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COMMENTATIONES MATHEMATICAE UNIVERS1TATIS CAROLiNAE 

22,4 (1981) 

ON TIGHTNESS IN CHAIN-NET SPACES 
I. JAN£, P. R. MEYER*, P. SIMON, R. G. WILSON^ 

Abatract: The question was raised in 121 as to whether 
every chain-net space with countable t igh tness i s sequential 
(no separation axioms were imposed). In th i s paper we const­
ruct a number of examples to show that the answer to the abo­
ve question i s no, both in the c lass of T^ chain-net spaces 
and in the claas of chain-net spaces in which convergent 
chains have unique l imits (here cal led T - s p a c e s ) . We also 
prove that a T^ chain-net space with countable spread has 
countable t i g h t n e s s , but need not in general be sequent ia l . 

Key words and phrases: Tightness , chain-net space, i r 4 -
chet chain-net space, net character, sequential space, spread. 

C lass i f i ca t ion: Primary 54D99, 
Secondary 54A25 

For any cardinal K> , a K:-sequence or chain-net of 

length w In a topological space X i s a function from K i n ­

to X. A space X i s sa id to be a chain-net space i f the topo­

log ica l closure of any subset A of X may be obtained by i t e ­

rat ing the chain-net closure of A, th i s l a t t e r being obtain­

ed by adjoining to A a l l l imits of chain-nets in A. I f for 

each AcX, the topological closure of A i s equal to the 

chain-net cloaure of A, then X i s sa id to be a Fr^chet chain-

x) These authors grateful ly acknowledge the support of the 
Consejo Naclonal de Ciencia y Tecnologia, grant PCCBNAL 
790179. 
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net space. Chain-net spacea and Fr^chet chain-net spaces are 

cal led pseudo-rad ial and rad ia l space3 re3pect ively in [23 

and 133. 

The notation we use follows £53, but we define two car­

d inal functions not considered here. I f X i s a topological 

apace, we define the net character of X, tf(X)f to be the 

l eas t cardinal X such that the i t era t ion of the A-net c l o ­

sure operator y i e l d s the topological closure operator. The 

J l -net closure of a se t k i s obtained by adjoining to A a l l 

l imi t s of neta in A whose d i rected s e t s are of card inal i ty 

no greater than X • The cardinal function 6f was introdu­

ced in 171. I f X i s a chain-net space then we define analo­

gously the chain-net character of X, €?C(X), by rep lacing 

X -net with A-sequence in the above d e f i n i t i o n . I f t(X) de­

noted the t i gh tne s s of Xf and i f X i s a chain-net space,then 

t(X) 4 6r(X) ± €>C(X) -*exp tCX). 

It i s easy to show that i f X i s a Frexhet chain-net space 

then t(X) » 6"(X) = € (X). Furthermore, i t was shown in t 8 ) f 

(and independently in C33)f that in t h i s same class of spa­

cea t(X)^.s(X) (the 9pread of XK Theorem 1 extend3 th i 3 r e -

3ult to chain-net apaces ( i t waa proved for compact T2 apa-

cea in Cl.1). We then construct some examples to show that 

i f X i s a chain-net space, then in general t(X)4= & (X); we 

need extra axioms to obtain a Tp example. A space i s sa id to 

be a T -space i f every convergent chain-net has a uniaue l i ­

mit. Such spaces are c learly T̂  but not in general T^ (see 

for instance t 4 l ) . All the examples we construct are (at l e ­

ast) T -spacea. 
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Theorem 1. If X is a T̂  chain-net space then t(X) «4 

^ B ( X ) . 

Proof. Suppose that for a cardinal X there i s a non-

cloaed subset A of X with the property that i f Be A and 

lB l<A. 9 then elg&cA. Since A i s not closed, there i s a 

^-sequence (<tt £X) S in A converging to pd)A. We wil l de­

fine by recursion a relatively discrete subset of S of car­

dinality X • Choose x^e S and disjoint open sets U± and Y-̂  

such that x^e Û  and P^V^. Identifying X with the f irst 

ordinal of cardinality X , suppose that for each cO -*c X , 

we have chosen x« G S and disjoint open sets Û  and Ŷ  for 

all £ -c oC and satisfying the following conditions: 

a) x~£ VQ and pe Ŷ  -

b) Xp c (Sn D^ ) - U* U.̂ : <y << /3$ where D^ « X - c^Ux-y. : 

: r^£J ); 
then we choose x ^ f U^ and ^ as follows: 

Since o o - c A we have that loot < X and so I -t x^ : 

: £ -*s o&l 1 * I<*>\ -< X • Thus p^cJtL-Jx^ : (3<oc5 ***<* so J^ » 

» X - clg'Cx* : p-<oc3 is a neighbourhood of p and so must 

sontaln a coflnal segment of S. Furthermore, each V^ (for 

P < oo ) must also contain a coflnal segment of S. Thus s in­

ce we are assuming that ^ la a regular cardinal, i t follows 

that n \ V^ : (3 <-cc"i contains a coflnal segment of S, which 

implies that S is eventually out of Vi U« : fi^ac} • Thus 

we may choose x^ c (SriD^) - U I U^ : (5 -roc? , and Vf^ and 

Yj-t disjoint open neighbourhoods of x^ and p respectively. 

