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THE NUMBER OF MINIMAL VARIETIES OF IDEMPOTENT
GROUPOIDS
Jaroslav JEZEK

Abstract: It is proved that there are uncountably many
minimal varieties of commutative idempotent groupoids.
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Kalicki [2] proved that there are uncountably many mini-
mal varieties of commutative groupoids. Although this result
was strengthened and generalized in various ways (see e.g.
{11,031,(4),[5]), there seems to be no mention of idempotency
in the literature in this connection. The purpose of this pa-

per is to prove the following

Ky
Theorem. There are 2 © minimal varieties of commutative
idempotent groupoids.

The proof will be divided into several lemmas. It will
be convenient to work in the free commutative groupoid G over
4x,y}¥ (x,y are two different elements). The binary operation
of G will be denoted multiplicatively. If a,b,c,d€G then
ab = cd takes place iff either a=c % b=d or a=d % b=c. G is a
cancellation groupoid. There\exists a unique mapping A of G
into the set of positive integers such that A(x) = A(y) =1
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and \(ab) = A(a) + A(b) for all a,beG; the number A(a)
is called the length of an element ae G, An element ae G is
said to be a subterm of an element beG if b = (((ac)lec,...
...)ck for some k20 and some elements °1'°2"“’°k€G5 ir
kZ1l, a is said to be a proper subterm of b. Evidently, an
element ac G is a proper subterm of blb2 iff it is a subterm
of either b; or bz.

If nZ0 end a,beG, we define an element [a,b]"eG as
follows: La,bl® = a; [a,b]™ = [a,b]™. Hence la,b)™ =
= (((ab)b)...)b with n appearances of b.

Put N =42,3,4,...%. Denote by E the set of all finite
sequences (ej,...,e,) such that k21, e; €N and eiek’x{l,Z}
for all ie$2,...,k}.

In the following let M be an arbitrary subset of N.

For every e € B define three elements Re,se,Te of G as
follows:

(1) Let e=(n), neN. Then R = [x,y1%, S.= Ix,y1%0x, T, =x
~if neM and Te=y if n¢ M.

(2) Let e=(f,(n,1)), £cE, neN. Then Ry= [T, )" 'r,,

S.= [Tf,sgz"‘lnr,"re&zf if neM and T =S, If néM,
(3) Let e=(£,(n,2)), f€E, neN. Then R = [T‘,,Rf}n-ls

2n-1 — _
Se= [TC’Rf] Sff’ T,=S, if neM and T =R

?

¢ if néM

Lemmg 1. Let e€E and let p be an endomorphism of G.
Then p(Re) is sharter than p(Se); p(Te) is a proper subterm
of both p(Re) and p(Se).

Proof. It is obvious.

Lepmg 2. Let n,m>2 and let a,b,c,d€G be such that
(a,b]“'l'—' [c,dJm"l and [a'b32n-1;_, [c,dlzm'l. Then n=m,a=c and
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b=d.

Proof. It is enough to consider the case n £m. We have
b=d, since otherwise b= [c,d]™ %= [¢,d1°™ 2 which is impos-
sible. From this we get by cancellation a = Lc,b)™ ™ and a =
= [c,blzm_zn; hence m-n=2m-2n, i.e. m=n; we get a=c as a con-

sequence.

Lemma 3. Let e,fe E and let p,q be two endomorphisms of
G such that p(ReSe)zq(Rfo). Then e=f and p=q.

Proof. By induction on the sum of the lengths of e and
£, If e,f are both one-termed, it is evident. Suppose e=(m)
and f=(g,(n,1)). We have p([x,y]mx)=q([Tg,Sgln’1Rg) and
p([x,y]‘?mxhq(lrg,sg] 2“‘1Rg). Evidently p(x)=q(R),
p([xy,yJ"“l):q(mg,sg]“‘H and pqu,yJ?'“'l):q(trg,sg]2"'1).
By Lemma 2 we get n=m and p(xy)=q(Tg), so that q(Tg) is lon-
ger than p(x)zq(Rg), which is impossible by Lemma 1. Quite si-
milarly, we cannot have e=(m) and f=(g,(n,2)).

Let e=(g,(n,1)) and f=(j,(m,1)). We have p([Tg,Sg]n—le)=
Q(1T,, S0 " IRy) and p(17,,8,0°" 7 R ) =q(11,,5, 02" IR, ). Evi-
dently p(Rg)=q(Rh), p([Tg,Sg)n_1)=q(1Th,SB]m-ll and
p([Tg,Sglzn—1)=q(lTh,ShlZm_l). By Lemma 2, n=m and p(Sg) =
=q(Sh). By the induction assumption, g=h and p=q; since n=m,
we get e=f.

If e=(g,(n,2)) and f=(h,(m,2)), the proof is quite ena-
logous.

Suppose e=(g,(n,1)) and f=(h,(m,2)). Similarly es above
we get p(Rg)=q(Sh) and p(Sg)=q(Rh). However, this is a con-
tradiction by Lemma 1.
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Denote by A& the set of all ae G such that whenever ec<B
and p is an endomorphism of G then neither p(xx) nor p(ReSe)
is a subterm of a. Define a binary operation o on A as fol-
lows:

(1) 4if a,beA and abeA, put ao b=ab;

(2) if aeA, put ao a=a;

(3) if a,be A and ab=p(ReSe) for some ec E and some endomor-
phism p of G, put ac br—p(’l‘e).

