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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

23.1 (1982) 

ON COVERINGS OF RANDOM GRAPHS 
M. AJTAI, J. KOMLÓS, V. RÓDL, E. SZEMEREDI 

Abstract; It is shown that almost all graphs have the 
property that almost all edges can be covered by edge dis
joint triangles. Various generalizations of this statement 
are considered. 

Key worda: Random graph, covering. 

Classification: 05C99 

Many papers have dealt recently with the problem of de

composing a graph into isomorphic subgraphs. In this not© 

we investigate related questions concerning random graphs. 

Let n be a positive integer; is it true that the majority 

of graphs with n vertices- can be decomposed into edge dis

joint triangles (or more generally into edge disjoint copies 

of a given graph F$ SO that only relatively few edges are 

left? 

We prove, provided n is sufficiently large that it is so. 

(For the more detailed definitions concerning random graphs 

see L23.) 

Theorem. Let f be a positive, * ~ 1 and Q -* (Vf<£) a 

random graph with n vertices, such that each edge is present 

with the prescribed probability p, independently of the pre

sence or absence of any other edges. Then, with probability 
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tending to one (as n —»< .v ) there exist3 a system T(Cp of edge 

disjoint triangles in Q- so that all but at most e n 2 edges; 

are covered by some triangle from T(£<)# 

Proof: Ai We can clearly suppose without loss of ge

nerality that n = 6m • 1 or 6m-*3. Let K = K be a complete 

graph with the vertex set V. From the existence of Steiner 

triple systems with n vertices (ns~ l or 3 (mod 6)) it imme

diately follows that there exists a covering C of the edges 

of complete graph K = K by edge disjoint triangles. Let cr, , 

tr^,... t^M be independent random permutations of the verti

ces in Vf N will be chosen later. We assume that these per

mutations are also independent of the random graph C . (In 
( ) N 

other words, we work on a product space i0,1] axsr with 

the product measure P =- P ^ x ^ ) where or is the set of all 

permutations of -tlf...,n) each one having ^-measure / j f 

and PCl) * pf p(o) -s l-p.) We define the independent cover

ings C-p...,^ as follows: a triangle *^vi»v2»v3^ belongs to 

C^ if -[^fivi» ̂ iv2» oriv3i belongs to CQ. 

Now our algorithm goes as follows. Select all triangles 

in G that appear in Cj , then all triangles appearing in C2 

that are edge disjoint from the ones selected before, etc. 

This way we cover some portion of the edges of C^ by edge 

disjoint triangles, and hopefully a large portion. 

Define the indicator variables 

1 if e e t , nevertheles3 e has not been covered in 
_ _ our procedure 
^e ~ 

0 otherwise 

and set d « l>tet where E denotes the expectation of random 

variable X • ^ > l e does not depend on e because of complete 
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symmetry.) For the number D of edges not covered we have 

D = a v , Ae (GP i8 a s e t of a11 P a i r s of v ) » Ei) » (§) d. 
Now 

and 

P(l<£i< | ( £ ) p) » o ( l ) 

Cif o n l y ^ ^ p — > & o ) , thus i n order to show that D/ <. . —» Q 

i t i s s u f f i c i e n t to show tha t dV —-> 0. 

B) Define the numbers p* r ecu r s ive ly as fo l lows 

<1> 
P 0 = 0 

Dk+1 = Pk * ( D * Pk ) 3 

Taking dfc = P"Pk w e n a V e t n u a d
0 ~ P» dk+l~ d k ~ dk " 

I t i s easy to see that d.—> 0 ( ac tua l ly d ^ ^ 'Vi?k) • More--. 

over, s ince dk i s decreasing we have 0-<dk^p~kdj* whence 

(21 d k < ( P / k ) 1 / 3 » k = l , 2 , . . . . 

Now we are going to prove 

(3) d < dir • y /n 

and thus d'p - . > 0 if only 9N/ — > 0 and N p 2 — > oo which 

holds if p Vlog n — > o o (choose N * -jo log n)* 

Cl Consider an edge e. Let T^ = \^e) d e n o t e tne trian

gle in C^ that cover e. Start with TN(e). 

In CL» , there are three triangles (not necessarily differentI 

containing the edges of TN(e). In %.^ there are nine trian

gles containing the nine edges that appeared so far, ate. 

Let A = A(e) denote the event that the 3 • 32 •...• 3N = 
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-* ̂ C3 n - l) edges thus appearing are all different, and B k = 

=~ Bj-(e) the event that the edge e is covered up to the K-th 

step of our procedure (k-1,...,N). 

We fix the covering C-^...,^ in such a way that A holds, 

and randomize CL . Define the conditional probability 

-*k ~ ̂ Bfcl CJL , • • •, C N) 

for these fixed coverings. 

For the probability P^i " Pv that e gets covered in exactly 

the Ck+l)-th step, we obviously have 

*W - pk - (p - V 3 . p i = p3 

s ince the three edges of T. (e) have to be drawn in (^ and 

should not have been covered e a r l i e r ( t h i s expla ins p - P^ ) , 

moreover, these three events are independent, fo r we fixed 

the C-s in A(e). 

Thus P< .and a l so t h e i r mixture P(Bk\ A)> s a t i s f y ( 1 ) , and 

hence are equal to p fe. 

We have 

d » p - P(BN) = p - P(BN|A),P(A) - P(BN|A)P(AL= p - p N P(A)^ 

^P " Pjr • PCD « d^ • P(A). 

Now 
hl-1 

PCI) ^ t ^ A 2 . 9 V n < 9 , V n 

fo r up to the k- th s t ep (backwards) in the above argument C) 
\r 

we have 3 edges altogether, and the probability that the 

corresponding random 3 points (one step back) are all diffe

rent from the (3 • 3)/^ points obtained so far, is less than 

2.9k/n. Q.E.D. 
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Remark. Here we outline that in our theorem triangle 

can be replaced by any other graph F. Consider a graph (con

figuration of edges) F which K can be covered by. An impor

tant result of R.M. Wilson [lj shows that the trivial neces

sary conditions for n are also "asymptotically sufficient" 

and hence K can be covered by edge disjoint copies of F for 

all sufficiently large n satisfying the necessary conditions. 

If F contains r edges rather than three, then we have 

to change (1) to 

Pk+1 * pk * CP " Pk)r> Po = ° 

which leads to 

dk * P * p k ^ ((r " l ) k ) /r~X 

and also (3) to 
-21C 

d < < % + 'n 

which leads to the condition 

pdog «/log Z ^ 1 _> .c. 

Thus, with p = const (say 1/2) , the procedure works fo r co

ver ing with subgraphs with o d o g log n) edges, e . g . fo r 

o( Vlog log n) -gons . 

For fixed r we have seen tha t the procedure works as 

long ass 

p( log n) / r ~ 1 s <* 

i . e . as long as the number of edges i s much l a rge r than 

n ? / ( l o g n ) 1 ^ ' 1 . 

For t r i a n g l e s t h i s i s 
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n 4tlog n • 

A good guess Is, however, that even a random graph with 

co(n)n3/?, o(n) — > oo 

edges can be covered almost p e r f e c t l y . This would be a 

s t rong statement and i s completely beyond the power of our 

method. x* 
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x) Added In proofs : Recently we have proved t h i s con jec ture . 
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