Let F » < x ^ : <-C<-Xi . Then \2\ m X and F i s discrete since 
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F A H < A *•& * *̂ xcC^ • H e n c e s W - ^ • Tne re su l t now follows 

from the d e f i n i t i o n of t ( X ) . 

The above theorem i s f a l s e i f the T2 separation axiom 

i s weakened to T . To obtain a counterexample i t suf f icee to 

adjoint a point p to a f i r a t countable, hered i tar i ly Linde-

l o f T2 apace X which ia l e f t -eeparated by o>^ (see £"53); 

euch a space i s c o n s t r u c t i v e in ZFC, for example see £ 9 , 

page 263 . Neighourhoods of p are of the form £Tu-ipif where 

tr i s open and cocountable in X. The resu l t ing space i s a tfr6~ 

chet chain-net T space with countable spread but uncountab­

le t ightneas . Example 1 3how3 that a Tp chain-net apace with 

countable spread need not be sequent ia l . (Compare 1 3 , Theo­

rem 63 or C8, Prop. 5^33 where i t i s 3hown that a Fr^chet 

chain-net space of countable spread i s ir^chet-Urysohn.) 

We now construct three non-sequent is l chain-net apaces 

which have countable t ightnea9, thus answering negatively a 

question of Arhangel'skij [ 2 , que9tion 3 ) , page 4 3 ] . The 

f i r a t example ia T^, the others being T c . The continuum hy­

po theei3 i3 required in the conetruetion of example 1 , while 

example 2 i s in ZFC. In both of these examples ^ (X) -? ^ . ^ 

The third example requires MA + -i CH for i t s construction 

and here S^CX) » exp t (X) . We do not know whether a T2 

chain-net space with # c = exp t can be constructed under 

MA • 1 CH. 

1 . Let X be a f i r a t countable, l o c a l l y countable, r e ­

gular S-apace such as the one conatructed U3ing CH in 1.6, 

§ 13 , and l e t X * Xu-ipl; (p<|.X), where open neighbourhooda 

of p are complements of closed countable subsets of X ( toge-
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t h e r wi th the point p ) . X i s T2 s ince X i s T-* and l o c a l l y 

countable ; t has countable t i g h t n e s s s ince X i s h e r e d i t a r i ­

l y sepa rab le ; Y i s not s e q u e n t i a l s ince c l e a r l y no sequen­

ce in X can converge to p . However, i f AcX i s such t h a t 

pec£-fA, then c2^A i s obta inable from A by sequence ( s ince 

X i s f i r s t countableJ ; fur thermore , ci^A must be uncountab­

l e and so any minimal we l l -o rde r ing of i t w i l l converge t o 

p . Hence Y i s a chain-net space . 

2 . I f we rep lace the space X i n example 1 by the r e a l 

l i n e with I t s usual topology, and adjoin the point p as b e ­

f o r e , then the r e s u l t i n g space w i l l be a T chain net space 

with countable t i g h t n e s s which i s not s e q u e n t i a l . 

3 . Let (to be a minimal ca rd ina l number such t h a t t h e ­

r e i s a family ^ C ^ : cc << pJ\ of novtoere denae sub9ets of R 

who3e union i s not of f i r s t category. Clear ly ^ i s an un­

countable r egu la r c a r d i n a l . 

For oc/ < (Co , choose a countable family 'Too of closed 

nowhere dense subse ts of R with U ^ 2 U' -C C^ : /3 < oC J . 

Choose, i f p o s s i b l e , a point x e C - I l-tU %> : ft =-* & ' t 

l e t A - -Cx^ : oc < ( tc '£ • According to the choice of the fami­

l y •{ C^ : *x -< <c61 , we have \ A j * ps. 

I f XsA has an uncountable r egu la r c a r d i n a l i t y K < ^ * 

then fo r some cc *e (*, % X £ U *( C^ : ft < oc"i s U 'J^ . Since K 

i s r egu l a r uncountable , ) X n T i * K fo r some T e '3^ , for 

(&, i s countable . But then c i A (XnT) » cJ^(Xn T)n A£Tr> A B 

£ < x ^ : p < oc} * 

Thus c i A (XnT) has c a r d i n a l i t y l e s s than (tu . 

Now l e t Y » A u i p i ( p ^ R ) , where A has the r e l a t i v e 
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topology from R and open neighbourhoods of p are complements 

of closed subsets of A of card inal i ty l e s s than (U (together 

with p ) . 

