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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,1(1983)

SUM THEOREMS FOR THE TIGHTNESS AND n-CHARACTER
IN THE CLASS OF COMPACT SPACES
M. G. TKACENKO

Abstract: Let a compact non-empty space X be the union
of some family o of its subspaces and ¥ be an infinite car-
dinal, We prove that if Iyl <« and t(M) < ¥ for any M€ 7"
then there exists a point pe€X such that :n'q"'(p.x) < o With
the aid of this result "the increasing chain®™ version étha(x)
term due to Juhédsz) of Shapirovskii inequality w(X) < t(X)
is proved for any compact space X,

Koy words and phresess Compact space, irreducible map,
ch:in 05 subspaces, ¥ -character, tightness, Souslin number,
weight,

Classification: Primary 54B25, 54A25
Secondary 54C05

Introduction. The paper is the natural continuation and
development of the ideas and methods exposed by the author in
[3], Let ¥ be an infinite cardinal and a compact X be a uni-
on of a family 7~ such that M is a subspace of X and the tight-
ness of M is leas than v for each M € y* . How the tightness
of X depends on the power of the family - ? What restrictions
should be required on the power of 3 in order that the space

X would have points of a "small" g -character? How these
questions can be solved in the case when » is a chain (i.e.
Mc N or Nc M for each M,N € ¥ )?

These and similar problems have been investighted in [31],

[4]. So in the sequel we shall use a number of results from
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[3] and [4) essentially.

Notations and terminology. The symbols w(X), nw(X), c(X}
and t(X) stand for the weight, net weight, Souslin number and
tightness of X accordingly; :{(x,X) and 'y (x,X) for the cha-
racter and Jy -character of a point xc X in the space X, Fur-
ther, | Al is the power of a set A and [A]l is the closure of A
in the space X, ACX, Let xeX2A and xel[Al, We put t(x,A,X)=
= min {|M):Mc A,xe[MI}, t(x,X) = sup {t(x,A,X)sAc X, xelAl}
and V(x,X) = min $% ¢ if AC X and x¢ [A] then t(x,A,X)< v}.

Each ordinal is considered as the set of all preceding
ordinals. Cardinals are identified with the corresponding or-
dinals. The values of all cardinal functions are assumed to be

infinite.

Some necessary fact For the sake of the reader’s comfort
the formulations of the most important results used in the se-
quel are given here.

Proposition 1. Let k, “ be cardinels and $°£k< et w
X .

k
Then " = Z o ¢ .

Assertion 1 (see [1]1)e Let T be a cardinal, X be a spa-

ce and ¢ be a family of subspaces of X where X = Uy and
nw(M) £ © for each M ¢ 7 . Then nw(X) £ z.ly| .

Agsertion 2 (see [11). If X is a compect, then w(X) = nw(X).

Let 2¢ be an infinite regular cardinal and ‘“‘oc tof <2} be
a family of subspaces of X such that M c ‘(s whenever o < f3<
<o and X =U{M_1c < se}. Then the following results hold.

Assertion 3 (see [4]1, Th. 8), Let X be a compact, « be a
cardinal and t(M ) < « for each o < a¢ o Then
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(a) #x) ¢ n&;

(b) +(X) < (w,if @ < oty

(e) t(X)=< w, ifae< et

Assertion 4 (see [4], Th. 3), Let A be a cardinal and
o(M; )< A for each o < % . Then

(a) o(X) 2 A

(b) e(X) <A , it A < 2

(e¢) e(X)< A , if 2e< of A .

One should pay a special attention to the following re-

markable result.

Asgertion 5 (see [5], Th. 3). Let © be a cardinal, X be
a regular space, S = {xeX: oy (x,X) £ @f and F = [S], Then
w(F) < go°(x).

The formulations of the prior assertions 3 and 4 slight-
ly differ from their primary form (compare with Theorems 3

and 8 from [41).

Main Results, Our first result is a supplement to Theo-
rem 1.1 from [3], but its proof is based on another idea.

