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COMMENTATIONES MATWEMATICAE UNIVERSfTATIS'CAROLINAE 

24,1 (1983) 

LOCALLY NICE SPACES UNDER MARTIN'S AXIOM 
Zoltan BALOGH 

Abstract. The starting point of the paper is a w er -
discrete extension0 of Szentmiklossy s theorem that under Ma+ 
+ -?CHf a countably tight compact T« space has no hereditarily 
separable, non-Lindelof subspaces. Then a parallelism (under 
MA+ -jCHf again) is established between the theory of trees of 
height co-y and cardinality < 2 W and the theory of locally 
compact, locally countable spaces of cardinality <#2

<sa . As 
applications in infinite combinatorics, Baumgartner's theorem 
on Aronszajn trees and a result of Wage on almost disjoint 
countable sets are deduced. It is proved under MA+nCH that 
in a wlocally nicew space hereditarily colleotionwise T 2 imp
lies paracompact iff the space does not contain a perfect pre-
image of the ordinal space co-,. Moreover, conditions are given 
under which whereditarilyw can be omitted. These results imp
rove a set of results of M.E. Rudin, D. Lane and G. Gruenhage 
among which the first was an affirmative answer under MA+-iCHf 
to the Alexandroff 's old conjecture that a perfectly normal 
manifold is metrizable. 

Key words and phrases: Countably tight spaces, tree, 
colleotionwise Tg, ordinal space o,, nonmetrizable manifold* 

Classification: Primary 54A35, 54D30 

Secondary 54B45f 54B35 

Introduction. The aim of the present paper is perfect
ly expressed by the title: we are going to give a structural 
analysis of some locally nice (locally countable, locally he
reditarily Lindelof, locally compact etc.) spaces assuming 
Martin s Axiom plus the negation of the Continuum Hypothesis 
(abbreviated, as usual, Ma +-.CH). 

The content of the paper is arranged in four sections. 
In the first section we prove an extension of Szentmik-

lossy's theorem that countably tight compact T« spaces contain 
no S subspaces. This extension (Theorem 1.1) will then he a 

63 



•tarting point in our further investigations* (For the his

tory, see the beginning of the section and the Acknowledge

ment.) 

In the second section locally compact, locally countab

le spaces are dealt with. Theorem 2.2 is a strengthening of 

a result (Corollary 2.4) of Gruenhage [9]« It shows that once 

"the tree has no COL-branch" is substituted Ijy "the space con

tains no perfect preimage of the ordinal space ex" there is 

a surprising parallelism (under ISA + nCH) between the theory 

of trees of height co^ and cardinality < 2°* and the more ge

neral theory of locally compact, locally countable spaces of 

cardinality < 2 • This parallelism is, in one direction, ex

plained by the (known) fact that certain combinatorial struc

tures admit a natural locally compact topology. We shall il

lustrate this point by deducing a couple of familiar theorems 

from infinite combinatorics: Baumgartner's theorem on Arons-

sarjn trees and a result of Wage on almost disjoint sets. 

The third section mainly concerns hereditarily collecti-

onwise Tp, locally hereditarily Lindelof, locally compact 

spaces. The reader should recall at this point that the long 

line, the most common example of a nonparacompact manifold 

and the (nonparacompact) ordinal space co-* are such spaces. 

How one of the main results of this section says that if we 

exclude from the subspaces the perfect preimages of the ordi

nal space cO, then, under MA +~»CH, such spaces are paraaom-

paot. Further results show that although "hereditarily col

let tionwise T2" cannot be weakened to just "collectionwise 

*2* *n general, it can be weakened so if the space is either 

•f Lindelof degree < 2 or connected and hereditarily nor-
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mal. A s e t of r e s u l t s of Rudin, Lane and Gruenhage concerning 

perfect ly normal, l o c a l l y compact spaces fo l lows . Another 

(new) consequence concerns l o c a l l y compact spaces with a G^-

diagonal . At the end of th i s s e c t i o n we explain, with the aid 

of known examples, why there i s l i t t l e room to improve our 

r e s u l t s * 

The fourth (and l a s t ) s e c t i o n i s simply a s p e c i a l i z a t i o n 

of the r e s u l t s of the third s e c t i o n to manifolds (more gene

r a l l y , to l o c a l l y compact, l o c a l l y connected spaces)* At the 

end of th i s s ec t i on we point out how there might he much room 

to improve our r e s u l t s i f we r e s t r i c t ourselves to manifolds* 

Throughout the paper we use the terminology and notation 

of the current s e t theory and s e t - t h e o r e t i c topology (as used 

in Kunen [131 and Engelking [5.1, for example)* I f se i s a car

dinal , A i s a s e t , then by de f i n i t i on [ A J * c » 4 A ' c AI |A'1»« &J, 

tA} < 8 t » { A ' c At|A*l <-* dtI « Al l spaces are meant to be topolo

g ica l and regular T , . Some deviation from the standard usage 

i s that l i k e Premlin [ 6 ] , we say "X i s countably t igh t" i n s t e 

ad of "X has countable t igh tness" . A always denotes the c losu

re of A in the space X, whatever space the l e t t e r X denotes 

in that context* 

1* Locally countable spaces in countably t i g h t compact 

spaces 

In 1981 the author observed that the proof of Szentmik-

l o s s y ' s famous r e s u l t [213 on the non-existence, under MA + 

+ ~iCH, of S subs paces of countably t ight compact spaces also 

applies to prove, more generally, 

Theorem _£"" (MA( o>. ) ) . Bverv l o c a l l y countable subspace 
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of cardinality a in a countably tight compact space is the 

union of countably many discrete subspaces. 

