHTNESS IN CHAIN-NET SPACES
I. JANE, P.R. MEYERY, P. SIMON, R. G. WILSON”

»

Abstract: The question was raised in [2] as to whether
every chain-net space with countable tightness is sequential
(no separation axioms were imposed). In this paper we const-
ruct a number of examples to show that the answer to the abo-
ve question is no, both in the class of Tz chain-net spaces

and in the class of chain-net spaces in which convergent
chains have unique limits (here called Tc-spaces). We also

prove that a 12 chain-net space with countable spread has
countable tightness, but need not in general be sequential.
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For any cardinal K , a w=gequence or ghain-pet of
length « in a topological space X is a function from W in-
to X. A space X is said to be a ghaln-net spgce if the topo-
logical closure of any subset A of X may be obtained by ite-
rating the chain-net closure of A, this latter being obtain-
ed by adjoining to A& all limits of chain-nets in A. If for
each AcX, the topological closure of A is equal to the
chain-net closure of A, then X is said to be a Eréchet chain-
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net spacg. Chain-net spaces and Fréchet chain-net spaces are
called pseudo-radial and radisl spaces respectively in [2)
and L3].

The notation we use follows [ 5], but we define two car-
dinal functions not considered here. If X is a topological
space, we define the pet character of X, &(X), to be the
least cardinal A such that the iteration of 'the A=-net clo~
sure operator yields the topological closure operator. The
A =net clcsure of a set A is obtained by adjoining to A all
Iimits of nets in A whose directed sets are of cardinality
no greater than A . The cardinal function & was introdu-
ced in [7]. If X is a chain-net space then we define analo-
gously the chain-net character of X, 6,(X), by replacing
A -net with A-sequence in the above definition. If t(X) de-
notes the tightness of X, and if X is a chain-net space,then

t(X) 2 & (X} £ Gc(x) 4exp t(X).

It 18 easy to show that if X is a Fréchet chain-net space
then t(X) = €(X) = Sc(x). Furthermore, it was shown in [8),
(and independently in [£31), that in this seme class of spa-
ces t(X) < s(X) (the spread of X). Theorem 1 extends this re-
sult to chain-net spaces (it was proved for compact 1‘2 spa-
ces in [1])., We then construct some examples to show that

if X i1s a chain-net space, then in general t(X)= 6 (X); we
need extra axioms to obtain a 12 example. A space is said to
be a Tc-space if every convergent chain-net has a unique 1li-
mit. Such spaces are clearly Tl but not in general '1‘2 (see
for instance [41). All the examples we construct are (at le-

ast) T,-spaces.
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Theorem 1. If X i1s a T, chain-net space then t(X) ¢
£8(X).

Proof. Suppose that for a cardinal A there is a non-
closed subset A of X with the property that if Bc A and
|IBl<A , then c€yBc A. Since A is not closed, there is a
(w~sequence (@ Z2) S in A converging to pgA. We will de-
fine by recursion a relatively discrete subset of S of car-
dinality A . Choose x;€ S and disjoint open sets U; land v
such that X, € Ul and pevl. Identifying A with the first
ordinal of cardinality A , suppose that for each o< < A ,
we have chosen Xp € S and disjoint open sets U‘g and ?{3 for
all 3 < o¢ and satisfying the following conditions:

a) xp € Uy and pe V.

b) xz€ (SNDp) -=UAU: g <PBF where D= X - clylfx,:
X< pfb);

then we choose x _ , U, and V as follows:

Since oc < A we have that locl <A and so l{x,:
tR<ecc}l =lcl<A . Thus 1::#(:2)({::(s tB<oc} and so D =
+ X - cﬁx{x,, t3<oc? 1is a neighbourhood of p and so must
sontain a cofinal segment of S. Furthermore, each Vp (for
f < ¢ ) must also contain a cofinal segment of S. Thus sin-
¢e we are assuming that « 1s a regular cardinal, it followe:
that N4 Va0 < o« % contains a cofinal segment of S, which
implies that S is eventually out of U4 Vs tB<o? . Thus
we may choose x . & (SnDy ) - U{,Ur, {B<x}, and U, and
Vi disjoint open neighbourhoods of x, and p respectively.
Let F={x :x<A}. Then |F| =A and F is discrete since
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FAU,n D, =1x % . Hence 8(X) = A . The result now follows
from the definition of t(X).