Theorem 1, Let 7 > #, bea cardinal and a non-empty
compact X be the union of a family M of subspaces such that
M) £« v and t(M) < © for every M c¢ 7 . Then there ex-
ists a point pe X such that Iy (p,X) < v .

Proof. Let us assume that my(p,X)= v for each point p€ X,
Then the Theorem of Shapirovskii (L6],Th.3.18) implies that there
exists a continuous map g:X —> I¥ of a compact X onto Tichonoff
cube I%, Let 2 = {0,123 I o Then 2%c I¥ and we put ¥ = g 2 and
f= gly. Let us represent the set ¥ in the form of the union of
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some disjoint family {P :cC <z }such that |P =7 for each <<%

Put A = U{Pﬂ:ﬂ & of, o < , For every oc < T let
A, be the family{A UPsPc © , |P| &« lcl- % }. Let al-
8o %’c be the family of all closed subsets K of Y such that
the set £(K) has a form {a} = 2°'A where 4 € A and s 2%,
Primarily we must prove the following assertion:

(%) I£AUBUC =< , A, B, C are disjoint, |Bl = =,
McKcY, t(M) < v , £(K) = {a}x 28, 2% and a€ 2 then the-
re exist a finite set Lc C, a point de 2’* 21', and a closed™
subset PCK such that FNM = § and £(P) @ {adsxid =20,

Let us assume the contrary, Let ¥ be the family ef all
closed subsets K’c K such that £(K°) = {aix{bix 2" for some
tinite set LCO and & point be 2Px 20, Then K'N M4# for every
K°e ¥ . Since the map £ is continuous and K is clesed in Y,
there exists a closed subset K< K such that f(f) = f£(K) and
the restriction flg is irreducible. Let U and 1 be the points
of 2n with zero and unit coordinates, respectively. Let also
& be the met of all points of 2° which differ from the point
T on finitely many coordinates only. We claim that the set S =
= :r;l(s)nl(inl) is dense in {alx '23" 20, where oy stands
for the natural projection of 2% onto 23. Indeed, let T be
any finite subset of BUC and x be an arbitrary poimt of 2T,
It is suffioient to show that 8 Nrgl(x)+# becsuse Sc {ai>
28 20, We define the point bc 2P/ by the rule: b}y = x ana
b(oc ) = 1 for every o« € B\ T, Now we put § = {aixibix L\
and K* « KNt 1($). Then £(K*) = § , 0 K'c § and KNN#+
%@, Let y be any point from K'NM. Then £(y) e $ , 1.e.
2(y)e s ﬂ!f;]'(x)* P. Therefore S is dense in {alx 28x 20,

Put P = {83>{0i= 2%, We have:
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Scazl(e)N(1aix2Px 2%) ana Bl - ,

hence the definition of the set & implies that [QINP = @ for
any set Qc S"with I1Ql < = . Consequently [RINK* = ¢ for any
RcH with IRl < © , where K* = RN£~1(F) and ¥ = MnKn £~1(s).
It is clear that £(F¥) = F, F* ¢ & and 2(¥) = S, As S is dense
in {a3x= 2P 2C and the map f|g 1is irreducible, so ¥ is dense in
K. The set K*NM 1s non-empty, because K*e & . Choose a point
y& K*N M. Then ye[¥], but v 4 [R] for any subset Re¥ with

IRl < T . It contradicts the fact that t(M) < v . So the asser-
tion (k) is proved.