He then proved a number of consequences which form part 

of this paper. 

The proof of Theorem X*" relied on the order type of 

<>->,, as did Szentmiklossy's proof. However, having been in

formed on the proof of Theorem 2-"", D. Premlin [6] was able 

to get rid of this restriction and proved 

Theorem 2E (MA +-.CH). Every locally countable subspace 

of cardinality < 2°* in a countably tight compact space is 

the union of countably many discrete subspaces. 

In some of the results of this paper the following more 

general version of Theorem X will be extremely useful! 

Theorem 1.1 (MA. +nCH). Let X be a countably tigfrt com

pact space, Z be a locally countable subspace of X with 

lZl<2** , and T be a family of < 2 ^ open subsets of X such 

that 

(a) Z c U l T 

(b) For every V s V there i s an open subset Uv of X 

such that 7c Uy and lu*vr.Z I & co • 

Then % « UnfeG>.ln such that each Â  i s a closed discre

te subset of the subspace X » W. 

To prove Theorem 1.1 we need the following two results . 

Lemma 1.2 (Szentmiklossy [21] , in essence). Suppose that 

{K- t | € 6)̂ 1 i s a family of pairwise disjoint f inite sets and 

33 i s a family of sets such that 

(a) 5J i s closed under f inite unions 

(b) For every B « & , |Bn ( U ^^ K?)| ^ co$ 

(c) There i s a sequence -YB~J f e .*>* \ c $> such that for 
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every T> < | -= ««.>* we have B^ r> K =.}.. £• 

Then t he re i s a s e t DcLU „ K c ] 1 - and a se<|ienoe 
f 6 ^ 1 ? N 

{B^f £€ &>-,} such that for every Cc[DJ 1 there is an 

oc c (.U- with -CO} u-fBp i £ c O- - oc | centered. 

Lemma 1.3 (Galvin and Hajnal). Suppose MA holds, P is a 

c.c.c. poset of cardinality < 2°* and 9J is a family of < 2°* 

dense subsets of P. Then P • U ^ ^ G L such that each GL is 
n*scO n n 

P-generic, over W . 

The heart of the proof of Theorem 2.1 (viz. that the po

set we set up is c.c.c.) will proceed parallel to the proof 

of Lemma 44 B in Fremlin [6J. However, we have to set up a 

different poset from that of in [6] and, therefore, part of 

the notation of [63 is not applicable here. Thus we think to 

make our paper more readable (and, perhaps, the statement of 

Theorem 1.1 more convincing) by giving the details here. 

Proof of Theorem 1.1. Let P « [ZJ<Ct>x IV2*0* with the 

following partial order: 

<K,34>><K'f3C'> iff K c K \ 36 c36' and (K*- K)n ( UVt ) • 0. 

Suppose P is not c.c.c. Then there is a family p* • 

»<Kc, <#c> (£ < o>-%) of pairwise incompatible members of P» 

We may suppose that 

(i) $Ke*f € GJ-^ forms a A-system with root Kf 

(ii) Por every | e colt K | n U ( UK ) - 0, where 
K| m Zr - K (§ 6 6)^. 

To see that we can make sure (ii) note that 

I IL^ c ( U #L ) r. Z\ £ &) for every £ & 6>lt and the K*
 #s are 

pairwise disjoint. 

Since the p '* are pairwise incompatible by (ii) we have 
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ri< £ < eox implieo K* r> ( U9£c)4=0* 

Thuo the family 3J- H U^€) t Sfc €£2 / \ ] < C J and the eequen-

oe -vK| t £ € <a { eat lo fy the conditions of Lemma 2 . 2 . Thuo 

there i s a s e t D c [ Z J n and a sequence-{B f: Ce a>«} <z :35 such 

that 

( # ) for eTery C e[DJ n there i s an oc e o ^ with 

i C \ u i B c t f * o^ » o 6 | centered. 

Note .that each Bc haa the form Be » U9C~ f o r s o m e 

36c € [ I T ] ^ ^ and 00 

( * *> Bf c U % r ? U T . 

Let us choose inductively a couple of sequences oc,(r )c 

€^-,, GccX(^€ 0)^) in the following way* 

(1) Gc -U{U v tV€ u ^ a ^ S ; 

(2) (D-G.)n a 1 + 0 for eTery c e E c ^ - cc ( f ) ] * * * 

(3) i£-<£ implieo oCdj )<*oc(^ ) • 

(2) i e poosible by ( * ) . (Remember that by condition (b) 

of Theorem 1.1 each Gg i s countable!) 

