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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

24,3 (1983) 

A NOTE ON CHROMATIC NUMBER OF DIRECT PRODUCT 
OF GRAPHS 
Daniel TURZ.K 

Abstracts The case when the chromatic number Y ( G X H ) 
of direct product of graphs equals to rain t» (G) f ̂ (H)f is 
discussed. 

Key wordss Graphf chromatic number, direct product of 
graphs. 

Classifications 05C15f 05C20 

The direct product GxH of two (finite, simple) graphs 

Gf H is defined by 

V(GxH) - V(G)xV(H) 

and 

(x,y)€V(G*H) is adjacent to (x\y') * V(Gx H) if and 

only if (xfx')cE(G) and (yfy')c E(H). 

In 111 

(1) ^(GxH) = min \% (G) f ft(H)l 

is conjectured ( ̂  denotes the chromatic number) orf equiva

lent^, if ^(G) - ^ (H) • kf then ^(GxH) * k. It is clear 

that A holds in (1). It is proved in 111 that (1) holds if 

^(G) »^(H) * k and 

(2) each vertex of H is contained in a complete k-1 graph. 

It is not difficult to prove that (1) holds if 

(3) there exists a homomorphism ysG—> H. 

461 



(A mapping <y:V(G)—> V(H) is a homomorphism if 

(x,y)6B(0)**> (<y (x) f ^(y) )<= .E (D.) 

In general, it is not even known whether lim f(k) »co where 

f(k) « min -{^(GxH) |^(G) « % (H) « k|. In til it is proved 

that either f(k)-4l6 for every k or lim f(k) « co . 
Sk~*4X> 

In this note we give another sufficient condition for (1) 

and show examples of graphs which satisfy this condition but 

do not satisfy either (2) or (3)» 

Theorem* Let ^(G) * \ (H) » k. If 

(4) for every pair e.j f e2 of non-incident edges of G there 

is an edge e... of G incident to both e-j and e2# 

then ^(Gx H) « k. 

Proof. Suppose that ^(GxH)<k. Let c:V(GxH) —> 

—> -ilf...fk-1} be a coloration of Gx H. For each vertex x€ 

€ V(H) choose an edge e_ « (y„»z )eE(G) such that c(y_fx) « 
X X X «*. 

• c(zx,x). Define *c:V(H) —> 41»... ,k-1$ by "c(x) « c(yxfx). 

As %(H) « k there is an edge (x,x')<S.E(H) such that *c(x) « 

«- c(x'). 

There are three possibilities: 

a) ex = ex# (say yx » yx#f zx « z x #). Then c(yx,x) « 
« c(zx#fx') and (yx#x) is adjacent to (zx/fx') in GxH. 

b) extex# are incident (say zx » yx#)* Then c(yx,x) « 

» c(yx#fx') and (yx,x) is adjacent to (yx# fx') in GxH. 

c) There is an edge incident to both ex and ex# (say 

(zx,yx#)€ E(G)). Then c(zx,x) * c(yx# fx') and (zxfx) is 

adjacent to (yx# fx') in GxH. 

In all three cases we get a contradiction to ^(GxH)< k. 
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Remarks Let G k, k r 4 be a graph with the vertex set 

V(Gk) * fx 1 9.. 9 Vz^ a > 1 9y 1 #«.«»y k M l 98i and the edge set 

E(Gk) - U x p X ^ I i,*j » 1 k-1, 1*3 3 u 

{(x±,y^) 1 i,3 - 1,...,k-1, i-f^} u 

{(y i > Z) | i « 1,...,k-1j. 

Clearly, Gfc is the k-critical graph which satisfies (4), see 

123. 

It is not very difficult to prove that every 4-chroraatic 

graph contains either G, or a 4-chromatic subgraph which sa

tisfies (2). Since there is a homomorphism <y:H—>• G* for any 

4-chromatic graph H which does not satisfy (2), the Theorem 

does not yield any new result for 4-chromatic graphs. 

On the other hand, let k 2 5 and let H be any k-chromatic 

graph each vertex of which is contained in a triangle but 

which does not contain the complete graph K*. Then ^(GkxH)=-

=» k by the Theorem but neither G k nor H satisfy (2) and there 

is neither a homomorphism ty :G — > H nor <f :H —• G. 
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