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COMMENTATiONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

23,1 (1982) 

THE NUMBER OF MINIMAL VARIETIES OF IDEMPOTENT 
GROUPOIDS 
Jaroslav JtZEK 

Abstract: It is proved that there are uncountably many 
minimal varieties of co'mroutative idempotent groupoids* 

Key words: Minimal variety, commutative idempotent grou-
poid. 

Classification: 08B05, 08B15 

Kalicki [2] proved that there are uncountably many mini

mal varieties of commutative groupoids. Although this result 

was strengthened and generalized in various ways (see e.g* 

Cl],C3J,C43,C5J), there seems to be no mention of idempotency 

in the literature in this connection. The purpose of this pa

per is to prove the following 

Theorem. There are 2 minimal varieties of commutative 

idempotent groupoids. 

The proof will, be divided into several lemmas. It will 

be convenient to work in the free commutative groupoid G over 

4x,y$ (x,y are two different elements). The binary operation 

of G will be denoted multiplicatively. If a,b,c,deG then 

ab = cd takes place iff either a-*c8tb=d or a=d8cb-*c. G is a 

cancellation groupoid. There exists a unique mapping A of 0 

into the set of positive integers such that A ( x ) =- A(y) * l 
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and A,(ab) = X( a) * C\(b) for a l l a , b e G ; the number &(a) 

i s cal led the length of an element a e G . kn element a e G i s 

sa id to be a aubterm of an element b e G i f b =-= ( ( ( a c , ) c p . . . 

. . . ) c , for some k > 0 and some elements c, , c ? , . . . , C i f 6 G ; i f 

k ? l , a i s sa id to be a proper subterm of b . Ev iden t ly , an 

element a e G i s a proper subterm of b^b^ i f f i t i s a subterm 

of e i t h e r b 1 or b 2 . 

I f n2*0 and a , b e G , we define an element [a,b3 eG as 

fo l lows : t a , b ] ° » a; ta,b3n"*'1 * [ a , b 3 n b . Hence t a , b 3 n * 

=- CC(ab)b) . . . )b with n appearances of b . 

Put N = = 4 2 , 3 , 4 , . . . } . Denote by I the se t of a l l f i n i t e 

sequences ^ e l » # # # * e v ^ 8 U c n t ha t k > l , e-_6 N and e*eWx{l92~l 

for a l l le 4 2 , . . . , k } . 

In the following l e t M be an a r b i t r a r y subset of N. 

For every e e S define th ree elements R
e » S e , T ot G as 

fo l lows : 

(1) Let e=-(n), n € N. Then R ^ Ex,y3nx, Se=- t x , y ] 2 n x , Te=-x 

i f n€M and Te=y i f n^ M. 

(2) Let e - ( f , ( n , D ) , f s E , n 6 N. Then Re=* ETf ,S f3
n""1R f , 

Se= t T f f S f 3 2 n " 1 R f , Te==Rf i f neM and T e=S f i f n#M. 

(3) Let e=- ( f , (n ,2 ) ) , f c E , n e N. Then R e - t T f , R f j 1 * " 3 ^ , 

Se= tT c ,R f 3
? n " " 1 S f f T e*S f i f neM and Te=Rf i f n4M. 

Lemma 1. Let e e l and l e t p be an endomorphism of G« 

Then p(Re) i s s h o r t e r than p(S ) ; p(Tg) i s a proper subterm 

of both p(RQ) and p (S Q ) . 

Proof. I t i s obvious. 

Lemma 2 . Let n ,m>2 and l e t a , b , c , d e G be such tha t 

tajb}11""1-* t c , d 3 m " 1 and ta,b;)2 n~1-* lc,dl2mrl. Then n-=m,a=-c and 
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Proof. I t i s enough to consider the case n ^m. We have 

b=d, s ince otherwise b= Ec,d]m~ = L"c,d] m~ , which i s impos

s i b l e . From t h i s we get by cance l l a t ion a = Lc,b3m~n and a = 

=* [ c , b l m~ n ; hence m-n=2m-2n, i . e . m=n; we get a-sc as a con

sequence. 

Lemma j . Let e , f e S and l e t p,q be two endomorphisms of 

0 such tha t p(RQS )=q(R f S f ) . Then e=f and p=q. 