I t i s easy to check that I i s a Tc chain-net space with 

countable t i ghtness . Furthermore, i f tc -< (U, and S i s a r e ­

sequence i n Ay then by the above construction, there i s a 

subset W£S of card inal i ty to (and hence cof lnal in S) such 

that c£jf has card inal i ty l e s s than <ct • Thus S i s frequent­

l y outside of a neighourhood of p and so does not converge 

to p. Thus €fp<Y) = M< • 
**o It i s well-known that (CA> - 2 under MA. Thus assuming 

•#* 
MA • -1 CH, we have €^(1) * exp t(Y) » 2 ° *> -*.,. We do not 

know the value of *3i(Y) in t h i s case. 

4» Our las t example exhibi ts cons is tent ly a T9 ccc s e -

parable chain-net space X of card inal i ty greater than 2 ° . 

Notice that Archangel'skij proved that i f X i s a .Ere*chet 

chain-net T? space, then t X j * 2 > d ( x )
f \x\ *k d(XXc(X> E33. 

Let N be a aet of natural numbers; for A,BsN denote 

A ^ B i f f IB - A \ ** ^ 0 , |A - B | * -w0. A tower (? of length 

.V i s a family CTs-tT^: oc < i>}s0*(N) such that T^*z> T^ 

whenever «*> «< /3 <• i> . A tower tf i s nowhere dense i f for 

each A e t u i there i s some T^ e T with IA - T \ » 4* . 

Define 

lS»-* min •U'T'l : vf i s a nowhere dense tower 1. 

Clearly & i s an uncountable regular card inal . 

Claim: There e x i s t s a family «(TffAf: oc^'fr , f c ^ i of 

subsets of N sa t i s fy ing the fol lowing: 
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I f 00< p ^ &9 f g ^ , g € A 2 , then T f * 3 A g uT g pro­

vided that f c g > o r | T f A T g l < j * 0 provided that for some 

o f e dom fndom g, f (^-)4.g(y) . 

Indeed, define by induction Tg M N $ f A0 = £>. Let | - < ^ 

and suppose that T f f Af have been defined for a l l oc <r £ f 

f e ^ . I f § » ^ • 1, f s ^ 2 , choose four i n f i n i t e d i s jo in t 

subsets of T f and denote them T f ^ t 0 ) » T f u ( ^ f l ) » Afu(^ fO)' 
Afu(^ 1) r e s P e c t i v e l y * If 9 i s a l imit ord inal , f e ^ 2 f then 

by the assumption a family {?- » - tT f ^ : oc <r £ $ i s a tower 

which cannot be nowhere dense for £ -<-. i?* • Hence there i s 

an i n f i n i t e s e t Bf-£N with B f c * T ^ . for each co -< £ . Choo­

se two d i s jo int i n f i n i t e subsets of B f and denote them T f and 

A f . 

Having proved the claim we shal l construct the space X. 

The underlying se t of X i s 

N u U 4. ^2:0 -f f <: T M w ^2* 

The topology i s defined as fol lows: 

(a) Each point of N i s i s o l a t e d . 

(b) I f 0<£*-£o?« f f € - ? 2 , then the basic neighbourhood 

0(f,K) of f i s the se t - f f f u ( A f - K), where K runs over a l l 

f i n i t e subsets of N. 

(c) I f g> e 2, then the basic neighbourhood of g> de-

pends on o c < ^ and on a choice of neighbourhoods of <p Is £ ; 

U(<£ , ^ , * t 0 : <*,.<£<<& J) -*49 J u U -iq> ^ : a c < £ « . - £ | f 

where each O ^ t i s a neighbourhood of q? 1̂  §f • 

The space X i s obviously ccc and separable, each te cC2 

can be reached by a convergent sequence, each f e 2 can be 

815 



reached by a convergent net of length # . So X i s a chain-

net space. Clearly |Xl a 2 • 

We need to show that X i s Hausdorff. To th i s end, l e t 

CD , y e 2>, (f + if . There i s some oc -< v» such that 

op lvoC 4- Y ^°° > hence - ^ j s ^ ^yroo i s -f inite . Let K£N be 

a f i n i t e s e t such that (T' r<j& - K ^ n 2 V r o c s **• ^ o r f ^ °° > 

A j,« c * ^ N * a n d A^r'^fe c * T yr©c > 3 0 t n e r e a r e f i n i t e s e t s 

Kf , L . S If with A^rf - Kf c T^u - K, A y r f - L f c T ^ * 

Consequently the neighbourhoods 

U(g> ,oc , «£0(a? r§ ,K~ ) : o C ^ f < r i * S ) 

and U ( y , o 6 , < 0 ( Y r* f ,L~ ) : <*^ f < -* f ) are d i s j o i n t . 

The proof of separating of other pairs of points from 

X i s s imilar and may be l e f t to the reader. 

It remains to notice that CH or P(C) imp l ies o9*~ 2 ° . 

Since 1 X 1 = 2 , i t i s consi3tent with usual axiomes of ZFC 
*o that | X } > 2 ° . 
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