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COMMEMTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

24,1 (1983) 

A NOTE ABOUT M, -SPACES AND STRAT1FIABLE SPACES 
Ju. H. BREGMAN 

Abo trac t : M-.-apacea and a t ra t i f i ab l e apacea are characte
r i sed aa preimagea of metrisable apacea under one-to-one map-
pinga, aatiafying apecial condit ions . 

Keyworda t M-.-epaoe, a t r a t i f i a b l e , paracompact, c loaure-
preaerving, er-apaoe. 

Claaaif icat ion: 54B20 

In our paper, we deal with biject iona (« one-to-one map-

pinga) of M^-apaoea and a t r a t i f i a b l e apacea onto metrisable 

onea. M,- and a t r a t i f i a b l e or M,-apacea were defined i n 1961 

by J.G. Ceder [33» I t waa alao ahown there that every M-j-apao* 

ia a t r a t i f i a b l e , but whether the converae ia true ia a t i l l un

known* 

Sinoe every a t r a t i f i a b l e apace ia paracompact and haa a 

G^-diagonal, i t can be bijeotad onto a metrisable one [63, [2! 

But i t waa not atudied before, aa far aa wa know, with what 

apecial propartiaa can the birjectiona of a t r a t i f i a b l e and M^-

apaces onto me t r i .sable onea be chosen, furthermore, i t would 

be i n t e r e s t i n g to find characterisat ions of these two claaaee 

in terma of preimagea of me t r i sable a paces under b i s e c t i o n s . 

Recall that not long ago haa A.V. Archangel'akii characterize 

the topology of a paracompact 6f-apace 173 aa that one which 

haa a metrizable ^-approach L13, but t h i s i s obviously equi-
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valent to the existence of ft special Mic t ion onto a luiatrie 

space* Quite recently k«Vm S^stak [93 has studied n̂ eel©*! ro-

perties of bisections wMch hold for some .-lasses of par&.c<\a~ 

pacta with Ot^f-diagonals. The aim of the present paper Is to 

obisin characterizations of M,- and stratifiable spaces as pr#-

images of metrizable spaces u^a.er bisections which aatisfy *pv» 

cial conditions* 

Let us recall the basic definitions from C2J,£33fESj which 

wo use in our -paper. A regular space is called an 1L-space if 

i i has z* C>-«el©sure-~pr as erring base. A family of pair?! of sub» 

sets 1P« -tCP^ tPjJ.; )s co e A| of a space Xf satisfying p^ c p*^ 

for every oc e A is called a pair-Aatwork in X if for every 

xcX and every i t s open neighbourhood *J there exists oG € A 

such that x&p^G U* If, moreover, every p^ is open, then (P 

is called a pair-base in X. A family <P» -C(p^ tP"^ )i oc a A J 

is called cushioned if tVip^t cce ^013x c u*fPwoC * **>e A
05 

for every A0c A. A family (P» -{(p^p"^ )* «G 6 A} is called 

#-cushioned if i t is a countable union of cushioned families 

^n * ^poc pWoc ) f «* e **!• A T^-spaoe which has a e'-eushi-

aned pair-base is called stratifiable. A topological spsee 

whioh has a ^-discrete network is called a tf-space. Every M -̂

spaee is s t ra t i fiable £3] and Q^BTJ stratifiable space is a pa~ 

racompact 6*-space E53« For the definitions of other concepti

ons used in the paper see, e.g. L41. 

We denote the closure of a set A in a topological space X by 

Proposition 1. For every closure-preserving family X of 

subsets of a paracompact #-space X there exists a bisection <p 
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of X onto a mtf+ri. sable is pace I such that 9>([KJX) « £g>0OJY 

holds for ever/ K 6 X -

Prog £ • Let (P« U-t 3^ tn £ U? be a ^ - d i s c r e t e network 

in I where every :Pn i s a d iscrete family of c losed s e t s . For 

a s e t Pc X and a closure-preserving family 3 of subsets of X 

we define an open s e t U(Pf.J5) • X \ U$LVJX:V & & , LVJjOP » 

» 0\. We s h a l l construct recursively a sequence -f<£ktk e IN I 

of d i screte famil ies S?k of open s e t s of a space X such that 

for every k e N the following three properties holdt 

(1) <£k - {Vk(P)tP 6 5>kf PcV k (P)Si 

(2) i f P 6 <Pk and PcV 6 U-f<e x t l<k? then CVk(P)]xcV# 

(3) Vk(P)c (P t # k ) where <8k - Ui ^ i K k } U X. 