How l e t , for eTery C e to-,, 
pf - n ? 2 * ( | ) i f . 

By ( # # ) # PpC B . £ * c G c + 1 # On the other hand (2) implieo 

( * * * ) Pr H (X-G c )+0 for eTery £ e G)-,. 

Thuo Pg £ *£+!• i»a»-t *o * % c <£-*\ i s a monotone increao-

ing family of compact subsets . Since X i s countably t i g h t , 

th i s implies that P « U C f i Q Pg i s compact. Since 

P c U p _ . Gc and the Gr s are increaoing, there ia a 
f 6 6 ) 1 $ £ 

P € dx with PcGg , in contradiction with ( * * # ) . 

Thuo P i e a c . o . c . pooet of cardinal i ty < 2 . Por eTe-
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ry V € 1T consider 

% » 4 < K t ^ > € PsVe ^ e 5 • 

1~ i s P-dense f s i nce any p «<K f 3£ p > e P can he ex ten

ded by p # « < K p f « p u { v i > C % . Let a -{BysV € ^ ? f and 

cons ide r a G c P such t h a t G i s P-gener ic over §& . Let us de

f ine 

A -u-u.-oseKK, X> € G?. 
We claim t h a t A i s c losed d i s c r e t e i n Y » ( i f • Once we 

prove t h a t c la im, Theorem 1.1 follows from Lemma 1 .3 . 

To see t h a t our claim i s t r u e , i t i s enough to ve r i fy 

t h a t iVnAl< : c*> for every V € V . T o see t h i s , l e t p « 

«<K 93t > € B-rHG. HOW, i f we had Vr> A 4- K
p * n e n t he re would 

be a z c Y n A - K • Then, by z e A we could find a p* • 

• <K , , cK > € G wi th z SK # • We may assume p .*=. p . Then 

z e Y n ( K p , - K p ) c ( U9P p )n (K p , - K p ) . 

But p'k. p impl ies ( U9£ ) n (K , - K ) * 0 , a c o n t r a d i c t i o n . 

Thus ? n Ac K , i . e . , | V f . A | < o > , q . e . d . 

Remarks• There a r e l o t s of s t r eng then ings of Theorem 1 . 1 . 

For example, we have the following combinator ia l s t r eng then 

ing which then enables u s , under some a d d i t i o n a l c o n d i t i o n s , 

to p re sc r ibe some po in t s to be accumulation po in ts of the 

A^'s i n X. 

S t rengthening 1 . Suppose t h a t the cond i t ions of Theorem 

1.1 a r e s a t i s f i e d , and 3*5 i s a family of -c 2 subse t s of Z 

such t h a t no member of 3 can be covered by a f i n i t e subfa

mily of 1/" . Then, i n add i t i on to the conclusion of Theorem 

1 . 1 . we can make Z • U n 6 G ) A n so t h a t I Br,An I 2 O holds for 

every n e Q and B 6 ft • 

To see t h a t th i s can be done, consider the poset P of 

- e g : 



the proof of Theorem 1.1 and let, for every m e a) and B e 33, 

Dffi(B) »-{<K,9e>€ p. \KnB\^m}. 

Dm(B) i s dense in Pf s ince for any p «<K , 9i? > € P the

re i s a KcTB - U 9C ] m , and then p can be extended by 

p ' «<K u K , ^ )eD f f i(B), Now add to the family 95 at the end 

of the proof of Theorem 1.1 a l l of the D (B) 's ( m e o , B e S ) « 

Let GcP be P-generio over th is Q and A - IHK:(33£ ) < K , X > € 

6 G$« Then i t can be eas i ly ver i f i ed that B e 53 implies 

|Br\Al2r m for every m e o> . 

Strengthening 2, Suppose that the conditions of Theorem 

1.1 are satisfied. Further suppose that Y « iHTtV e V$ and 

Pel? - Y is a closed subs pace of X such that P has an outer 

base &* of cardinality < 2 ^ in ¥. Then, in addition to the 

conclusion of Theorem 1.1 we can make Z • \J ^,xk so that 
u€u) n 

I DP holds for every n a o> , 

To see that th i s strengthening i s poss ib le , l e t 

S « - \BnZ:I €. £ * , B r \ P * 0 J c P ( Z ) . Suppose ind irec t ly that 

Bo Zc IKHsH 6 X ? for some Bn Z e 3} and 96 6 C VJ < G > . Then 

B m Bo Z c U { H J H € 3 e } c Y in contradiction with PoB4*0. 

Thus we can apply Strengthening 1 to conclude that for every 

Br .Zc . f t and n e o \ BnZn Anl *> o> ho lds . Since 3j>* i s an 

outer base for P in Z* th i s means that X_o P. 

2 . Locally countable, l o c a l l y compact spaces and i n f i n i t e 

combinatorics 

Lemma 2 . 1 . The following are equivalent for a countably 

t i g h t l o c a l l y compact space X: 

( a ) The one-point compactification X* » X u { x * J cf X 

i s countably t i g h t ; 
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(b) X does not contain a perfect preimage of the ordinal 

space O,. 

