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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROUNAE 

24,3 (1983) 

SOME NOWHERE DENSELY GENERATED TOPOLOGICAL 
PROPERTIES 

Robert L. BLAIR 

Abstract: [*e, A3 -compactness is characterized in such 
a way that the following result of Mills and Wattel is an im
mediate consequence: 
( # ) [ *e ,X 3-compactness is nowhere densely generated in the 
class of T-.--spaces without isolated points. (The special case 
of (# ) for compactness is due to Katetov.) In addition, cha
racterizations of oC-closed-completeness, oC-compactness, and 
pseudo-(oofte)-compactness are obtained with consequences si
milar to (# )• Among these consequences, for example: Closed-
completeness is nowhere densely generated in the class of T-,-
spaces without closed discrete subsets of Ulam-measurable car
dinality. 

Key words and phrases: Nowhere densely generatedJL*e, A 1 -
compact, ot-closed-complete, eC-compact, pseudo-(oc , *e5-comp-
act, relatively pseudo-( oc,#e)-compact, closed-complete, real-
compact, screenable, measurable cardinal. 

Classification: Primary 54D20, 54B30f 54D60 
Secondary 54A25f 54B05 

°» Introduction. As in [MW3f a property $ is nowhere 

densely generated in a class C of topological spaces if, for 

every X c C f X has property $ whenever every nowhere den&e 

closed subset of X has property $ • For example: 

0.1. Theorem (Mills and Wattel [MWf Theorem 2J). For all 

infinite cardinals % and A , [ae, A 1 -compactness is nowhere 

densely generated in the class of T-j-spaces without isolated 

points. 
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0.2. Theorem (Blair [111, 43). Realcompactness is nowhere 

densely generated in the class of normal T-j-spaces without 

closed screenable subsets of Ulam-measurable cardinality. 

(For definitions of terras used heref see §1-3 below.) 

Theorem 0.1 generalizes the following earlier result of 

Katetov: Compactness is nowhere densely generated in the class 

of T-j- spaces without isolated points [KJ. (Katetov's theorem 

is reproved in[VWf 2.43.) For other results closely related 

to 0.1 and 0.2f see Mills and Wattel [MWJf van Douwen lvDf 

11.13, van Douwen, Tall, and Weiss [vDTWJ, and [B13. I am in

debted to Eric van Douwen for calling [KJ andtMWj to my atten

tion. 

The main results of this paper can be summarized as fol

lows: 

(i) 1.2 is a characterization of ldtt7i 3 -compactness that 

(a) quickly yields 0.1f (b) requires no separation hypothe

sis, and (c) has a proof much simpler than that of 0.1 in 

tMWl. (In connection with (c)f see the remarks of CvD^3 (ii-

which the present author's initials are erroneously printed 

as "D.E.").) 

(ii) 2.4 is a characterization of ec-compactness (in 

the sense of Herrlich [He3) in the class of normal T-,-spaces 

that implies 0.2 and cardinal generalizations thereof, and it 

is also a characterization of *£ -closed-completeness that im

plies both the Katetov theorem cited above (see 2.8) and the 

following: Closed-completeness (*- a-realcompactness CDJ) is 

nowhere densely generated in the class of T,-spaces without 

closed screenable subsets of Ulam-measurable cardinality (see 

2.5). 
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(iii) 3*1 is a characterization of pseudo-(** , K.)-compact

ness that implies, for example, the following: If X is T, and 

without isolated points, and if every nowhere dense subset of 

X is relatively pseudocompact in X,, then X is pseudocompact 

(see 3.4). (Thus pseudocompactness is, in a strong sense, no

where densely generated in the class of T-j-spaces without iso

lated points.) 

The same basic technique (namely, an appropriate choice 

of a maximal family of pairwise disjoint open sets) underlies 

the proof of each of the three main r e s u l t s 1.2, 2.4, and 3»1« 

Cardinals are initial ordinals. The smallest infinite car

dinal is denoted by co , and if 06 is a cardinal, then o£* de

notes the smallest cardinal fi such that oC < ft . The power 

set of a set X is denoted by !?(X). If A c X and Uc (PCX), we 

set 1i(A) = 4 U € U :UnA*0J. 

No separation properties are assumed unless explicitly 

mentioned. 

I am indebted to M. Husek for suggestions for improving 

the exposition of an earlier version of this paper. 

1. C^,^ .1 -compactness. For infinite cardinals »t and X% 

a space X is [ge., ft 3-compact if for every open cover % of X 

with \%\&X , there exists Vc 11 with W\<K and X -»uV*. 

(Thus [£>,#* I#(X)13 -compact * compact, [ d>+, &)* \ 9 (X)|J -com

pact = Lindelof, and [6>*6> 1 -compact = countably compact.) 

