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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

23,1 (1982)

ON RECURSIVE MEASURE OF CLASSES OF RECURSIVE SETS
A. KUCERA

Abﬂ££§£%= It is shown that any class of recursive sets
-i"phgn):neN where h is a function of degree a such that

auQ#0Q" has Q-measure zero (0-measure is a recursive analo-
gue of the product measure on 2.
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It is known that the recursive sets are not uniformly
recursive. C. Jockusch [4, Theorem 9 observed that there is
a function h of degree = g such that @, (g th(l)”" are
precisely the recursive sets iff Q,“Q;’Z 2". In this paper we
prove that any class of recursive sets {cyh(n)me N% where h
is a function of degree <& such that auQ # Q" even has O-
measure zero. The concept of O-measure is an effective ana-
logue of the product measure on 2N. It was introduced by O.
Demuth [1] for constructive real numbers and plays the impor-
tant role in constructive mathematical snalysis (see, e.g.,
(21,

Our notation and terminology are standard. In particu-
lar we use the letters i,J,k,n for elements of N = 40,1,...8.

We identify subsets of N with their characteristic functions.
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A string is a finite sequence of O ‘s and 1 “s. Strings may
also be viewed as functions from finite initial segments of
N into {0,1}. We use the letters &, & for strings, £h(s)
is the length of & and 6 x © is the string which results
from concatenating 6 and © . A subset A of N extends &
(A 2 & ) if the characteristic function of & extends & .
We assume that the set of all strings is effectively Godel-
numbered so that we can apply notions of recursion theory to
strings. For functions f, g we say that f dominates g if
£(n)z g(n) for all but finitely many n. Let &, be the n-th
partial recursive function in some standard enumeration of
all partial recursive functions.

We shall use the Martin’s result [6] that there is a
function f of degree a which dominates every recursive func-
tion iff 3‘?_- QJ'. We shall also use the following straight=-
forward modification of the result.

Lemmg: For any degree }3 and for any class A = {‘fh(n):
tne N§ of recursive functions where h is a function of deg-
ree .&;R' there is a function f of degree < R which domina-
tes all functions of A .

We shall use a special case of the concept of QO-measure

(see [11).

Definition: A class A of subsets of N hag O-measure
zero if there exist a recursive sequence Ro’Rl"" of r.e.
sets of strings and a recursive sequence YorY1reee of const-
ructive real numbers (i.e. recursive reals) such that for
every n

-ih(a) : 7R
1) the real m.unberﬁglR 2 is equal to y, and y,% ’

~
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2) for any set A4, A € A , there is a string 6, & € R,
such that 6 & A.
It should be noted two important facts in the defini~-
tion:
-¢hig) | .
i) G%RWZ is required to be equal to a constructive

real number for every n,

ii) Yo1Y1se-s 18 required to form a recursive sequence.
Zaslavskij and Cejtin i8] proved that the class of all

recursive sets has Q—measure equal to 1. More information

on the role of O-measure and some survey of constructive ma-

thematical analysis can be found in [2].

Theorem: If g is a degree such that gug'$ Q" then any
class of recursive sets {xyh(n):neN} where h is a function
of degree < a has O-measure zero.

Proof. It follows from [8] or from [5] that there is a

r.e. set So of strings such that

1) 5’?‘5 Z-Zh(ﬁ‘) is less than %,
(-]

2) for every recursive set A there exists a string ¢, 6 ¢
€ So’ such that 6 < A,

(i.e. there is a recursive binary tree T without infinite re-
cursive branches such that the usual product measure on 2N
of the class of all infinite branches of T is greater than

%). It should be noted that the real number ZS 2=£h(5) is
€

o
recursive in £° but it cannot be equal to any constructive
real number (see [8]).

Let SO,S]_,... be a recursive sequence of r.e. sets of

strings such that for every n S ={hfkxz:8¢ S, &TeS}.
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Let 46, k:keN} be a recursive enumeration of S, for eve-
9

ry n (all S, are, of course, infinite). It is easy to verify
—h(a -
that (vzq 2 »@h(n)<2 (n+1)

6 € Im

for all n.

Further, for any recursive set A we can effectively

find a recursive function « such that for all n A‘:"anc(n)'
So, let g be a recursive function such that if @, is a re-

cursive set then $,26 y for all k, n. Now let a be

k,g,g\n)(k
a degree such that E,‘JQ}' O" and h be a function of degree <3
such that {9, yineN} is a class of recursive sets. We use
the function g described above to form the class of recursive
functions B = -icfgh(n) :neN§. The function gh is obviously

of degree < a. By the theorem of Friedberg [3) (or [7] §
13.3 ) there is a degree b such that b° = auQ . By the lem-
ma there is a function f of degree < b which dominates all
functions of the class 7 . Since Q’.i O", there is a recursi-
ve function o which £ fails to dominate. Thus, for all n,

Y gh(n) (k) £ Jd(k) for infinitely many k. By the properties of

- = for all k, n. Let R_,R,,...
g we have F(n) 2 ok'%)gmn) (%) ’ 0?1l

be a recursive sequence of r.e. sets of strings such that for

everyn R = {6, jikZne j£Jd(x)!. It follows that for
9

all i, n there is a string &« R, such that cyh(i)éa" .
Further, it is easy to construct a recursive sequence of con=-

structive real numbers Yg3¥1se+. such that for all n

= 2m¢hld) 4 equal to y  and yngz"“.

o
“E R,

Thus, the class 14 (. )ine N} has Q-measure zero.
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