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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23,2 (1982)

THE COMPLETION MONAD AND ITS ALGEBRA
Sergio SALBANY

Ab%sragg: Let C represent the completion functor discus-
sed by O. Wyler and S. Salbany. There is a monad associated
with C and it is natural to ask for a characterization of the
C-algebras. In this paper we show that the C-algebras are the
complete spaces.
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C-algebras.

Classification: Primary 54El5
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Introduction. As shown in [4) and [5], the completion
functor on the category of Quasi-Uniform spaces is associated
with a monad (C,7 ,«). Keith Hardie asked us for a characte-
rization of the C-algebras and persuaded us, over the years,
that an answer should-be given.

We shall follow the terminology of [3) and [1) concerning qua-
si-uniform spaces and that of [2) for the category theory.

1. Definitions, constructions and notations
A. Cauchy filters, copvergence and completeness. Let QU

denote the category of quasi-uniform spaces (X, %) and quasi-
uniformly continuous maps.

Definition 1. A filter ¥ on (X, %) is said to be a
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Cauchy-filter if, for every U in the uniformity U « w~L the-
re is F in % such that FxFc U. A

Dafinition 2. A filter ¥ on (X,%) is said to converge
to x if it converges to x in the topology induced by the uni-
formity Uwv 471

Definition 3. (X,%) is said to be gomplete if % v % %
is complete.

Definition 4. If A is a subset of (X,% ), denote by &
the closure of A in the topology induced by the uniformity
U v U™ = 1is called an adherence point of a filter ¥ if
x € F for every F in % .

Note. As for wmiform spaces, if 7 is a Cauchy filter on
(X,U) and x is an adherence point of ¥ , then ¥ converges
to x , and conversely. Thus, if xe F for all F ¢ ¥ , then

F converges to x .

B. Description of the completion mopad. Given (X,%),
let CX denote the set of all Cauchy filters on X and let «U*
denote the quasi-uniformity on CX with basis elements U¥*, whe-
re Us U and (o«,f3)e U¥if and only if there are sets A in
o 4 B in (3 such that AxBc U, The sets U¥ do form a basis
for WU¥ since (UNV)¥ = U¥NV¥, We now describe the m:zltipli—
cation w« and the unity n of the triple C:

(1) Let M X —> CX be given by Nxb%) ={FIFcX and
x € Fl. Then nx:(x,fu).—»(cx,fu*) is quasi-uniformly con-
tinuous.

(11) Let w, :C°X—>CX be given by w,(x) = {HIHCX,
HB* ¢ x} , where H* is such that e H* if and only if He .
Then px:(czx.w*) —> (CX, W*) is quasi-uniformly continuous.
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Moreover,
(a) MNx is an initial and injective map onto a
U* v (U*¥)"L-dense subspace of CX.
(v) ¢y and 7, induce natural transformations «:02->

—> C; m ¢ 1 —> C such that the following diagrams commute

3 Ca 2 . 2t Cm .
(“C(L__,i“ \1%

«
Thus, every space can be densely embedded in a complete space
in a "regular" way, which is expressed by the functoriality
of C. Moreover, even though the completion process always en-
larges a space, the existence of  shows that the completion
of a complete space is not "much larger" than the complete

space itself.
C. I ed co ion

Definition 5. A quasi-uniform space (X,U ) is geparated
if the uniformity U v ut 4s separated, that is, the inter-

section of all members of U v ’Zl.-l is the diagonal of Xx< X.

c u d t « Given a quasi-
uniform space (X,%), let R denote the equivalence relation
xRy if and only if {x} = {y? . Denote by [x ], the R-equi-
valence class of x . Let X° denote the set of R-equivalence
classes on (X,%). Let s:X—> X® denote the map s(x) =[a].
For Ue U , let U = {([2],({y1) | (x,y)ecU} then the U®
form a basis for a quasi-uniformity w® (since (UAW® ¢
c 0°NV®). The map s :(X, %) —> (X%, %°%) 1s an initial quasi-

uniformly continuous map onto a separated quasi-uniform space
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and the assignment (X, %) —> (X%, 2®) is the separated rer-
lection in QU. Mcreover, (X,%) is complete if and only if
(x®,%°) is complete. The composite scC = C® is the separat-
ed-completion-functor. The natural transformations 118 = 8
and (ws = si provides the separated-completion monad

(c®, nh, «®.

The importance of separated completions lies in the fact that
the embedding map q::(x,u)—a(x’,u“) is a map onto a
U (U®) " Ldense subspace, hence an epimorphism in the ca-

tegory of separated quasi-uniform apaces (see [11,[3]).