Assume that the famil ies ? k art already defined for a l l k < n 

in such a way that they s a t i s f y the properties (1) - (3)« In 

order to define the family «p consider the discrete family of 

c losed s e t s & and applying the paraoompactness of the space 

X find a d i scre te family V--CV(P)tP e (P 1 of open neighbour

hoods of the s e t s P e &n* I t i s easy to not ice that the fami

ly $hn m Ui ^?ktk< n3 U3C i s closure-preserving and there

fore U(Pf &> ) i s an open neighbourhood of P. Consider now for 

every P <s <Pn the neighbourhood V'(P) « V(P)f)U(Pf # n ) then 

the family W<* ^V'(P)tP e <Pn* i s d i s c r e t e . 

Por every P 6 CPn and every k < n there e x i s t s at most one 

open s e t V e <£k containing P. If there i s such a s e t V then 

take Wk(P) s a t i s f y i n g Pc Wk(P)cCWk(P)3x V. I f there i s no 

suoh a s e t V e *£k then l e t Wk(P) » X. Define now for every 

P 6 (Pn a neighbourhood V" (P) « C\ *Wk(P)tk<n$ and l e t 

Vn(P) - V'(P)nV" ( P ) . I t i s easy to verify that the family 
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^ n * 4*nC*)«* 6 CPnJ o a t i o f i e e the oonditione (1 ) - ( 3 ) . 

Let now <?- U - t ^ t n e H j 

I t i e eaey to n o t i c e that the e - d i s c r e t e family **? i s 

a base of a new Hauedorff topology on the s e t X« We denote 

the corresponding topological space by Y. I t i s obvious that 

*t i s a # - d i s c r e t e base of i t s topology. 

Let o? denote the natural b i s ec t ion of X onto Y, We sha l l 

prove now the equal i ty g> (LVJ-j.) » Cg>(V)3y for every 

V e. U ^ © n * a 6 N l • The incluaion g>(tVJx) c £ g? (V)JV i s 

obvious s ince the mapping y i s continuous. 

Let x 4 9 C -.VJj) *<>r 8 0 m e v € ^ n » **• family !P i s a network 

in X and therefore there e x i s t s P e tPm> m>n such that x c P c 

c X\CVJX# Then Vm(P) 6 <Cm and T f f l(P)nv - 0; hence 

x e> [ y ( V ) J v . Thue the equality 9 UVJX) • £9>(VMV hold* for 

every V s U -[ & n xn c B* ? and, in particular, for every V 6 3C • 

This property together with the condition (2) readi ly implies 

the regular i ty of the apace Y. Therefore i t i s metri sable as 

a regular spaoe with a C-d i scre t e base. 

Remark. I t i s easy to not ice that the topology {Ty of 

the apace Y i s an A> -approach in the sense of A.V. Archangel'-

a k i i 111 to the i n i t i a l topology (Tz of an M-,-spaoe I . In 

terms of b i sect ions this means that the image of the family 

(P under the b i sec t ion <p ia a 6^-disorete network in Y# 

JL* Let - { X _ i n a N J be a sequence of families of 

subsets of a topological spaoe X« Suppose that for every neH 

there e x i s t s a b i sect ion a>n of X onto a metrisable space M̂  

such that y n ( £ - U x ) • £ 9>n(K)-l|| holds for a l l K e 3Cn» Then 

the diagonal mapping <* • Aa>„*X—>V » 9 (X) c rHM^tn 6 NJ 
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t a t i o f i t o the equality 9(CK3X) » E9 (K)JM for every K e *X -

. Ui*Xnme Ul . 

Proof. Let 9 n ( x ) • x 'e M̂  (thue wt s h a l l not d i s t inga-

iah in notations the corresponding points in spaces M for di f 

ferent n ) | therefore g>(x) « y • ( x ' f . . . f x ' . . . ) . Take a s e t 

K e %m0 Sinoe the diagonal mapping tp i s continuous f the i n 

c lus ion Gp(LKJx) c Lg?(K) M i s t rue . Let y e /Tg?(K)]M; to com

p l e t e the proof we must show that y € 9? ( [K3- ) . I f U i s a 

neighbourhood of a point y • ( x ' t . . . t x ' . . . ) i n M then U fl 

n 9 ( K ) + 0 . Take Uy - ( M ^ • • • x M
S a - i x \ x M

m + 1
x • •)rtMf whe

re Um l a an arbitrary neighbourhood of the point x* in the spa

ce ML. Denoting by pm the projection of the pro duo t VKl^t 

sn€lT$ onto the m-th coordinate space ML we may conclude that 

^ m n (1^(07 (K)) + 0 . Since pm o 9 » 9>mf th i s means that Vm f\ 

r\9m(K)-t-0 and hence x ' 6 t 9m(K)J| | » ym(CK3x)» Therefore 

x 6 l K l x and y € <y(CK3x). 

Proposit ion 1 and Lemma 1 eas i l y imply the following r e 

s u l t . 