Let us enumerate the family M ={M_ : o < =§ . There ex-
ist a closed subset K c Y, a set A € .}1.00 and a point a €2 °
such that K NM, = ¢ and f(Ko) = {aolx 2 © where Co = v\ Ay
(agsertion (x)). It is clear that K, € ¥ . Let 0 << <7 and
for every 3 < o we have defined a set A & .ﬂﬂ , & point
ap € 2“5 and a closed set Kﬂ e &

/)
Ay A@,, and a,, |A,3.' 8 whenever 3'< 3" < oc . Put A = U{Ass

such that KF" c K/:' ’

1<}, a= U{ars:[3<oc§ and K = ﬁ{Kp : 3 <e«<f. Then
£(K) = {83= 2°*A, Put also B, = BN A and Cc= = \(AURS).
Then |B_ | = and the assertion (% ) implies that there exist
a finite subset L < C_, & point be 2 “%<2% and a closgd\gu‘n-
set K c K such that K, N M_= ¢§ and (K, )A- {alx{bi=2* %,
We put A = AUL_ end define a point a, € 2 by the rules
8. |, = & and ”'oclL: b, Obviously, A . € A, and K_e & .
This completes our recursive construction.

Put K* = N{ K, : o« <} . Then K* =+ @, However, K¥XN M c
cK*n Mo(',. @ for every «« < ¥ . That is a contradiction., The
theorem is proved.
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Remark 1., Theorem 1 is valid for © = A . In this case
each M ¢ M is discrete, hence X is a socattered sequential com-

pact ([8]), Th., 3), Therefore t(X) =< Koo

Remark 2, The author does not know the answer to the fol-
lowing question:

Let © > Fo. Does there exist any zero-dimensional space
M with w(M) < © > t(M), which can be continuously mapped onto
2% ¢

The equivalent question:
Is there any subspace Mc 22 2B guch that JrA(M) = 2* ana tH(M)<
< 7T 7?7 Here A =B =T and x, is the projection of the product
2‘x 2B onto the first factor.

Now we shall consider the situation when a compact is re-

presented as the union of some chain of its subspaces.

Lemma 1. Let a compact X be the union of a chain ¥ of its
subspaces and w = sup {t(M)iM ¢ € § , where cf « < w and
t(M) < &« for each M ¢ € , Then :r:(‘(x,x) < @ and Vt(x,x)_é(u.

for each point x¢ X,

Proof. Primarily we show that wry(x,Y)< @ for every
closed subset Yc X and eny point xe€Y., Let Y be a closed subset
of X, Put €={MNY:M6 €} and & = sup {4(M):N e €} , It @ <
< @ then t(Y) < ({Z"‘ (assertion 3(a)). However, a is a singu-
lar cardinal, hence &*< w and oy (x,¥Y)£4(Y)< w for any
point xeY ([7], Th. 1).

Let us considex now the case @' = w . We have: t(N)<(uc
for any N s‘%l » Put ¢ = cfw . Then g < w and there exists
a subfamily @ c ¥ such that || = % and UD = UL = Y.
Por every ¢ < (v we put Y, ={yeY: my (y,¥) 2 p? . We claim
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that ¥ = UL¥o 1 p < wi.
Assume the contrary. Then there exists a point peY \U{YS" :
t@ < Y. Let {@ o <ol be a strictly increasing sequence
of cardinals such that @ < @ for each o¢ < 9 and w =
= sup {@; t o <o}, Por every oc < s let us put Dy = {x&cn
NN eF} . Then Yp = U9, eand 19 | <I1D] =2 ,
We should note that for any «« < 9¢ and K e €b°c the point p does
not belong to the closure of & set K, Otherwise there exist
o < 2 and K € &, such that pel[K). Obviously there exists
Ne d such thatK-YPdn N, Ag & is a chain and Y = UD ,
we can find an element ¥ € & such that peN and Nc ¥, Put K =
=Y, N T. Then Kc ¥ hence pel®]. However, #(¥) < @ which
implies the existence of a subset Sc¥ such that IS| < @« and’
pelS]l. We have: Sc Fec YS% » hence for every point xe S there
exists a sr-base T, at x in a compact Y such that IR | < .
Put B = U-{:Bx :xe S}, Then the family J3 is a sr-base at the
point p in Y and |Bl< @ ISl < w , i.e. wy(p,Y) < @ -
It contradicts the choice of the point p.