Proof. To show (a) *-*-!> (b), it is enough to verify that 

if a space X has a perfect map f onto the ordinal space c*)* f 

then X cannot be embedded into a compact space X of countable 

tightness. Suppose indirectly that it can be embedded. Then, 

since X « f*~( o^) is not compact, there is a point x€ c/j X -

- X. By t(5t) * a> there is a countable AcX with xc cijA - X. 

Let oo e o>- be such big that Aef^(ot> uiaci) * X^ • By the 

perfectness of f, X^ is a compact subset of X so that 

x 4 ^ T 2 ^ » *•-* contradiction with AcX^. 

A less trivial task is to prove (b) —• (a), but this es

sentially follows from the following result of Gruenhage and 

Burke (see [83,13]) * 

(GB) If Y is a noncompact space and every separable clo

sed subspace of Y is compact, then Y contains a perfect pre

image of the ordinal space dX,. 

How assume that X* does not have countable tightness* 

Then there is an A d , |A\>o) such that Y « o£jk is not com

pact but oljk' is compact for every k'e [A3 • Then, since Y 

is countably tight, every separable closed subspaca of I Is 

contained in ciyA' » c£jk' for some k'e [A3° , aTi$ ̂ $ is com

pact. Thus (GB) is applicable. 

Theorem 2.2 (MA +nCH). Suppose that Y is a locally 

compact, locally countable space of cardinality -̂  2 W • Then 

the following conditions are equivalent: 

(a) The one-point compactification X of Y is countably 

tight; 

(b) Y does not contain a perfect preimage of cJ,; 
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(c) Y ifl the union of countably many closed discrete sub-

apaces| 

(d) Y is a Moore space. 

Proof. The equivalence of (a) and (b) follows from Lemma 

2.1. Therefore it is enough to show (a) ==> (c), (c)=-=> (d) and 

(d)=» (b). 

(a)=4> (c). Let V be a base of cardinality < 2 W for Y 

consisting of open sets with compact closures. Since Y is an 

open, locally compact, locally countable subspace of X, it is 

easy to find, for each V e V 9 an open subset u"y of X such as 

required in the conditions of Theorem 1.1. Then applying Theo

rem 1.1 with Z * Y finishes the proof. 

(c) ====•(d). It is wellknown, more generally, that a first 

countable space which is the union of countably many closed 

discrete subspaces, is developable. 

(d)*-̂ > (b). Since a countably compact Moore space is com

pact, and subspaces of Moore spaces are Moore, we infer that 

a perfect preimage of o>,, being a countably compact noncompact 

space, cannot be embedded in any Moore space. 

Remark. As one can easily prove, (c) and (d) are equiva

lent in ZFC even if Y is only supposed to be locally countable 

and first countable. We, however, will not need this fact in 

the present paper. 

Corollary 2.3 (IMA +nCH). A locally compact space Y of 

cardinality -< 2 ̂  is a Moore space if and only if it has a Gj'-

diagonal. 

Proof. It is enough to note that by a result of J. Cha-

ber [4] a countably coir̂ «̂ t noncompact space (in particular, 
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a perfect pre image of cJ,) cannot have a (^-diagonal. 

Remark. There are examples (Gerlitz L7J, Burke C2J, W. 

Weiss [ 22J ) of locally compact nondevelopable spaces with £Ĵ -

diagonals. Those spaces are locally countable and have cardi

nality 2 G )• It is an interesting consequence of Corollary 2.3 

that there are no such spaces of cardinality C K in ZPC (cf. 

Corollary 3.14 and Remark 3 at the end of the third section). 

Corollary 2.4 (G. Gruenhage L91, MA +-.CH). A locally 

compact space of cardinality < 2 ^ is a Moore space if and on

ly if it is perfect. 

Proof. Ho perfect preimage of a), is a perfect space. 

(Otherwise its perfect image, &>- would be a perfect space 

which it is not.) 

The proof of the following folklore result is omitted. 

Proposition 2.5. Let T be a tree of height &>,• Equip 

T with the tree topology. Then the one-point compactification 

of T is countably tight if and only if T has no o),-branch. 

Corollary 2»6 (Baumgartner, MA +-.CH). Suppose T is a 

tree of cardinality < 2°° and T has no <*->,-branch. Then T is 

the union of countably many antlchains. 

Proof. Note first that if Ac T is closed discrete in 

the tree topology then A is the union of countably many anti-

chains • 

(Indeed, if A is closed discrete then for every xeA, 

x n A -{ycAsy-S.,-. x\ is finite. How consider, for each n € £> 

the antichain A n » {xeAt^nA » n+l}. Then A « U n 6 C J
A
n » ) 

By Proposition 2.5» the one-point compactification of T is 

countably tight so that Theorem 2.2 implies that T is the 
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union of countably many closed discrete subspaces, and thus, 

of countahly many antichains. 

The last corollary is essentially due to Wage (see 118.1, 

p. 500). 