The above theorem is false if the Tz separation axiom
is weakened to Tc. To obtain a counterexample it suffices to
adjoint a point p to a first countable, hereditarily Linde-
lof T, space X which is left-separated by o, (see [51);
such a space ia constructible in ZFC, for example see [9 ,
page 261, Neighourhoods of p are of the form Uu+p}, where
U is open and cocountable in X. The resulting space is a fré-
chet chmin-net Tc space with countable spread but uncountab-—-
le tightness. Example 1 shows that a T2 chain-net space with
countable spread need not be sequential. (Compare L3, Theo-
rem 6] or [ 8, Prop. 5.3] where it is shown that a Fréchet
chain-net space of countable spread is Fréchet-Urysohn.)

We now construct three non-sequential chain-net spaces
which have countable tightness, thus answering negatively a
question of Arhangel skij [2, question 3), page 431. The
first example is T,, the others being Tc’ The continﬁum hy-
pothesis is required in the construction of example 1, while
example 2 is in 2FC. In both of these examples & (X) = fie
The third example requires MA + - CH for its construction
and here ee(x) = exp t(X). We do not know whether a T,
chain-net space with Sc = exp t can be constructed under
MA + - CH.

1, Let X be a first countable, locally countable, re=-
gular S-space such as the one constructed using CH in L6,

§ 1), and let ¥ = Xvi{p}l (p&X), where open neighbourhoods

of P are complements of closed countable subsets of X (toge-
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ther with the point p). Y is T, since X is T3 and locally
countable; ¥ has countable tightness since X is hereditari-
ly separable; Y is not sequential since clearly no sequen=-
ce in X can converge to p. However, if AcX is such that
Pe cB!A, then chA is obtainable from A& by sequence (since
X is first countable); furthermore, c,ZxA must be uncountab—
le and 80 any minimsl well=-erdering of it will converge to
p. Hence Y is a chain-net space.

2. If we replace the space X in example 1 by the real
Iine with its usual topology, and adjoin the point p as be—
fore, then the resulting space will be a Tc chain net space
wi th countable tightness which is not sequential.

3. Let « be a minimel cardinal number such that the-
re is a family -(c,,c: x < (u,} of nowhere dense subsets of R
whose union is not of first category. Clearly « is an un-
countable regular cardinal. )

For oo <w , choose a countable family T of closed
nowhere dense subsets of R with U, 2 UdicCc,: < <Z?.
Choose, if possible, a point x & C - U4V 9,; ip=xl,
let A ={x_:oc <u’ . According to the choice of the fami-
ly {C i x < «t, we have |A] = /.

If XcA has an uncountable regular cardinality ® < «,
then for some of < &, xsu(cp tB<x3csUT, . Since K
is regular uncountable, |XnT| =k for some T € I , for
T 1s countable. But then e, (XnT) = clp(XnTINASTAAS
cixp:fB<ei.

Thus c£,(XNT) has cardinality less than w .
Now let Y = Auip} (p¢R), where A has the relative
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topology from R and open neighbourhoods of p are complements
of closed subsets of A of cardinality less than & (together
with p).

It is easy to check that Y is a Tc chain-net space with
countable tightness. Furthermore, if ¥ < & and Sisa x -
sequence in A, then by the above construction, there is a
subset WSS of cardinality t (and hence cofinal in S) such
that cﬂ" has cardinality less than w . Thus S is frequent-
ly outside of a neighourhood of p and so does not converge
to p. Thus e'c(Y) = e "

It is well-known that w =2 ° unde:.; MA. Thus assuming
¥A + 11 CH, we have @& (Y) = exp t(Y) =2 ° > 4. We do not
know the value of &(Y) in this case.