D. The algetrs of g monad

Definition 6. Let (C,7,u) be a monad on a category A.
An object & of A is a C-algebra if there is a morphism h in &,
called a structure map, h:CA —> & such that the following dia-

grams commute:

Ch Np
CA —_>CA K—2 5Ch
‘wAl‘ lh ' \l’h
CA —> A A
h
m - s

Example 1. Let X ={0,1% and Y = XxX. It is straight-
forward to verify that (X, %) is a C-algebra for every map
h:(cx, u* )— (X, U).

Example 2. Let (X,1U) be a separated complete space and
let h:(CX, U*)—> (X,%) be the limit map, h(F) = 1imit of ¥
(convergence in the topology of U v %~ 1). Note that h is
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well defined since limits are unique in separated quasi-uni-
form spaces. It will be shown in Section 3 that such a sepa-

rated complete space is a C-algebra.

2. C-=plgebrgs. As expected, C-algebras are the comple-
te spaces. Although expected, we have found the proof elusive.
The result is surprising in that there is an arbitrariness in
the structure map h:CX —> X (see Proppaition 2) that suggests
that not all complete spaces would be C-algebras.

Propogition 1. If (X,%) is a C-algebra, then (X,%) is
complete.
This is an immediate consequence of the following two

lemmas.

Lemma 1. If ScX, then S* c 7 [S1.

Proof. Let «e S*. Given a symmetric U in U v %™},
we show that Ul) intersects =,[S]l. From o« & S* it follows
that S € x . Now « 1s a Cauchy-filter, so there is F in o
such that FxFcU. But S and F are in o¢ 8o there is « in
FNS. By definition of U* it follows that (o, 7,(=))e U*
since F e v and F e n () and Fx FcU. Thus U¥[«] inter-

sects fq_x[SJ, as required.

Lemmg 2. Let h:(CX,u*) —> (X,%) be a quasi-uniformly
continuous map such that ho'flx(’.n) = o for all x in X. Then
a Cauchy filter % converges to h{%'),

Proof. We show that h(%) is an adherence point of ¥ ,
from which it follows that # converges to h(% ). Let S ¢ ¥,
then Fe S$*, so that h(% ) e h(S*]. By Lemma 1 we have h(S*) c
chl7,1S1Jchin S]] = 5. Thus h(# ) ¢S for all $ in ¥ ,
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showing that h(F) is an adherence point of ¥ .

To establish the converse of Proposition 1 we require

the following lemmas.

Lepma 3. Let o« € sz, then N{H|HcX and h<«I[H]e
ex} =Nihlkl|k e},

Proof. Suppose Hc X and he—[H) € x . hlhe«—[H]Jl = H
(since h is surjective) shows that H = hik] for some k in o ,

since X ¢ « and Kch «—[hlk]] . The proof is complete.

Lemma 4. Let o e cx. If « converges to ¥ , then
ch(e ) converges to h(¥).

Proof. Suppose « converges to ¥ , then ¥ is an adhe-
rence point of « so that % ¢ k for all k e « . Hence
h(F)e hlklc hik] for all k e x . Thus, by Lemma 3, h(%F )¢
e N{Hlh < [H] € «% , so that h(%) is an adherence point
of Ch(« ), as required.

Lemmg 5. Let Velv ™t

that UeUcV. If ¥ is a Cauchy filter which convergea to x ,
then U*[Flc(VIixl)*.

« Let U be symmetric and such

Proof. Because F 1is Cauchy and converges to o , there
is F in % such that FyjxFicU and F € Ulx). Suppose
X € UXLF] , we show that Vix] e y . By definition of U*,
if yxe U*[F1, there is F, € ¥ and G € ¥ such that
Fyx GecU.
Let F = F)NF, so that (1) Fe ¥ , (11) FxGcU, and (iii)
Fcufx].
From (ii) we have G c ULF) so that U[F]l e x since Ge % -
But U[fFlcUoUlx]c Vizl, from (iii), so that VIale 3,
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as required .

Lemma 6. Let « € %X, If o converges to ¥ and ¥ con-
verges to « , then ‘“x("") converges to « .

Proof. Let Ve % v % 1. We show that VIxl e @ylec).
Choose a symmetric entourage U such that Uo UcV. Because ¥F
converges to x , by Lemma 5, we have U¥[#1 c (VIx=]) )¥. Sin-
ce o converges to ¥ we also have U*[ %] in «, hence (V[x])¥

is in o« and, consequently, ¥Locle w (e¢), as required.

Lemma 7. Let x € sz, if there is «x € X such that
¢ (ec) = {HlxeH}, then Chlew) = @ (o).

Proof. Observe that, for any filter ¥ , % = {Hlz €
eHie> {x} e F . For convenience, let {Hlx ¢ H} be denoted
by (> . To show that Ch(ew) = () it suffices to prove that
{x} € Ch(et), that is, he—[{x}] e .