Corollary 2.7 (MA +"iCH). Let se < 2 ^ be an uncountab

le cardinal and *tH** Z € L} be an almost disjoint family of 

countable subsets of ae with i L l ^ ^ . Then ae » U ne&^n 

such that for each n € o f -fH*: & s *• i u ^ n ^ is almos* dis

joint. 

Proof. Define a topological space X in the following 

way. 

The underlying set of X is the disjoint union of L and 

X . Define the topology of X by the following two conditi

ons: 

(1) at is an open discrete subspace* 

(2) {\Z \ u (Hg - 1)%9 e t'3e3<wJ is a neighbourhood ba

se for Z in X. 

It is easily verified that (1) and (2) define a locally 

compact T2 topology. Suppose indirectly that X contains a 

perfect preimage P » f*"(cJ-,) of the ordinal space o>,. Then, 

since P is countably compact and L is closed discrete in Xf 

it follows that 1 Pr>L|< 6> # Thus there is an oc e o^ with 

f ^ Q - -oc) c 9£ «, Since ae is a discrete sub space and 

£^( cjj ~oc) is countably compact, If^Co^ -oG)|-< O , a 

c ontradiotion * 

Nnw, by Theorem 2.2f st (more generally, the whole spa

ce X) is the union of countably many closed discrete subspa-

ces ol X. 'i-hsri we can finish the proof by observing that 

*5Heh ii* * being a compact set in X, has a finite intersection 
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with any closed discrete subspace. 

3. On locally nice spaces 

Definition 3.1. We shall say that a space X is 6*-collec-

tionwise T2 *
f f o r every closed discrete subset A of X we have 

A » U A such that for each n € <D , the points of An can 

be simultaneously separated by open subsets of 1. 

Remark. Collectionwise T2 spaces are 6-collectionwise 

T2# Normal €?-collectionwise $2 spaces are collectionwise T2. 

Lemma 3.2. Let X be a locally hereditarily Lindelof, lo

cally hereditarily separable, hereditarily 6> -collectionwise 

T« space. Then X is the topological sum of clopen subs paces 

each having the Lindelof degree *-« a>,. 

Proof. First of all we claim that if Fc X is any subspa-

ce of X then there is a e?-disjoint collection ty of heredita

rily Lindelof, open subsets of X such that (UG--)nF is dense 

in F. 

To prove this, let QjL be a maximal family of pairwise dis

joint, relatively open, separable subsets of Ff and let, for 

every U e 01 , S(U) • •{xn(U)m € o} he a dense subset of U* 

Further, for every U e % let us choose an open subset \f of X 

such that ffnFsU, How, for every n 6 o> , Sn -. {xn(U):U6 $l'i 

is a closed discrete subset of the open subspace U^U:U & 111* 

Since UiU:U e %\ is 6-collectionwise T2, there is a ff-dis

joint collection |Gn(U):Ue U\ » C^n of open hereditarily Lin

delof subspaces of X such that xn(U)c Gn(
u) *or every U c % , 

Then C^» ^ 1 1 & a )^ n is as required. 

How define by induction a sequence {{F^ , Q^. > : o£ e o.}i 
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i n the following way. PQ « X and (#Q i s a c o l l e c t i o n of pair-

wise d i s j o i n t , open, heredi tar i ly Lindelof subspaces of X 

such that VfyQ i s dense in X. I f fi e cJ1 - { 0\ and 

^FoC»QoC> 5oC€/3} i s already defined, then l e t F* • X -

" Hce/3 ^ 9 f c * a n d l e t % b e a ^ - d i s j o i n t c o l l e c t i o n of 

heredi tar i ly Lindelof, open subspaces of X such that ( U<J-» )H 

A F^ i s dense in Fn • 

Then X - U ^ ^ ( \J(fa ) . Indeed, i f there was an x € X -

- U<£€c; ^ ̂ 9oo^ * ^oCecJ *«c • then we could take a heredita

r i l y Lindelof neighbourhood V of x andf s ince ( Uty^n F^ « 

« F^ f we could take a point x^ € Tn O U Q ^ A P ^ for each 

°^ € ^ 1 * ThLen"txo6 *<*•£ ^ i ? would be an uncountable s c a t t e r 

ed subs pace of V, in contradiction with the assumption that V 

i s heredi tar i ly Lindelof. 

Thus (1* m \J,€C> Cy. i s an open cover of X and (L* i s 

the union of ^ &), d i s j o i n t c o l l e c t i o n s . Since every member 

f C *̂ i s c . c . c . f i t follows that every G e. fy* in tersec t s o 

o nly .£* o^ other members of ty? • Thus, by an easy inducti

on argument, X can be decomposed into disjoint open (and, thus, 

closed) subspaces each of which is the union of <£ 6), members 

of ty* and has, therefore, Lindelof degree .£ CJ, . 

Theorem 3.3 (MA +iCH). Let X be a locally hereditarily 

Lindelof hereditarily 0 -collectionwise T 2 space. Suppose 

that X can be embedded into a countably tight compact space.. 

Then X is paracompact. 