Obviously [ae,A J-compactness is closed-hereditary, and X is 

trivially [ae,-51 3-compact if it > % • 

We shall say that a subset D of a space X is screenable 

(resp. strongly screenable) in X if there exists a pairwise 
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disjoint family (GL.)----) of open subsets of X such that xc G 

(resp. cl<x)c G ) for every x & D (cf. [Bl]); and that D is 

almost closed in X if u-Ccl{x?sx€ D] is closed in X. Clearly 

every strongly screenable subset of X is screenable, and every 

closed subset of X is almost closed; and if X is T.-, then 

screenable • strongly screenable and closed » almost closed. 

The following is also obvious: 

1.1. Lemma. If D is a strongly screenable subset of X, 

then u{cHxi:xfcD$ is the sura of the family (cl£x!)xsI). 

The main result of this section is as followss 

1.2. Theorem. Let ae and A be infinite cardinals with 

% 6 A . If X is a topological space, then the following 

are equivalents 

(1) X is [*e,A,l -compact. 

(2) Every almost closed, strongly screenable subset of 

X has cardinality «<3C , and every nowhere dense closed subset 

of X is(.9e,A 3 -compact. 

Proof. (1) —-> (2)s If D is an almost closed, strongly 

screenable subset of X, then u{cHx$sxeD? is closed in X 

and hence Cat, A -l -compact. Since d€ £ A , it follows from 1.1 

that |Dl<,*e . The remaining assertion of (2) is clear. 

(2) «-£• (1); Let 01 be an open cover of X with I U \ A Ji f 

and let <J, be a maximal family of pairwise disjoint open sub

sets of X such that, for every G « <J* , G C U Q for some U* 6 

€ 01 . The maximality of (#. implies that X - u<$ is nowhere 

dense in X and hence [», X1 -compact. Thus there exists V c 01 

such that I V\ < dt and X - u<% c u V . Let F - X - u V and 
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§* * £-(F). For eaoh G 6 £* , choose x^e Fo G and let 

D * {XQ*Q e £*{ and A - u < CI-CXQS S G &<#*} . Since cl A c l c u j . 

and £ *s pairwise disjoint, it follows easily that A is clos

ed in X. Moreover, tor each G • £ we have Fn G • Fn (X -

- u(£j.- iG$)), so P A G is closed in X. Thus for eaoh G & g.* » 

C1{XQJC PnGcG, and we conclude that D is almost closed and -

strongly screenable. Hence I£?l • ID1 < ae • Let 1V • Vu i Û t 

sG 6 £*} and note that 4^ c % and VttfJ< »e. Since X - u V m 

» P c u Q-* c U{UQ|G € Q%*\ , Wr covers X and the proof is com

plete. D 

A space X is essentially T-̂  £WW] if for eaoh x,y€X, eit

her clCxja cl{yj » 0 or cl{xj » city}. 

1.3. Corollary. Let *e and X be infinite cardinals with 

9e £ A .If every nowhere dense closed subset of X is t$t9X2 -

compact, then X - ulint cl{xl:xcX{ is [aê  A3-compact, and the 

converse holds if X is essentially T-L. 

Proof. Let Y » X - uiint cHx\txaX$ and assume first 

that every nowhere dense closed subset of X is C«e, A 1 -compact. 

Let Del be almost closed and strongly screenable in Y. Then 

there exists a pairwise disjoint family (GX)X€T) of open sub

sets of Y such that ol{xlc Gx for every xeD, and the set A • 

» ufcl-txitxcD} is closed in Y and hence also in X. Suppose 

there is a nonempty open set U in X with UcA. Then Uo clixj 4» 

4-0 for some X€D, and then xcUnG xcAnG x » clfxj. Note also 

that UnG x is open in X, and hence xcint clixl. But then xe)Y, 

a contradiction. Thus A is nowhere dense in X and hence Cae,in

compact. Since ae -* X ,1.1 implies that IDl-c ê • Moreover, 

every nowhere dense closed subset of Y is also nowhere dense 
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and closed in X and therefore tae, %3 -compact. Hence Y is 

t9ttX 3-compact by 1.2. 

Assume next that X is essentially T-. f that Y is t9€9X2 -

compact, and that E is a nowhere dense closed subset of X. If 

there exists y e E - Yf then y€int cl{x\ for some xeX. Since 

X is essentially T, f we then have 0 4-int cMxlc cl-tx} « 

• cl-iy$cEf a contradiction. Thus E c Y and hence E is tae,in

compact. D 

1.4* Remarks, (a) Let at and X be as in 1.3 and let X 

be T.,. Thenf by 1.3, the set of nonisolated points of X is 

I afc,& 3 -oompact if and only if every nowhere dense closed sub

set of X is [9c,a.3 -compact. The theorem of Mills and Wattel 

(0.1) is an immediate consequence. 

