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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
23.3 (1982)

ON VON NEUMANN REGULAR RINGS, Vil
Roger YUE CHI MING

Abstract: Generalizations of quasi-injective ?odules ‘and
p-injective modules over continuous rings, noted pQ(rQ)-injee-
tivity, PQF-injectivity, MUP-injectivity, are introduced to
study von Neumann regular rings. Sufficient conditions for vem
Neumann regularity are given. Left continuous regular, left
Noetherian, quasi-Frobeniusean and semi-simple Artinian rings
are characterized.

dg: p-injective, f-injective, pQ-injective, £Q-in-
Jective, PQP-injective, MUP-injective, von Neumann regular,
continuous regular, V-rings, CS-rings, Noetherian, quasi-Fro-
beniusean, semi-simple Artinian.

Classification: 16A12, 1A230, 16A32, 16A36, 16A40, 16A52.

Throughout, A represents an associative ring with identi-
ty and A-modules are unitary. 2, J will denote respectively
the left singular ideal and the Jacobson radical of A. A von
Neumann regular ring A may be characterized by any one of fhe
following conditions: (a) every left A-module is flat; (b) eve-
ry left A-module is p-injective (f-injective). Note that if I
is a p~injective left ideal of A, then A/I is a flat left A~
module. As usual, an ideal of A will always mesn a two-sided
ideal. A is called fully idempotent (resp. fully left idempo-
tent) if every ideal (resp. left ideal) of A is idempotents
Following [3), A is called a left V-ring if every simple left
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A-module is injective. It is now well-known that there is no
inclusion between the classes of arbitrary von Neumanmn regu-
lar rings and V-rings [ 5]). However, they coincide in the com-
mutative case (I. Kaplansky). Y. Utumi introduced left conti-
nuous rings as a generalization of left self-injective rings
(ef. 19)). The notion of continuity was extended to modules
and studied by various authors. Quasi-injective modules, in-
termedigte between injective and continuous modules, have been
extensively studied (cf. for example, the bibliography of [3],
14),16]). Recall that (1) A left A-module M is quasi-injective
iff any left A-homomorphism of every left submodule of M into
M extends to an endomorphism of AM; (2) AM is continuous iff
(a) every complement left submodule of M is a direct summand
of ,M and (b) every left submodule which is isomorphic to a di-
rect summand of ,M is a direct summand of ,M; (3) M is p-in-
Jjective (f-injective) iff, for any principal (resp. finitely
generated) left ideal I of A, any left A-homomorphism g:I—> M,
there exists ye M such that g(b) = by for all belI. It is easy
to see that there is no inclusion between the classes of quasi-
injective left modules and p-injective (f-injective) left mo-

dules.

We now introduce the following definitions.

Definition 1. A 1left A-module M is called MUP-injective
if, for any complement left ideal C of A, ae A, any left A-mo-
nomorphism g:Ca —> M, there exists ye M such that g(ca) = cay
for all ce C.

Definition 2. A left A-module M is called pQ-injective
(resp. (1) fQ-injective ; (2) PQF-injective) if, for any p~in-
Jective (resp. (1) f-injective; (2) projective) left submodule
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N of M, any left A-homomorphism of N into M may be extended
to an endomorphism of AM'

MUP-injective left modules generalize injective left mo-
dules and p-injective modules over left continuous rings. PQF+
injectivity, pQ-injectivity and FQ-injectivity generalize qua—-
si-injectivity.

A is called a left MUP (resp. pQ, fQ, PQf)-injective ring

if ,A is MUP (resp. pQ, fQ, PQF)-injective.

A

Since a finitely generated p-injective left ideal of A is
a direct summand of AA, then any left Noetherian ring is left
pQ and PQ-injective.

Proposi tion 1. If A is semi-prime, then any simple left
A-module is MUP-injective. Consequently, MUP-injectivity does
not imply p-injectivity.

Proof. Let M be a simple left A-module, C a complement
lert ideal of A, aec A, g:Ca—> M a non-zero left A-monomorph-
ism. Then g is an isomorphism (since A is simple) which imp~
lies that Ca is a minimal left ideal of A. Since A is semi-pri-
me, Ca = Ae, where e = eze A, If y = gle)e M, then for any se
e A, glae) = aegle) = mey which proves that uM is MUP-injecti-
ve. Since simple modules over arbitrary semi-prime rings need
not be p-injective (even in the commutative case), then the
last assertion of Proposition 1 follows.