Proof. Hote first that since MA. +nCH implies a count-

ably tight compact space contains no L subspaoes t2_U X is 

also locally hereditarily separable. Further, a locally Lin

delof space is paracompact iff it is the topological sum of 
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its clopen Lindelof subspaces. If the space ist in addition, 

locally hereditarily Lindelof and locally hereditarily sepa

rable, then these clopen subspaces are automatically heredi

tarily Lindelof and hereditarily separable. 

By Lemma 3.2 we only have to consider the case when the 

Lindelof degree of X is <U1# Let 11* iV^ t oG € o)^ be an open 

cover of X by open, hereditarily Lindelof subspaces such that 

UoC " /̂3eoC U/3 + ^ for every oo e <^1# Let 

To prove that X has a topological decomposition such as 

described above it is enough to show that A is non-stationary 

in o-. 

Suppose indirectly that A is stationary in <JJu . Then choo

se, for every cC e Af a point ^
 6 ^ « 6 o C ^ *" ̂ 3^06 U/5 • s i n c e 

oc > f*> implies x̂ . £ U« f the subspace { x ^ : oc e A J is locally 

countable. Thus we can apply Theorem 2 "k° Se* A * (J n(.0 A 

such that each-fx^ : oC e A J is a discrete subspace. Let A 
o 

be non-s t a t iona ry i n CJ^ and l e t , for every 00 e A^ f V. be an 
x nQ oc 

open subset of X such that V^ r. -[ x^ : oC e An $ *- •{ x^ 1 • Then 
o 

D * "i3-̂  5 oC € A ? is a closed discrete subspace of the open cC nQ 

subspace S » U { V^ s ot € A } . Since X is €f-collectionwise 
o 

Tp, there is a stationary set A ' C A such that we can find 
o o 

a family { G. : oc & A * \ of disjoint open subsets of S (and 
o 

thus, of X) such that x € G^ for every oC £ A^ . Since for 

every oc e A* x <s ^near u/i -*•* follows that for every 
o ' ' 

oc € A' there is an f(cC)€ 06 with G . o U-,- s#=0. Since A' n0 oc f U ) nQ 

is stationary, the Pressing Down Lemma implies that there is 
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a (I c GJ* with If (|3)i • C^. Thus U^ interseots uncount-

ably many G, *s in contradiction with our assumption that U^ 

is a hereditarily Lindelof (and thus, c.c.o.) subspace. 

Theorem 3*4 (MA + ~|CH). Let X be a locally compact, lo

cally hereditarily Lindelof, hereditarily cf-collectionwise 

Tp space. Then X is paracompact if and only if X does not con

tain a perfect preimage of the ordinal space <*>-. • 

Proof. Only the nifw part needs proof. So let X not con

tain a perfect preimage of 6)« • Then by Lemma 2.1 X can be 

embedded into a compact space of countable tightness. Thus 

Theorem 3*3 is applicable. 

Theorem 3.5 (MA +1CH). Let W be a locally hereditarily 

Lindelof, 6-collectionwise T2 space with Lindelof degree 

< 2 . Suppose that W can be embedded into a countably tight 

compact space X. Then W is hereditarily 6^-collectionwise T2» 

Proof* Let Z be an uncountable discrete subspace of W. 

Let 01, be a cover of W by open subsets of X such that Un W is 

hereditarily Lindelof, and thus, Un Z is countable, for every 

U e 16 .By regularity of X there is a cover V of W by open 

subsets of X such that for every V e V there is a Uy s Qi 

with YcU v. Since L(W)<2
<X> we may assume \V I < 2 ^ .By 

Theorem 1,1 Z « V _ ^ A^ such that each A^ is closed discre-
T&GJ n n 

te in Y « VVK , and thus, in W. Since W is 6" -collect!onwise 

T«, it follows that Z is the union of countably many collecti

ons {A . m,k e co\ such that the points of each A . can be si

multaneously separated by open subsets in W. 

Combining Theorems 3#3 and 3.5 together, we get 

Theorem 3*6 (MA +"iCH).^ Let X be a locally hereditarily 

Lindelof, 6^-collectionwise T2 space with Lindelof degree 
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< 2 • Suppose that X can be embedded into a eountably tight 

compact space. Then X ia paraeompaet. 

The following result of Nyikoa 1153 ia an application 

of Jones' Lemma. 

Lemma 3.7 (tfyikos [153). Suppose that ef(2^) > O^ 

Then eTery separable, locally hereditarily Lindelof, heredi

tarily normal a pace has the Lindelof degree < 2°* • 

Remark. In [15J Nyikoe made the assumption n2CJ is a 

aueeeesor" but his proof only requires nef(26j) > <^-|W. 

One easily eheoks that Hyikos' argument is valid to pro* 

TS the following more general version i 

Lemma 3.7* . Suppose that 2°* > CJ^ and for eTery 

X< 2° 9 2* « 2 ^ holds. Then eTery locally hereditarily Lin

delof, hereditarily normal space of density < 2** has the 

Lindelof degree < 2 ^ . 

(Note that the seeond cardinal assumption in Lemma 3.7# 

implies that 2 Q is regular.) 