The correctness of this definition follows from Lemmas 1 and

3. Evidently A(e) is a commutative idempotent groupoid.

Lemma 4. Let a,bc A and abg A. Then either a=b or there
are elements R,S,T€G with R4S and a number m 22 such that
ab=([T,51%"1R) (1T,57% 1R),

Proof. It is easy.

Lemma 5. Let u,ve A and let u be a proper subterm of v.

Then uveA,

Proof. There are an integer k =1 and elements Wypeoo
cee,W € G with v==(((uwl)w2)...)wk. Suppose uvé A. It follows
from Lemma 4 that we can write u= ET,S]m—lR and v= [T,S]2m-lR
for some R,S,T,m with R=%+S and m~ 2., Let us prove by inducti-
on on j=l,...,k that 2m-j>0 and (((uwi)wg)...)wk_j= ET,S]ZE“J,
For J=1 it follows from (((uwl)wz)...)wk= r17,53°" 1R, since
we cannot have (((uwy)w,)...)w,_,=R. Assume that the two as-
sertions are proved for some j< k. If it were (((uwl)w2)...
...)wk_j__1=S then we would have A(u) 2 A(S); but u is longer
than S, a contradiction. Thus there remains only one possibi-

lity: (((uwl)wz)...)wk_J_l= [T,Sizm-j-l. If it were 2m-j-1=0
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then we would have A(u) £ A(T); but u is longer than T, g
contradiction. Hence 2m-j-1>0. The induction is thus finish-
ed. Especially, for j=k we get: there is an 1>0 with u =

= 17,511, Hence [T,51" 1R= [T,511. We cannot have s= [T,s]m_l

and so we get S=R, a contradiction.

Lepma 6. Let a,bc A, abg A and a%b; let i>1. Then
Lao b,inae A.

Proof. Since a< b is a proper subterm of b, several ap-
plications of Lemma 5 give [am>b,b]it A. Suppose [a o b,b]ia¢ A.
If it were [ao b,b]1=a then b would be a proper subterm of a,
so that abe A by Lemma 5, a contradiction. By Lemma 4 we get
Taob,b) a=(17,51™R) (IT,51°" IR) for some R,S,T,m with R+S
and m> 2. If it were [ao b,b)i= [T,51% 1R and a= [T,512% IR,
then we would have either b=R or b=’[T,S]m_l. so that b would
be a proper subterm of a and so abe A by Lemma 5, a contradic-
tion. Hence La ob,bli= [7,512" 1R and a= (7,51 !R. Since b=R
is impossible, we get b= [T,Slzm—l. By Lemma 4 there are r,s,
te G and a k T2 guch that ab:([t,s]k-lrl([t,sJ2k°lr). There
are two possible cases.

Case 1: a=[T,5]"  R=11t,8)%1r and b=1[7,5)"1 -
12m-2 o r=S, we cannot have

,81%¥"1g ang

= [t,5)% e, Since oither r=17,S
r= [T,S]m—l. Hence r=R. Since R+S, we get(t
Tt,s1¥ 1= 17,5171 yidently a contradiction.

Case 2: a= r7,510 1 g= ry 87Kl 5pg pe T g1201 o
= t,8)%p, Similarly as in the previous case we get
rt,s 5 1ss ang [t,s)2k"1- [T,S]m—i; we have either S=s or S=

'2k—2

= [t,sl] y evidently a contradiction.
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lemma 7. Let ne N, Then the groupoid A(e) satisfies the
identity R(n)S(n)zT(n) .

Proof. Let g be any homomorphism of G into A(°); we
must prove @ (R( S y)= ¢ (T()). Put a= ¢ (x) and b= ¢ (y).
If a=b, everything is clear. If ab¢c A then by Lemma 5,
9<R(n)s(n))= [a,b)%a o[a,b]2"a= §>(T(n)). It remains to con-
sider the case when ab=p(ReSe) for some e € BE and some endo-
morphism p of G; we have ax:b:p(Te). There are two possible
cases.

Case 1: a=p(Re) and b=p(Se). By Lemma 6 we have
9(R(n)s(n))= [ao b,b]n-la ola cb,b]2n-la=p(R(e’(n,l)))0
°P(S(e, (n,10)) 7P 2 (e, (n,1)))= 9T (n))-

Case 2: a=p(Se) and b=p(Re). By Lemma 6 we have
PR Sy )= lao b,b1" 1g ciac»b,b)2n_la=p(R(e’(n,2)))°

°P(S (¢, (n,2)) =P T(e, (n,2)))= F(T(n))-

The proof of the Theorem can now be ~ompleted in the fol-
lowing way. For any subset M of N denote by VM the variety of
commutative idempotent groupoids determined by the identities
([x,y]nx)([x,ylznx)=x for any neéM and ([x,ylnx)([x,yjznx)=y
for any ne N\ M, It follows from Lemma 7 that VM is non-tri-
vigl, so that it contains a minimal subvariety UM’ Ir Ml,M2
are two different subsets of N, then evidently VMIF\VMZ is
trivial and so UMl#fUM2. Hence the number of minimal varieties
of commutative idempotent groupoids cannot be smaller than
the number of subsets of N, i.e. than be. On the other hand,
it cannot be larger than éxb, since there are only 2$° varie-

ties of groupoids.
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