We see from Proposition 1 that MUP-injectivity does not
imply Tp-injectivity considered in [17]). The converse is not
true either (otherwise, by [17, Theorem 3] and Theorem 3 below,
any simple regular ring would be left self-injective !). MUP-

injective left modules need not be left continous (cf. Theorems
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3 and 10). Recall that a left A-module is non-singular iff its

singular submodule is zero.

Lepmg 2. Let A be g left MUP-injective ring. Then

(1) Apny non-singular finitely generated left idegl of A
ds » direct summand of ,A;
(2) A/Z is von Neumann regular and Z = J;

(3) For any acA, £(a) = o 1£f a ig right invertible;

(4) Every left or right A-module ig divisible.

Proof. (1) Let P = Ab, o+b ecA, be a non-singular prin-
cipal left ideal. If C is a non-zero complement left ideal such
that L = ¢ @ 2(b) 1is sn essential left ideal, g:Cb—> A the
left A-homomorphism defined by glcb) = ¢ for all ceC, then g

is a monomorphism, whence there exists ye A such that ¢ =

glcb) = cby for all ceC. Then CcL(b-byb) and therefore L&
£(b-byb) which yields b = byb (since

n

AP 18 non-singular) .

This proves that Ab is generated by an idempotent. Now if F =

Ab + Aa is non-singular, b,ae A, then Ab = Ae, where e = e2e

¢ F and F = Ae + Aa(l-e) = Ae + Aw, where Aa(l-e) = Aw, w =
=wlcF. If v = (1-e)w, then ve F, wv = w, v = v and &w = Av
yielding F = Ae + Av = Ale+v) which is again generated by an
idempotent. (1) then follows by induction on the number of ge-
nerators.

(2] The proof of (1) shows that A/Z is a von Neumann re-
gular ring. Now if ze Z, aeA. L = £(za), then with w = 1-zs,
Ln2(w) = ¢ implies L(w) = o. If g:Aw —> A is the left A-homo-
morphism defined by g(bw) = b for all beA, then there exists
v <A such that b = g{bw) = bwv for all be A. In particular,
1=wv = (L-za)v which implies that zeJ. Then J/Z is contain-

ed in the Jacobson radical of A/Z which is zero, whence Z = J.
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(3) If aeA such that ac = 1 for some ce A, them L(a) =
= 0. Conversely, let £(a) = 0. If f:Aa —>A is the map ba —»
—>b(bea), then there exists de A such that 1 = £(a) = ad.

(4) If c is a non-zero-divisor of A, cd = 1 for some de &
by (3), and ¢ = cdc implies d¢ = 1. For any left A-medule M, M =
= ¢dMc cME M which implies M = cM and similarly, "any right A-me-
dule is divisible.

Lemma 2 enables us to have a nice characterization of di-
vision rings. As usual, a left (right) ideal of A is called re-
duced if it contains no non-zero nilpotent ‘element.

Corollary 2.1. The following conditions are equivalent:
(1) A ig g division ring;

(2) A is g prige left self-injective ring containing a
non-z redyced le degl;

(3) A is s prime left MUP-ipjeqtive ring containing a nom-
zero reduced left jdegl.

Proof. Obviously, (1) implies (2) and (2) implies (3)«

Assume (3). Let I be a non-zero reduced left ideal, o+*b e
€ I. Then ,Ab is non-singular. By Lemma 2(1), Ab is a direct
summand of AA which implies that A is an integral domain [13,
Proposition 6]. Now by Lemma 2(3), any non-zero element of A is
right invertible which proves that (3) implies (1).

Theorem 3. The fellowing conditions axe egmivekenmi::

(1) A is left continuous regular;

(2) Every left A-module is MUP-injective;

(3) Every essential left jdeal of A is MUP-injective;
(4) Any ideal or complement left ideal of A is g MUP-in-

jective left A-podule;
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(5) A is a left non-singular left MUP-injective ring who-—
se complement left idegls gre finitely generated.

Proof. Obviously, (1) implies (2) which, in turn, implies
(3).

Assume (3). Let I be either a principal or a complement
left ideal of A, X a complement left ideal such that L = I® K
is an egsential left ideal. If £:I—> L is the natural injecti-
on, there exists ue L such that £(b) = bu for all bel, If u =
=c+k, ceI, keK, then b = b(c*k) implies b = bec, whence
c = ez. Since IcAc, then I = Ac which proves A left continu-
ous regular and (3) implies (4).