So for each o« < 3¢ there exists a G, x)-tset Q. in Y such
that pe O and 0 N Yo = f. Then O'= N{0g:oc<alis a G, -

set in ¥, pe 0OCand 7N U-(Y(° tp<mi=@., Now we fix a closed
subset § ¢ ¥ such that p € §c O'and y(H,Y) £ 2¢ . Then first,
w1(yy $) = 2t for each point y € § . For if there exists a
point y € § with 73(y,P) =2 < u then oy (y,Y) ¢

£ wy(yo®). 3 (P,Y) € A -9 <@(f2], § 3, Lemma 1), which
contradicts the fact that P N U L To1p=< @?% = @. Second,

- . i3

x) A subset O'c Y is said to be & G, -set in Y if 0'is an in-
tersection of some family 7 of open subsets of Y with
lyl & 2 &
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Theorem 1 implies that there exists & point y € @ with
ERASS ®) < @« . This contradiction shows that Y = U{Yso :
te < (wg, i.e. Jr;{(y,Y)< @ for any yeY.

In particular, in the case Y = X we get the first asserti-
on of the theorem. Now we show that V+i(x,X) £ « for each
x6 X. Let x¢X DS and xe[S]. Put Y = [S]. Then aryL(x,Y)< “,
hence there exists a r-base B at x in Y with IBl<w , Por
every V ¢ B we fix a point x € SNV and put A = {x;:V e B3,
Then AC S, |A| = l<131<(w and x¢[A]. Thus the lemma is proved.,

In the following theorem we straighten the Shapirovskii ‘s
inequality w(X) ét(X)c(x) which holds for any compact X, to a

"chain case".

Theorem 2, Let * be an infinite cardinal and a compact
X be the union of a chain ¥ of its subspaces, where t(n)°(")£
< @ for every M 6 € . Then w(X) = ~ .

Proof. One can assume that a chain € has no maximal ele-
ment - otherwise all is trivial, We shall say that a subfamily
D c € 1is cofinal in X if X = USD . Por every cofinal in X
subfanily & c € put Ag= sup{o(M):M 6 D} . Put also A =
= min {Raz Dc€,D is cofinal in Xf. There exists a cofi-
nal subfamily 0 c € in X such that A = ﬂ«w « Obviously the-
Te exist a regular cardinal g¢ > s, and a subfamily E={M_:
t ot <9fcD such that 1) X = UL and 2) if o« <B< se then
¥ c Ma and c(M_ )< c(llﬂ )e The definition of the cardiml A
implies that A = sup {c(llec):oc < 22t . Put @ = sup {t(M )
$ L < 22§ o Unlike the Souslin number the tightness is a mono-
tonous cardinal function, hence 1:(1(3c ),)'é t('{s) whcnevc;-oc<[3< e,
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There are two possibilities for the Souslin number:

(1 ¢) c(MoC) < A for every o < 3¢

(26) o(M_ ) = A for some o < 2¢ .

Analogously there are two possibilities for the tightness:

(1 t) tM_ )< v for every o < oL}

(2 %) (M) = (v for some £ < 2.

Far every o < ¢ we put F = [M ] and show that w(E . ) <
< T o The further proof is in consideration of four possible
combinations of the cases formulated above.

I. (Le)& (1 ).

Then ¢fA = %¢ = cfw and the conditions of the theorem
imply that sok.é. © for any @ < w and k < A , In particular,
%L Ww£T and ¢ £ A = ¢ .

I A, Suppose that % < .

We have: ¢(F, ) = c(M ) < A for every oc < 2¢ . Put

%t ={th M:M € €% and W, =sup{t(M)Ne Y §.Ifw<x
then #(F ) £ ! (assertion 3(a)) and w} < & because « is
a singular cardinal., Therefore '(Fac )3 t(Pac')c © < ¢ , Now let
Mo = & o Por every cardinal @ < @ put Zx(@) ={xeP, ¢

: Wi\',(x'Foo) < p} . Then Lgmma 1 implies that ¥, =U{ chl(’go)):
t @< i Put Fo(@) =2 (@)l. Thenw(F (@)= @ =
< ¢ for every P < (assertion 5). Consequently
w(z (@ )£w(Z (E))£w(F, (@)) = ¢ . The equality E =
= UL{F (go):go<(w§imp11‘ea that w(P_ ) = nw(F_ )& 2 & =T
(essertions 1 and 2).