PropoBition 2 . Let X be a paracompact # - space and X a 

6*-closure-preserring family of i t 0 subset . Then there ex is ta 

a b i sec t ion <p of X onto a metrisable space Y such that 

9 (CK3X) • C9(K)3 y for every K e % . 

This proposit ion allows us to es tabl iah the following 

character i s t ic property of M^opaces. 

Theorem 1 . Let X be an M-j-space and £B a # - c l o s u r e - p r e -

eerving base of i t . Than there ex i s ta a b i s ec t ion 9 of X on

to a metrisable apace Y such that 9>(CVJX) • C 9 (V)3 y for 

every ? 6 tft • 
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The next characterisation of If,-spaces esail^ follows from 

Proposition 2f too* 

Theorem 2» A regular space X i s an Iff,-space i f f ther® 

exists a bisection gp of i t onto a metri&able space Y and a 

6f -closure-preserving network % in Y such that JB«*f9 (K): 

tK e X 5 i s a 6*-closure-preserving base in X* 

We proceed now to the study of the bisections of strati -

fiable spaces onto metrio ones* 

Proposition 3« Let X be a paracompact 6*-space and 3C -

* -t(K',Ktt)^ a cushioned family of pairs of i t s subsets* Then 

there exists a bisection g? of X onto a metrizable space Y 

sueh that [g>(K')Jy c $ (K") holds for every (K'fK») fi X * 

Proof* Consider a ef-discrete network £P» U-t&ntneH} 

in which every &n i s a discrete family of closed subsets of 

X# For a set Pc X and a cushioned family & of pairs of sub

sets of X l e t ft(Pf3*>) - X \ C IKV't(V'fV") e & , V"f|P - 0JJx# 

Quite analogously as in the proof of Proposition 1 we recursi

vely construct a sequence -C^^ikeN} of discrete families *£k 

of open sets of the space X such that for every k e H" the fol 

lowing three properties holdi 

(1) <ek - {Vk(P)tP 6 <Pk, PcVk(P)J.i 

(2) i f P G $>k andPcV & U f ^ i K k J then [Vk(P)3;cCV| 

(3) Vk(P)cU(P,»k) where ^ - U{ (V.tVJj) tV 6 <£.,, 1< 

< k ! U K , 

As in the proof of Proposiion 1 one can easily verify that the 

<6 -discrete family <*f of subsets of X is a base of a new me

trizable topology on the set X# The corresponding metrisable 

space will be denoted ** Y and let y tX—> Y be the natural 
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bisection. There is no difficulty to show also that the inclu

sion C9(K#)3Y C g>(K
w) holds for every pair (K'^K*) e 3C . 

Furthermore, patterned after the proof of Lemma 1 one can 

easily prove the following* 

Lemma 2a Let X be a topological space and i ^ n
s n 6 IN ? a 

sequence of cushioned families of pairs of its subsets. Suppo-

~© that for every n e IN there exists a bisection 9 n of X on

to a metrizable space Mn such that - 9nC---')-I)j
 c ^n^ K M^ *or 

n 

a l l (K%K") € 3C • Then the diagonal mapping g> « Ag^^tX—^ M « 

« (j (X) c TT -CMnm e W? s a t i s f i e s the inc lus ion E <y (K*)3M c 

c g> (Kw) for a l l pairs (K%K«) € X « IK 30 n m e IN § • 
Proposit ion 3 and Lemma 2 immediately imply the following• 

Proposition 4* Let X be a paracompact €-space and X a 

e*-cushioned family of pairs of i t s subsets . Then there e x i s t s 

a metrizable space Y and a b i sec t ion g> iX—> Y such that 

![g>(K')JY c g>(Kw) for every pair (K%KW) 6 X . 

Next theorem which establ ishes a character i s t ic property of 

s t r a t i f i a b l e spaces i s a direct corol lary of the previous r e 

s u l t . 

Theorem 3» Let X be a s t r a t i f i a b l e space and #3 a ^ - c u 

shioned pair-base of i t * Then there e x i s t s a b i sec t ion 9 of X 

onto a metrizable space Y such that If f ^ ' ^ y c 9 (V") f o r ft-

very pair (V#
fT

t t) € 45 . 

Hext characterization of s t r a t i f i a b l e spaces in terms of 

bisect ions onto metrizable spaces a lso follows from Propos i t i 

on 4# 

Theorem 4* A .T^-spaee X i s s t r a t i f i a b l e i f f there e x i s t s 
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a bisection y of I onto a metrisable epace X ana a « -cuenio-

ned pair-network X in Y such that the family & • { C g ^ O O , 

(j-1(Kw))t(K; K»)G Ofci ia a ď-ouahioned pair-baee in X. 

Wt expreeo our eincere gratitude to A.P. Soatak for hie 

advioe and eneouragement. 
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