Now, {{x>}ec since {x} e w(o) implies ({x¥)* e « and
F e ({x})* is equivalent to {x¥ec ¥ wh:ich states that ¥ =
=<{x? , 80 that {{x>}ex . Now (x> € h « [{2}) since
h(<{x> ) = < . It then follows that h<«-[{xll € x , as re-
quired.

Note: Consideration of example 1 shows that if Ch(«c ) =
= {H|x € H}, then it does not follow that @, () = Ch(cc).

Lemma 8. Let A, consist of all Cauchy filters on X
which converge to . Let x e czx. If A, € « , then
(wx(oc) converges to x .
Proof. It is straightforward tc check A, =% . Also CX
is complete so there is ¥ in CX such that « converges to ¥ .

Then % is an adherence point to o« , so that % ¢ Kac . But
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then ¥ ¢ 4, , so that ¥ convergea to x . By Lemma 6, we

have that (ux(\oo) converges to x .

Proposition 2. If (X,U) is complete, then it is a C-

algebtra.
Proof. Define h:CX—> X as follows: For each = , let

[x] denote the R equivalence class of x(xRye> X = 7).
Let ¢ be a choice function on X2, so c(lx1) e [x] . Observe
that if ¥ 1is a Cauchy filter on X which converges to = and

¥, then [x] = [yl; now let

x, if F = n,(x) for some x -

h(%) ={
c(lx])), if ¥ & 7 ,[X] and F converges to = .

By the remarks above, h is well defined. Observe that ¥ con-
verges to h[F] . It is readily checked that h:(CX, % *) —
—> (X, %) is quasi-uniformly continuous. We verify that the
diagram corresponding to (1) in the definition of the algebra
of a monad is commutative: Let o e czx. Because CX is comp-
lete, « converges to scme F in CX,

By Lemma 4, Ch(oc) converges to h(#). By Lemma 6,
(ux(oc) converges to h(F) and o« converges to ¥ . Thus
@y (e¢) and Ch(ec) both converge to h(F ). To show that
h l'(u.x(oc)J = hIlCh(e )] we consider two cases.

Cagse 1. Ch(ec) ¢ 7,[X]. Then @ (o) & % [X], by Lem-

ma 7. By definition of h, it follows that h [m ()] =
= ¢([h(%)1) and h{Ch(ec )] = ¢([h(F )]), as required.

Case 2. Ch(x) € 7 ,[X]. Then Ch(ec) =<z (for a uni-
e x in X) so that h <« [{x}] e x . We again distinguish
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two cases:

Cage. 2 a. % *+ ¢([x]), In this case, h «— [{x}] =
= {<{x>} since for any ¥ not in 7 [X], h(%) = = implies
¥ converges to x ao that h(#) = ¢([x]) & = . Now Chle )=
= {oc> 1implies that h<«—[{x}) e &, g0 that {<x>} ecc . But
then @ () = (x> . Thus Ch(x) = w () = {x> so that
h(ch(a)) = h @ ().

Gase 2 b. = =cllx] ), In this case h«—[{x}] con-
sists of all Cauchy filters ¥ which converge to a point in
[x] . Thus he[{x}) =4, . From Lemma 8, it follows that

¢ (%) converges to x . From the definition of h (whether
or not @ (e¢) 18 in 7 [X]) and = = cl[x]), 1t follows
that h [« (x)J = o , Hence h [w_(ec}] = hiCh(ec)].

It is remarkable that the regularity expressed in diag-
ram 1 of the definition of a monad could be achieved with the

arbitrariness involved in the function h of Proposition 2.

3. The geparated-completion €% . The results in Section
2 readily identify the C°-algebras in QU,:

Propogition 3. The cs-‘élgebras are the separatgd and
complete spaces.

However, the delicate comparison of filters and‘ limits
can be avoided and a simple proof of Proposition 3 will be gi-
ven in two parts, where we rely on the fact that Ny 18 epic
in @S.

Pgrt 1. Every Cs-algebra is complete and separated.

Proof. Let h:C%%—> X be the structure map. Then h°"l.x’
=1,, so that 7 oh ofy = Ny ofly= M, ,en . But m, is an
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epimorphism, hence 7,0h = mcsx. Thus X and C3X are isomor-
phic.

Part 2. Let X be a complete and separated space, then
every Cauchy filter # converges to a unique point = . It is
straightforward to verify that h:(c%,(ux)%) — (X,%) is
quasi-uniformly continucus. Moreover hon, = -1x, since the
filter nx(x) converges to x .

To prove that ho(u,x = hoCh we show that heg o 7., =

= hoChon, (=h) and use the fact that =, is epic.

Now @y 07, = 4., so that howyen , = h. AlsO, Chen .y =
= 1 ,oh (by naturality of 7 ), so that

hoChen,. = hoqeh = 4 oh = h,

The proof is complete.
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