Proof. By induct ion on the sum of the lengths of e and 

f. I f e , f are both one-termed, i t i s ev ident . Suppose e^dn) 

and f>(g,(rt,lH. We have p(tx,y]mx)=q(LT ,S J ̂ R J and 
g g g 

p([x,/J2nix)=q(trg,Sg)
2'n-:LRg). Evidently p(x)=qCRg), 

p([xy,yJm"1)=q([T ,S ln_1) and pt[xy ,yj 2---)-q(lP_,S J 2 n _ 1) . 

By Lemma 2 we get n=m and p(xy)=q(T ) , so that q(T ) is Ion-
o o 

ger than p(x)=-q(R ), which is impossible by Lemma 1. Quite si

milarly, we cannot have e=(m) and f=(g,(n,2)). 

Let e=(g,(n,D) and f=(j, (m,l)). We have p( l T g »
s p n ~ l R

g
) = 5 

q(LTh,Shl
m^Rh) and p C I ^ . S ^ ^ - ^ J - ^ C l T - , , ^ ]

2 ^ ^ ) . Evi

dently p(Rg)=q(Rh), pC[Tg,Sgj
n"*1)=q(lTh,Sh)

m"1> and 

p(tTg,Sgl
2n"*1))=q(lTh,Sh]

2m""1). By Lemma 2, n=m and p(S ) * 

=q(Sh). By the induction assumption, g=h and p=q; since n=m, 

we get e=f. 

If e=(g,Cn,2)) and f=(h,(m,2)), the proof is quite ana

logous. 

Suppose e=(g,(n,l)) and f=(h,(m,2)). Similarly es above 

we get pCR )-sq(S. ) and p(S )=q(Rh). However, this is a- con

tradiction by Lemma 1. 
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Denote by A the set of all aeG such that whenever e e E 

and p is an endomorphism of G then neither p(xx) nor p(R S ) 

is a subterm of a. Define a binary operation o on A as fol

lows : 

(1) if a,b£A and abeA, put a * b»ab; 

(2) if a € A, put a ° a=a; 

(3) i f a , b e A and ab-*p(R S ) for some e e l and some endomor-
' e e 

phism p of G, put a o b=p(T ) . 

The correc tness of t h i s d e f i n i t i o n follows from Lemmas 1 and 

3 . Evident ly A(o) i s a commutative idempotent groupoid. 

Lemma 4 . Let a ,be A and ab<£ A. Then e i t h e r a=b or there 

are elements R ,S ,TeG with R#=S and a number m Z.2 such that 

abs-(CT fS3m"1R)(tT fS32m"1R). 

Proof. I t i s easy. 

Lemma j>. Let u , v e A and l e t u be a proper subterm of v. 

Then uv eA. 

Proof. There are an in t ege r k2Tl and elements w- , , . . . 

. . . , w k € G with v=( ( (uw-)wJ . . . )wk. Suppose uv<|A. I t follows 

from Lemma 4 tha t we can wri te u= LT,S]m~XR and v= CT,Sj2m~1R 

for some R,S,T,m with R + S and m " 2 . Let us prove by i n d u c t i 

on on ; j -= l , . . . ,k t ha t 2m- j>0 and ( ( (uw^Wg) . . . )wk , - CT,S] 2 m ~^ 

For j=T i t follows from (((uw-^Wg) . . . )wk= f T,S}2m"1R, since 

we cannot have (((uw-jJwp) • • • ) w k , = R . Assume that the two a s 

s e r t i o n s are proved for some j<r k. I f i t were ( ( (uw 1 )wp) . . . 

• ••)w. . -,=S then we would have X(u)^A(S); but u i s longer 

than S, a c o n t r a d i c t i o n . Thus there remains only one po s s ib i 

l i t y : ( ( ( u w 1 ) w 2 ) . . . ) w k ,_1= £T,S l 2 m -^~ 1 . I f i t were 2m-j-l=0 
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then we would have Xiu) £ J\,(T); but u i s longer than T, a 

con t r ad ic t ion . Hence 2 m - j - 1 ^ 0 . The induct ion i s thus f i n i s h 

ed. Espec ia l ly , for j=k we g e t : the re i s an i > 0 with u -s 

= t T ^ ] 1 . Hence [T,Slm"1R* [ T - S l 1 . We cannot have S * [ T , s l m " 1 

and so we get S=R, a con t r ad ic t ion . 

Lemma 6. Let a , b e A, ab^ A and a4=b; l e t i > 1. Then 

La o b,bJ a e A. 