Assume (4). If ze 2, i:4z —> Z the canonical injection,
then z = 1(z) = zw for some we Z. Now Az N€(w) = o implies z =
= o, whence Z = ¢. By Lemma 2(2), A is von Neumann regular. If
C is a complement left ideal, j:C —> C the identity map, there
exists an idempotent e € C such that C = Ae. Thus (4) implies
(5).

(5) implies (1) by Lemma 2(2).

The next result shows that arbitrary p-injective modules
need not be pQ-injective.

Theorem 4. The following conditions are eguivalent:

(1) A ig g left Noetherisn ring whose p-injective left
modu e injective;

(2) Every p-indjective left A-module is pQ-injective.

Proof. Obviously, (1) implies (2).

Assume (2)., Let M be a p-injective left A-module, ,H the
injective hull of aMe Then B = AM@ AH is p-injective and the-

refore pQ-injective. If 1:M—>B is the natural injection,
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Jj:M—>H and K:H B the inclusion maps, since AB is pQ-injecti-
ve, there exists a left A-homomorphism g:B—>B such that gkj = i.
If p:B M is the natural projection, then pgkj = pl = identity
map on M. Thus £ = pgk is a left A-homomorphism of H into M such
that £j = identity map on M. This proves that AM is a direct sum-
mand of AH, whence M = H is injective. Since we know that any di-
rect sum of injective left A-modules is p-injective and hence in-
jective, which proves that A4 is a left Noetherian [4, Theorem
20.1]. Thus (2) Implies (1).

It is well-known that A is left hereditary iff the sum of
any two injective left A-modules is injective. Since a commuta-
tive ring & is regular iff every simple A-module is p-injective,

the next corollary then follows.

Corollary 4.1. Let A be a computative ring. Then

(1) & is Noetherian hereditary iff the sum of any two p=in-
Jective A-modules is p-injective and pQ-injective;

(2) A is semi-simple Artinian ife p-injective A-modulee

coincide with pQ-injective A-mpdules.

The next theorem may be similarly proved.

Theorem 5. The followingconditions are eguivalent:

(1) A is left Noetheriap;

(2) EBvery f-injective left A-module is injective;

(3) Eyery f-injective left A-module is PQ-injective.

Corollary 5.1 If A is g left MUP-injective ring guch that
every f=injective left A-module is fQ-injective, then A is left
Artinign.

Proof. By Lemma 2 (2) and Theorem 5, A/J is semi-simple
Artinian. Since A is left Noetherian, then J = Z is nilpotent
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which implies A semi-primary. Therefore A is left Artinian by
[4, Proposition 9.12].

We are now in a position to give some new characteristic
properties of quasi-Frobeniusean rings . Since it is well-known
that A 1s semi-simple Artinian iff every left A-module is qua-
si-injective, then the next result shows that PQF-injectivity
effectively genefalizes quasi-injectivity.

Theorem 6. The following condjtions are equivalent:

(1) A is quasi-Frobenjusean;

(2) Every left A-module is PQF-injective;

(3) The direct sum of anv projective left A-module and

ive left A- 1 - B

(4) The direct sum of apy projective left A-gmodule apd
any injective left A-medule is PQF-injective;

(5) A is a left f-injective ring such that every f-injec-
tive left A-module ig fo-injective.

Proof. Since A i1s quasi-Frobeniusean iff every projecti-
ve left A-module is injective [4, Theorem 24.20), then (1) imp-
lies (2) and (3).

Obviously, either (2) or (3) implies (4).

Assume (4). The proof of Theorem 4 shows that any projec-
tive left A-module is injective. Then (4) implies (5) by [4,
Theorem 24.20].

(5) implies (1) by 14, Theorem 24.207) and Theorem 5.

Lert WP-rings (weak p-injective) and left CPP-rings are
considered 4in [14] and [12] respectively.

Applying (14, Lemma 1.1) and [12, Theorem 2], we get

Proposition 7. Ihe following conditions are equivalent
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for a left PQP-injective ring A:
(1) A is von Neumapn regular;
(2) & is g left WP-ring;
(3) & is g left CPP-ring.
It may be noted that P@F-injectivity does not imply p-in-

jectivity and the converse is not true either.

Lemma 2(2) implies the next result.

Propositiop 8. (1) If A is g left PQF-injective ring
such that for apy complement left ideal C of A, acA, ACa is
projective, then A is eft P-injective r

(2) A tive MUP-injective r Ne n
regular.

(3) A _MUP-injective left or right V-ring is von Neumann
regular (cf. [5, Query (b))

(4) If A ig left Tp-injective guch that every complement

left ideal is an ideal, then A/Z is von Neumann regulap (thig
e nd Theorem .