I B, Suppose that 22 = w .

Then @ < A . Assertion 3(a) implies that t(X) £ «, hen-
ce t(F‘) £ for every oc < 2 o, We consider two subcases.

1) o = A . The cardinal « 1s regular, hence
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{u-k -SO;&@k < -« = v for every k < w (Proposition 1),

c(P?
So w(F )=¥(P ) * = v for every oc < o€ because t(F )<
£24(X) = v and ¢(Fg) = (M )< A = .,
2) @ <A , We have: gok.é @ for any @ < « and
k <A . In particular, 2K < v for any k < A , Consequently
c(F ) o(R)) e(F.) pec(P_
w(F_ )< t(F_ ) = @ = (2 -2 = x for

every oo < % , because w <A and c(F,) = c(M )< A.

II. (1 e¢) & (2 t).

Then ¢ = ¢f. and our theorem s conditions imply that
<a.k < v for every k <A . In particular, 2",4 z for every
k <A hence A < & , Consider two subcases.

1)
80 t(X) < se (assertion 3(a)). Obviously (u,“' =96 <29,

tmoe . A8 t(M )= « < e for every o« < s ,

Consequently

) F
w(P_ )< t(P )°( g 0e®F)

% 5(26")0(!"‘) - 2{“0(2‘)

= v
for every o< < ge , because t(P_ )& t(X) < 2¢ , 4 < % £ a
and c(P,. ) = c(M_) < A .

2) ((Ar+* se « Then t(X) £ w (assertion 3(:)5(1;),(0)).
Consequently t(F . )& t(X) « o and w(P, ) = « = = for

every oo < e¢ because c(F_) < A .

III. (2¢) & (1 %),

Then e = ¢f @ and our theorem s conditions imply that
goa'é T for e#ery <@ . In particular, % £ w < ¥ . Con-~
sider two cases,

III A, % < . In this case the following proof is
completely analogous to the proof of the case I A.

IIT B, 2 = @ . Then tH(X) = “ (assertion 3(c)). There
are two possibilites,

1) A < @ . The cardinal (v 1is reguler, hence
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(“2. -?ez‘“ pa £ TVeum =T (Proposition 1). Consequently

(%)

w(PF, )< (P, )c = (wa = v Dbecause t(F. )<t(X)< e and

c(P ) =c(M, ) <A for every «c < 9¢ .
2) @ =2 ., We have: Soa-é ¥ for every (r;;)<<q_.1n

o c(F,

particular, 2*= ¢ . Consequently w(F  )4t(F ) < @ =

(
(2“‘)c E")z g»c(l’.g)

A~

P £ v because w < A and o(F ) e A.

Thus w(Foc) £ v in each of the cases I, II, III and

% < v , S0 w(X) £ © (assertion 1),

IVe (2 ¢) & (2 t).

The theorem s conditions imply that (ua' < 2 o In parti-
cular, w =< 1 . Without loss of generality we can assume that
2* 2 @ o+ Consider three cases.

1) e < .chen #(X) = w« (essertion 3(c)). Consequ-
ently w(P_ )< t(R) *' <z (u,a'é @ for every o < 9 . This
inequality and assertion 1 imply that w(X) < 7 because
wXWe wE ¥,

2) @t =% . Then c(X) £ A because A < w < 2¢ (asser-
tion 4(c)). Theorem 1 of the paper implies that the set S =
= {xeXs ar;n(x,x) < (u§ is dense in X. Applying assertion 5
we conclude that w(X) = w([-s,'l) < (w’“ < .

3) @*< % . Then t(X) = w (assertion 3(c)) and
e(X) = A (assertion 4(c)). Consequently w(X) < (u“ < T

The theorem is completely proved,
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