Proof. Since a « b i s a proper subterm of b, severa l ap

p l i c a t i o n s of Lemma 5 give [a•© b,b] e A» Suppose [a o b,bj^s<£ A. 

I f i t were [ ao b,b3 =a then b would be a proper subterm of a, 

so tha t abe A by Lemma 5, a con t r ad i c t ion . By Lemma 4 we get 

Isr o b,b31a=-([T,S3m~1R)(lT,S]2m""1R) for some R,S,T,m with B^=S 

and m>2. If i t were [ a o b - b j 1 - [T-S]"1"1* and a= [T,Sj2 m~1R, 

then we would have e i t h e r b=R or b=tT,Sj m "" -» so tha t b would 

be a proper subterm of a and so abe. A by Lemma 5, a con t rad ic 

t i o n . Hence C a o b , b ] i = [T.S] 2 1 0""^ and a= [T ,S]m"1R. Since b=R 

i s impossible , we get b=fT,S3 m"" . By Lemma 4 there are r , s , 

t e G and a k ? 2 such that ab-*(l t ,3]k**1r>( I t , s 3 2 k " " 1 r ) . There 

are two poss ib le cases . 

Case l : a* lT,SJm""1R« f t f s j k " 1 r and b= [TjSJ2*1""1 = 

- [ t , s j 2 k " " 1 r . Since e i t h e r r * [ T,S]2m""2 or r=S, we cannot have 

r= [TjS]01""1. Hence r=R. Since R ^ S , we get [t fs.] 2 k~ 1=S and 

I t - s l * " 1 - * LT-S3m-,1
f ev ident ly a con t r ad ic t ion . 

Case 2: a= Z T -S! 1 1 1 "^* Z1 ,s? 2 k ~ X r and b= r. TjS1 2m~l = 

= [ t , s ] r . S imi la r ly as in the previous case we get 

Lt,s]k""1=S and [ t ,s] 2 k ' 1 = [ T-S]m"*; we have e i t h e r S=s or S= 
- 2k~*2 = [ t , s j , ev ident ly a con t r ad i c t i on . 

203 -



Lemma 7. Let neN, Then the groupoid A(°) satisfies the 

identity H
( n )

S
( n )

- T
( n )

. 

Proof. Let cp be any homomorphism of G in to A(°); we 

must prove <p ( R ( n ) s ( n ) ^ ~ ^ T ( n ) ^ * P u t a = #^x^ a n d b ~ (^K^* 

I f a-h , everything i s c l e a r . I f abc A then by Lemma 5, 

y(R^ n )S^ n ^)-= t a , b 1 n a o r a , b J 2 l , a = <j?(T( n )). I t remains to con

s i d e r the case when ab*p(R S ) for some e e B and some endo-

morphism p of G; we have a « b=-pCT ) . There are two poss ib le 

c a s e s . 

Case 1: a=p(R e) and b=p(S ) . By Lemma 6 we have 

9 , ( R t n ) S ( n > ) = t a o b ' b : > n " l a o t a o b ' b : ) 2 n " l 8 = P ( R ( e , ( n , l ) ) , ) • 

° P ( S l e , ( n , l ) ) ) = P ( T ( e , ( n , l ) > ) = 9 , ( T ( n ) ) -

Case 2: a=p(S ) and b=p(R ) . By Lemma 6 we have 

^ R ( n ? S ( n ) ) = l a o b ' b : j n " l a c I a o b . b : | 2 n " l a = P ( R ( e , ( n , 2 ) ) ) a 

° P ( S ( e , ( n , 2 ) ) ) = P ( T ( e , ( n , 2 ) ) ) = 9 , ( T ( n ) ) ' 

The proof of the Theorem can now be completed in the fol

lowing way. For any subset M of N denote by V
M
 the variety of 

commutative idempotent groupoids determined by the identities 

Ux,y]
n
x)(lx,y]

2n
x)=x for any n e M and C[x,yJn

x) ([x,yj
2n
x)=y 

for any n e N \ M . It follows from Lemma 7 that V
M
 is non-tri

vial, so that it contains a minimal subvariety tL.. If M,,Mp 

are two different subsets of N, then evidently V„ A V
M
 is 

trivial and so U
M
 + UV, • Hence the number of minimal varieties 

of commutative idempotent groupoids cannot be smaller than 

*, Ъ the number of subsets of N, i.e. than 2 °. On the other hand, 

it cannot be largei 

ties of groupoids. 

it cannot be larger than 2 , since there are only 2 varie-
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