At this point, we may note that there is no inclusion be-
tween the class of p-injective modules and any of the four
classes of modules which we have introduced at the beginning
of this note. We now consider a generalization of continuous
modules. Foilowing [2], a left A-module M is called CS if eve-
ry complement left submodule is a2 direct summand of AM. Inde-
ed, CS-modules generalize even quasi-continuous modules effec-
tively (ef. [1]). If gM is CS, then for complerent left sub-
module N, ,N is CS [2, Proposition 2.2] and every left A-homo-
morphism of N into M extends to an endomorphism of AM' But if
AAM is CS and D a left submodule of M which is CS, then D is
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not necessarily a complement submodule of AM’ This motivates
the following class of rings: Write "A satisfies (k)" if, for
any left A-module M, any CS left submodule N, every left A-
homomorphism of N into M may be extended to an endomorphism

of AM.

Lemma 9. I llowi onditions are equivalent:

(1) A is a left Noetherisn left V-ring whose CS left mo-
dules gre in H

(2) A gatisfies (x).

Proof. (1) implies (2) evidently.

Assume (2). If M is a CS left A-module, AH the injective
hull of AM’ B = AM G)&H, then any left A~homomorphism of M in-
to B extends to an endomorphism of AB‘ The proof of Theorem 4
shows that M = H i1s injective. Then A is a left Noetherian,
left V-ring by [4, Corollary 20.3E).

ALD and left CM-rings are studied in [15) and [16]., Semi-
prime rings whose left ideals are left annihilators must be
semi-simple Artinian [10]. But semi-prime rings whose ideals
are left annihilators are not necessarily Noetherian or regu-
lar. Left CM, left V-rings need not be regular (the Cozzen's
domains [4] are here relevant). Recall that A is of bounded
index iff the supremum of the indices of the nilpotent elem-
ents of A is finite.

Theorem 10. The following conditions are_equivglent:

(1) A is semi-simple Artinian;

(2) A ig g left MUP-injective ring satisfying (X);
(3) A ig a right - ve rin

(4) A is o left p-indjective ring satisfying (x);
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(5) A ig a right p-injective ring satisfying (x);

(6) A is gn ALD ring satisfving (*);

(7) A ig a left CM, lert PQF-injective ring guch that for
any idegl T, any a€ A, Ta is a projective left A=module; .

(8) A i3 a semi-prime ring guch that the direct sum of
any nop-zerp projective left A-module and any non-zerg injec-—
tive left A-module is POF-injective.

(9) The direct sum o on-zero projectiv d -ze—
ro POF-injective A-podules is quagsi-ipjective;

(100 & is a gemi-pripe left CM, left MUP-injective ring

id re left h H

(11) A is a regulgr ring of bounded index such that every
idegl e nnihila H

(12) A is a gsemi-prime ring whoge ideals are left annihi-
lators and whoge sigple factor rings are Artinian;

(13) A is a gsemi-prime left p-injective ring guch that
every p=injective left A-podule is pQ-injective;

(14) A is a left PQF-injective ring whose cyclic left mo-
duleg ar ther injectiv )y .

Proof. Obviously, (1) impliea (2) and (3).

Either (2) or (3) implies both (4) and (5) by Lemma 2(2)
and Lemma 9.

Since semi-prime left p-injective rings with maximum con-
dition on left annihilators are semi-simple Artinian, then ei-
ther (4) or (5) implies (6) by Lemma 9.

(6) implies (7) by [15, Theorem 1.31.

Assume (7). Since every principal left ideal of A is pro-
Jective, then Z = ¢ and since A is left CM, then A is either

reduced or semi~simple Artinian. Suppose that A is reduced.
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Since A is a left PQF-injective ring, then A is left p-injec-
tive whose principel left ideals are projective which implies
A regular and hence strongly regulaer. Therefore every left i-
deal of A is an ideal and is therefore a projective left A-
module which implies A left hereditary, whence A is left self-
injective. By a well-known result of B. Osofsky, A is semi-
simple Artinian and (7) implies (8).

Since a semi-prime quasi-Frobeniusean ring is semi-simp-
le Artinian, then (8) implies (9) by Theorem 6. .

Since a simple left A-module is PQF-injective [4, Theo-
rem 24.20] and the proof of Theorem 4 shows that (9) implies

(10).

Assume (10). Since A is semi-prime whose ideals are left
annihilators, then every ideal of A is generated by a central
idempotent. This implies Z = o which yields A regular by Lem-
ma 2(2). Since A is left CM, then A is either strongly regular
or semi-simple Artinian. In either case, A has bounded index
and (10) implies (11).