(b) It is worth remarking that the proof of 1.2 can be 

adapted to give a very brief direct proof of 0.1. For this 

purpose we first note the following well-known (and easily pro

ved) facts 

1.5« Proposition. If D is a discrete subspace of a T-j-

space X9 and if no point of D is isolated in Xf then D is no

where dense in X. 

Proof of 0.1. Assume that X is T, and without isolated 

points, that *e £ X f and that every nowhere dense closed sub

set of X is ta*,A, 1 -compact. Let Oi be an open cover of X with 

|4L| -£ A. f and choose (̂  f V fFf <J*f.Df and W precisely as in 

the proof of (2) -=-t (1) of 1.2. Since X is T.̂  and cl D e l c 

c u (tT9 D is closed in X; and D is nowhere dense in X by 1.5. 

Thus D is a C^e,X J -compact discrete space, so |D| < 9&. As 

before, I WI < vb, W c % , and W covers X, and thus X is 
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Cat, A 3 -compact. D 

We define the cellular extent ce(X) of a space X as fol

lows: ce(X) » 0»sup4lDl: D is an almost closed, strongly 

eereenable subset of T\. (The special case of ce(X) for f,-

spaces is defined in [Blf 8(d)]. Clearly ce(X) <; min{e(X) f 

A(X)Jf where c(X) is the cellularity of X [ J J and A(X) is > 

the discreteness character of X [Ho, §32* As noted in [Blf 

8(d)}f this inequality can be strict.) 

As an immediate consequence of 1.2 we have: 

1.6. Corollary. If A is an infinite cardinal and if •-

very nowhere dense closed subset of X is [ce(X)+,A2-compact, 

then X is [ce(X)+
f A3 -compact. 

1.7. Corollary. If A is an infinite cardinal and if •-

very nowhere dense subset of X is [c(X)+
f A]-compact, then X 

is hereditarily [c(X)+, A3-compact. 

Proof. It follows from 1.2 that every open subset of X 

is [c(X)+
fA3 -compact. As a consequence, X is hereditarily 

tc(X)+
f A3 -compact. O 

The special case of 1.7 for which c(X) * &> is noted by 

van Douwen, Tall and Weiss in [vDTW, p. 142} (cf. [Mff Corol

lary 3(b)3). 

For infinite cardinals u. and A with ae 4 X , we shall 

call X iso- r*e,A 3 -compact if every Tie,te3-compact closed sub

set of X is [ae,A 3 -compact. (Thus iso- [<i>, <u-l $ (X) U-compact • 

*- isooompact [Ba3f i.e. every countably compact closed subset 

of X is compact.) 

The following is an easy consequence of 1.2: 

471 



1.8. Corollary. For all infinite cardinals at and X with 

9C <, X , iso-t&e,# 3-compactness is nowhere densely generated 

in the class of all topological spaces. 

2. oc -closed-completeness and oc -compactness. Let X be a 

topological space and oo an infinite cardinal. If tfc ̂ ( X ) , <J 

has the oc -intersection property if r, A 4 0 for every h c ̂ f 

with iill<: oc , and Sf is fixed (resp. free) if o ̂  4» 0 (resp. 

c\*3 » 0). By a closed ultrafilter (resp. z-ultrafilter) on X 

we m .an a maximal filter in the lattice of closed subsets 

(resp. sero-sets) of X* and a space (resp. a Tychonoff space) 

X is oC -closed-complete (resp. oc -compact (in the sense of Herr-

lich [He])) if every closed ultrafilter (resp. s-ultrafilter) 

on X with the oc-intersection property is fixed. (Thus cu-clo

sed-complete = compact, a>-compact = compact Hausdorff, co -

closed-complete = closed-complete (= a-realcompact tDJ), and 

co -compact = realcompact.) 

A cardinal at is measurable if there exists a free ultra-

filter on (the discrete space) &e with the ae-intersection pro

perty tCNgt p. 1863. For oC an infinite cardinal, m(oc) will 

denote the smallest measurable cardinal such that oc & m( oc) 

(if such a cardinal exists; see the discussion in CCN2, p. 

203 3 and [J, A6.13). Clearly m(co) = co . 

The main resu.lt of this section is 2.4. For its proof we 

need the following three lemmas. {The easy proof of 2.1 is o-

mitted* for 2.2 see e.g. LHu3 or [R, 2.4.1.) 