4. Our last example exhibits consistently a Tz cc; se~-
parable chain-net space X of cardinality greater than 2 °,
Notice that Archangel 'skiJ proved that if X 1s a Fréchet
chain-net T, space, then ixlez“(x’, Ix) < ax) e [37,

Let N be a set of natural numbers; for A,B&N denote
R*3B 1ff \B - A) < 4, |A =Bl = . A tower ’ of length
¥ 1s a family §'=4T,: o <»}sP(N) such that T.*> T4
whenever o < (3< % . A tower J° 1is nowhere dense if for
each £eLN]® there is some T,eJ withlA - le\ = Roe
Define
= min £171: 3’ is a nowhere dense tower?t.

Clearly ~> 1is an uncountable regular cardinal.

Claip: There exists a family {Tp,het <2, £ %2} of
subsets of N satisfying the following:
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If < 3 <aop, £e%2, ¢ e”’z, then T, *> Agu T, pro- '
vided that £E€g, or | Ton Tg\ < ¥%, provided that for some
4 € dom £ndom g, £(x)%g(3).

Indeed, define by induction Ty =<{N¥, Ay = #. Let § <P
and suppose that T,, A, have been defined for all o < § ,
fe% 2. If ¢=7+ 1, £ ¢ 72, choose four infinite disjoint
subsets of Tf and denote them Tfu('q,,o)’ Tfu(Q,l)’ Afu‘(q,o)'
Aeyin,1) respectively. If ¢ is a limit ordinal, fe €2, then
by the assumption a family -&"’f =-ﬁ.’rf,d‘: x<§¢ is a tower
which cannot be nowhere dense for § < ?* . Hence there is
an infinite set B,&N with ch* Tepo LOT €ach oo < E « Choo-
se two disjoint infinite subsets of B, and denote them 'I‘f ad
&f.

Having proved the claim we shall ccnstruct the space X.

The underlying set of X is

Nu Ui ?2=0< §< 7.9'&\.;1}2-

The topology is defined as follows:

(a) Each point of N is isolated.

(b) If0<§<d, fe §2, then the basic neighbourhood
0(£,K) of £ is the set {f§u(A, - K), where K runs over all
finite subsets of N.

(e) Ifge %2, then the basic neighbourhood of @ de-

pends on o <<2* and on a choice of neighbourhoods of @ Pg:
U(?'d"{o‘?'i: % <f<d) =ipt U -&qugzd.< f<B¢,

where each 0':""2 is a neighbourhood of ¢ M§ -
The space X 1s obviously ccc and separable, each f¢€ Lo

can be reached by a convergent sequence, each f € 4?2 can be
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reached by a convergent net of length A . So X is a chain-
net space. Clearly }X| = 2“’-

We need to show that X is Hausdorff. To this end, let
@, ¥ 549.2‘, @ % % . There is some oc <> such that
@ ¢ % y Mg, hence Teghac ™ Tyt 18 finite. Let KEN be
a finite set such that (Tgr&- K)n Tyt = B. For § > o0 ,

x
A‘f’g C T‘g

Kgs Lg € N with Agpe - Kee Ty, - K, Myrg = L€ Tyre ®

P 8R4 Ay pe c* Ty teg » 80 there are finite sets

Consequently the neighbourhoods
Ve ,x,40(q ¢ 'Kf i< E<DE)
and Uly ,o0, {0(y Mg Lg ): < f<*}) are disjoint.

The proof of separating of other pairs of points from
X is simjlar and may be left to the resader.

o
It remains to notice that CH or P(C) implies n%= 2 °.

A

Since |X1 = 2V , it is consistent with usual axiomes of ZFC

B
that I1X1>2 ©°,
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