(11) implies (12) by [7, Corollary 7.101].

Assume (12). Then every ideal of A is generated by a cen-
tral idempotent, whence A is a fully idemrpotent ring whose pri-
me factor rings are simple. A is therefore regular by [7, Co-
rollary 1.18). Then sny essential left ideal L of A contains
an essential left ideal E which is an ideal of A [7, Lemma
6.20). Now E is generated by a non-zero central idempotent
which implies E = L = A, This proves A semi-simple Artinian
and therefore (12) implies (13).

(13) implies (14) by Theorem 4.

fFinally, (14) implies (1) by [8, Corollary 101].
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We now mention, without proof, an analogue for certain
PQF-injective modules of a well-known theorem of C. Faith -
Y., Utumi [6, Theorem 2.16] concerning quasi-injective modules.

Theorem 11. Let M be a PQP-injective left A-module guch
that every complepent left submodule is projective, If E =
= End(AM), then E/J(E) is von Neumann regular, where J(E) =
= {fe E/kerf is essential in ,M}is the Jacobeon radical of E.

Let us add a last result on MUP-injective rings.

Proposition 12. If A is g prime left MUP-ipjective ring,
then the centre of A is a field.

Proof. Let D denote the centre of A. If o4deD, the
proof of Lemma 2(1) shows that there exist an essential left
ideal L of A and an element y of A such that Ls&(d-dyd). Sin-
ce deD, AdL(1 ~yd) = L(d-dyd) = o implies Ls£(1 -yd), whence
l-ydeZ = J by Lemma 2(2). It follows that there exists ueA
383 =

such that uyd =1. If v

uy, since deD, then 1 =vd = v
= (d%v3)d and va? = a®v = dvd = d which yields d(a%v3)d = d.

It is therefore sufficient to show that d2v3e D and then D will
be a field. For any acA, v(a2a) = da = ad = a(d?v) = (da)v
which yields (a%v3)a = v3(a2a) = (da?a)vd = a(d?v3). This pro-
ves that d’v3e D.

Simple rings, semi-simple Artinian rings and strongly re-
gular rings are all biregular. It is known that (1) Von Neumann
regulsr rings need not be biregular; (2) Biregular rings (even
if reduced) need not be regular; (3) Simple Noetherian rings
need not be Artinian. We know that biregular rings are fully
left and right idempotent. We conclude with a few remarks, the
first two heing a sequel to [17].
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Remark 1. If A is a biregular ring which is of left fi-
nite Goldie dimension, then (1) Every ideal of A is generated
by a central idempotent; (2) A is a finite direct sum of simp-
le rings; (3) A is the only essential left (or right) ideal
which is an ideal of A.

Repark 2. If A is left non-singular left CM-ring whose
ideals are left annihilators, then A is a Baer, Dedekind fini-
te left and right CS, biregular ring.

Repark 3. If A is a left self-injective ring whose essen—
tial left ideals are left annihilators, then every left ideal
of A is a left annihilator. In that case, each semi-prime fac-

tor ring of A is semi-simple Artinian.

Remerk 4. (1) If A is a right MUP-injective ring, then
(a) Any reduced finitely generated right ideal is generated by
an idempotent. Consequently, [1, Theorem 12] holds for right
MUP-injective rings whose complement right ideals are finitely
generated; (b) If every maximal essential right ideal of A is
an 1deal, then A is von Neumann regular iff every simple left
A-module is flat (this extends I11, Proposition 2.2(IV)D; (2)
A 1s strongly regular iff A is a semi-prime left duo ring who-
se MUP-injective left modules are p-injective (apply [15, Theo-
rem 1.3) and Proposition 1).

Remark 5. Let A be a left PQF-injective ring. Then (1)
Every left and right A-module is divisible; (2) If A is left
uniform, then A/Z is von Neumann regular and Z = J; (3) A is
left self-injective regular iff A is left non-singular such
that every finitely generated non-singular left A-module is
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projective (apply [6, Theorem 3.12)]); (4) A is simple Artini-
an iff A is prime left non-singular left CM.

Remark 6. A is a left principal ideal ring iff every fi-
nitely generated left ideal of A is principal and every p-in-
Jentive left A-module is pQ-injective (cf. Theorem 4).

In view of [15, Theorem 1.7) and [18, Theorem 2.21), we
raise the following question: Is A strongly regular if every
maximal left ideal of A is an ideal and every simple left A-mo-
dule is flat?
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