Iterating Lemma 3.7', we get 

Lemma 3.8. Suppose that 2°* > 0>^ and for eTery A < 2**, 

2* • 2 ^ holds. Let X be a locally hereditarily Lindelof, lo-

eally hereditarily separable, hereditarily normal space and 

z be an arbitrary point of X. Then x is contained in a clo-

pen set of the Lindelof degree < 2*^. 

Proof. Note first that since X is locally hereditarily 

separable, eTery subs pace Yc X with L*(Y)< 2** also satisfies 

d(Y)< 2 ^ and thus, by Lemma 3.7% L(Y)< 2 ^ . Therefore we 

may construct an Increasing sequence -tX^ toce C-)nJ °* °P*n 

subsets of X such that 
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(a) Ҡ€%0* 

(b) L(x^ 1^ 2 ^ for every oc e C>19 

(c) X^ c cc+\ for every oc € co-. 

Then Y • ^ X^ is an open subset containing x. By 

(c)f Y • U ^ € ^ X^ f which implies Y « ¥, since X is countab-

ly tight. Finally L(Y)< 203 follows from (b) and from cf(2^)> 

> 6>1» 

Remark. There are other cardinal assumptions which make 

Lemma 3.8 true# (One such isf for example, 2**« <Dn(n>2).) 

However, the assumptions of Lemma 3.8 suit us best, since we 

are going to assume MA +-.CH which implies (V.71 < 2^) 

( 2 a - 2 ° ) . 

Putting Lemma 3.8 and Theorem 3*6 together yields 

Theorem 3»g (MA +-iCH). Let X be a connected, locally 

hereditarily Lindelof, hereditarily normal, 6f-collectionwise 

T 2 space. Suppose that X can be embedded into a countably 

tight compact space. Then X is hereditarily Lindelof. 

Proof* Since a countably tight compact space contains 

no L subspaces, X is locally hereditarily separable. Lemma 3»8 

and connectedness together then imply L(X)-c 2 so that Theo

rem 3»6 is applicable to get paracompactness of X. A paracom-

pact locally hereditarily Lindelof space, however, is the free 

sum of olopen hereditarily Lindelof subspaces, so X is heredi

tarily Lindelof again by connectedness. 

Remark. To get paracompactedness of X we made use of 

connectedness only through Lemma 3.8. Therefore, if we could 

prove some analogue of Lemma 3«2 with "hereditarily normalM 

in place of "hereditarily ef-colleotionwise T2
M then we could 

quote Theorem 3»6 to prove 
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Conjecture 3.10. Suppose that all the conditions of 

Theorem 3.9 except connectedness of X are satisfied. Then X 

is paracompact. 

Looking back to Lemma 2.1 gives us the following "local

ly compact versions'1 of Theorems 3.6 and 3.9, respectively. 

Theorem 3*11 (MA +-.CH). Let X he locally compact, lo

cally hereditarily Lindelof, 6-collectionwise Tp space with 

the Lindelof degree < 2 °* » Then X is paracompact iff X does 

not contain a perfect preimage of CO1„ 

Theorem 3.12 (MA +iCH). Let X be a connected, locally 

compact, locally hereditarily Lindelof, hereditarily normal, 

tf-collectionwise Tp space. Then X is paracompact iff X does 

not contain a perfect preimage of co^. 

In E9J Gruenhage proved that under MA +nCH, every per

fectly normal, locally compact space is paracompact provided 

it is collectionwise normal with respect to compact sets. A 

stronger form of Gruenhage's result is a corollary to our 

Theorem 3At 

Corollary 3.13 (MA +-.CH). If X is a locally compact, 

perfect, 6-collectionwise Tp space, then X is paracompact. 

Proof. It can be easily seen that a perfect, 6 -collec

tionwise Tp space is hereditarily 6 -collectionwise Tp. Thus, 

making use of the fact that perfect compact spaces are here

ditarily Lindelof and that a perfect preimage of the ordinal 

space CO- is not a perfect space (cf. the proof of Corollary 

2.4), we can apply Theorem 3.4. 

Corollary 3.14 (MA +iCH). If X is a locally compact, 

tf-collectionwise Tp space with a Gr'-diagonal, then X is 
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paraoompact provided one of the following condition* hold** 

(a) X is hereditarily €?-oollectionwise T2i 

(b) X has the Lindelof degree < 2^; 

(c) X is Tc and connected. 

Proof* In order to apply the corresponding theorems pro

ved above it is enough to note that a compact space with a 

Gj-diagonal is second countable and a perfect preimage of cJ-^ 

cannot have a Gr-diagonal (of* the proof of Corollary 2.3). 

Remarks. 1. Some corollaries of the theorems of this 

section which concern manifolds (more generally, locally com-

paot, locally oonneoted spaces) will be included in the fourth 

(and last) section* 

2* The Kunen line til] is an example, under CH, of a lo

cally compact, locally countable, submetrisable, perfectly 

normal, hereditarily collectionwise normal spaoe of Lindelof 

degree o, which is hereditarily separable, does not contain 

a perfect preimage of c)^f but still fails to be paracompact. 

(Note that "separable + paracompact" implies "Lindelof".) 

This shows that MA +-.CH is an essential assumption in Theo

rems 3.3, 3.4, 3.6, 3.11 and Corollaries 3.13, 3.14(a),(b). 

(One, however, has to write L(X) » o)^ instead of L(X)<2Ct> 

in Theorem 3.11 and Corollary 3.14 (b).) Note that MA +1CH 

is also essential in some other results of this section, whe

re it was assumed (cf. Remark 1 in the fourth section). 

3. W. Weiss [22] constructed a naive example of a normal, 

collectionwise T2, locally compact, separable, submetrizable 

space which is not paracompact. This example shows that "he

reditarily €-collectionwise T2" in Theorems 3.3, 3.4 and Co

rollary 3.14 (a) cannot be weakened to "£-collectionwise T2". 
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further, it shows that L(X)< 2 ^ cannot he omitted in Theorem 

3.6, Corollary 3.11 and Corollary 3.14 (b). 

4. If MA +iCH holds, then there is an example ([17J, p. 

47) of a locally compact, normal, nonmetrlzable Moore spaoe. 

Thus w£ -oolleotionwise Tg" is essential in Corollary 3«13« 

4. On locally compact, locally connected spaces 

In this final (and really very short) section we refor

mulate some of the results of the third section for locally 

compact, locally connected spaces (in particular, for mani

folds). Our aim in doing so is, on the one hand, to get some 

further corollaries, on the other hand, to point out some pos

sible improvements of our results if only manifolds (or more 

generally, locally compact, locally conneoted spaces) are 

considered. 

Theorem 4.1 (MA + -.CH). Let X be a locally compact, lo

cally hereditarily Lindelof, locally connected, coneooted spa

ce (in particular, let X be a manifold). Suppose that X con

tains no perfect preimage of &>. . Then X is Lindelof if one 

of the following conditions holds: 

(a) X is hereditarily 6f -oolleotionwise Tp* 

(b) X is 6-oolleotionwise T2 and L(X)<2^; 

(c) X is 6*-oolleotionwise Tp and hereditarily normal. 

Corollary 4.2 (Lane U43, Rudin 1203, MA +-1CH). Let X 

be a perfectly norjnal, locally compact, locally connected, 

connected space (in particular, let X be a perfectly normal 

manifold). Then X is Lindelof. 

Proof* A perfectly normal, locally compact, locally 
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connected space is, by a result of Alster and Zenor £ 13» he

reditarily collectionwise T2« Since a perfect preimage of 

<*>-, is not a perfect space (cf. the proof of Corollary 2.4)f 

and a perfect locally compact space is locally hereditarily 

Lindeloff we can apply Theorem 4.1 (a). 

Corollary 4.3 (MA +-.CH). Let X be a locally compact, 

locally connected, connected space (in particular, a manifold) 

with a Gj-diagonal. Then X is second countable, provided one 

of the conditions (a)f(b)f(c) of Theorem 4*1 holds. 

The proof goes parallel to the proof of Corollary 3.14« 

Remarks. 1. M.E. Rudin and Zenor 1193 constructed, under 

CH a perfectly normal, hereditarily separable, hereditarily 

collectionwise Tp, non-metrizable manifold of weight CJ-̂ . 

This shows that MA +~iCH is a necessary assumption in Theorem 

4.1 and Corollary 4.2 (and, a fortiori, in Theorem 3.12). We 

do not know whether it can be omitted from Corollary 4.3. 

2. The Prufer manifold is a separable, nonmetrizable Moo

re manifold. Since it is Moore, it is perfect and does not 

contain a perfect preimage of CtX,. Thus the additional hypo

theses (a),(b),(c) in Theorem 4.1 and Corollary 4.3 and nor

mality in Corollary 4.2 cannot be omitted. 

3. P. Nyikos 116] conjectures that, under MA +1CH, eve

ry Tc manifold of dirndl is metrizable. (In dimension 1, the 

long line is counterexample.) The best results we are able 

to prove in connection with this conjecture are Theorem 4»1 

(a)t(b),(c). These results give us raise the following que

stions: 

Question 1. Suppose MA +nCH (or PPA). Does every non

metrizable fe manifold contain a perfect preimage of O-^ 
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Question 2. Suppose MA +-.CH (or PPA). Does every nor-

malf nonmetrizable manifold of weight < 2 contain a per-

feot preimage of a)-,? 

By Theorem 4.1 (b)f(c) we could give affirmative answers 

to Questions 1 and 2 if we had an affirmative answer (under 

MA +nCH f or PPA) to the following question of Alster and 

Zenor tl} : 

Question 3 (Alster and Zenor [I]). Is every normal ma

nifold collectionwise T2? 

Acknowledgement. Having been informed of Theorem 2i"~ 

in 1981 in Prague, Heikki Junnila observed that he had a si

milar result* Returning to Helsinki, he checked his 1979 no

tes and he kindly informed the author [12] that he actually 

proved Theorem 2EL , two years before the author and Premlin 

(re-)discovered it. Hef however, was reluctant to publish 

his result, because he could see no applications. Thus Theo

rem X should also be attributed to Heikki Junnila. 
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