2.1. Lemma. Every closed subspace of an oc -closed-com

plete (resp. 06-compact) space is oc-closed-complete (resp. 

oC-compact). 
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2.2. Lemma. A discrete space D is ac-compact if and on

ly if lDUm(oC). 

2.3. Lemma. Let A be closed in X and let W be a closed 

ultrafilter (resp. z-ultrafilter) on X with the oc-intersec-

tion property. If A meets every member of 9* (resp. and X is 

normal), then #" • \lt\ki~® C *¥\ is a closed ultrafilter (resp. • 

z-ultrafilter) on A with the oC-intersecfcion property. 

Proof. Consider the case in which X is normal, $* ±3 a 

z-ultrafilter on X with the oc-intersection property, and A 

meets every member of *& • Since A is C*-embedded in Xf it 

follows readily that &* is a z-ultrafilter on A. Suppose that 

p < oc and that C-?c)e</3 is * f*--nily of members of & . If 
n£</3 C-?c n A) » 0f then, by normality, there is a zero-set Z 

in X with n|<A ** c Z and ZriA • 0. Then for every Fe It we 

have 04FnC A . . f J c F n Z , and hence Z c <$ • But then Zn 

r\ A + 0§ a contradiction* and we conclude that ?"has the ©c -

intersection property. The other case of the lemma can be ve

rified in a straightforward way. D 

2.4. Theorem. If ©c is an infinite cardinal and if X is 

T^ (resp. normal T-,)f then the following are equivalent: 

(1) X is ec-closed-complete (resp. oc-compact). 

(2) Every closed screenable subset of X has cardinali

ty <m(oc)f and every nowhere dense closed subset of X is 

oc-closed-complete (reap* oc-compact). 

Proof. (1) *=4> (2): This is an immediate consequence of 

2.1 and 2.2. 

(2)=.3> (1): Assume that X is T-̂  (resp. normal r^), let 

9 be a closed ultrafilter (resp. z-ultrafilter) on X with 
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the oe-intersection property, and suppose that n ^ » 0. Let <J-

be a maximal family of pairwise disjoint open subsets of X 

such thatf for every G « <£. f GnP • 0 for some P G & . Since 

A J* » 0f the maximality of §. implies that X - u<J- is nowhe

re dense in X and therefore <* -closed-complete (resp. oc -comp

act). If X - u <£• meets every member of $ , then, by 2.39 

&** {Pn(X - u £ ):P € $1 is a closed ultrafilter (resp. z-

ultrafliter) on j: - u <}- with the oC -intersection property. 

But then 0 4. n 9*'c f\ &* 9 a contradiction, and we conclude that 

P*c u £ for some P*e ^ . Let <£*» <^.(P*), choose Xg* P*A G 

for each G c (£,* f and let D « i*Q*Q 6 £* i . Since cl Dc P* c 

c u £ f (J, is pairwise disjoint, and X is T-̂ , it follows that 

D is closed in X. Since D Is clearly screenable, | D|<cm(oc). 

Next, for each %C c fy 9 u36 is a zero-set in u(J- , so 

P*n(u36) is a zero-set in P*. Thus P * A ( U 3 6 ) is closed in 

Xf and if X is normal (so that P* is C*-embedded in X) f then 

P*f\(u36) is a zero-set in X. Thus we have: 

(*) Por every 9C c (# 9 P * A ( U 3 6 ) is closed (resp. a 

zero-set) in X. 

We show next that $ • {36C9.*-P*A (u36)s &} is an ul

trafilter on the discrete space £* with the «C -intersection 

property: Clearly 0 4*$ • Suppose that /3 -c QO and that 

( & C ) C C A is a family of members of $ • Since <J- is pairwise 

disjoint, Aj<< s(u36|) « u ( n~K^ 36f ). Then P*A ( U ( A | < / § 3& )) 

* n$< ft (-?*^(u^f ))*0t and hence ^c^^t*-** Next, it fol

lows from (* ) that if 36 « * and % c q* with H cX fthen 

3C « $ . Finally, suppose that 36 c (J.* with 36 ̂  $ .By 

(*), F*o(u36 ) is closed (resp. a zero-set) in X and not in 

$ , so P n -?* A ( u 36 ) * 0 for some P c T • Since ? ' c u } . , 
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it then follows that **f*c**n (O(<5-*- 36 )). By (*)» $>*r-

~ 3C e $ f and thus $ isf in fact, an ultrafilter on G* with 

the ot-intersection property. 

How l£*J a |Dl<'m(oC)f so by 2.2 there exists G c n ( • 

Since G € £ f we have G o P = 0 for some F c £* »
 a n d hence 

P n P * c F * A ( u ( ^ - 4G})). Then, by (*), Q,*- CGI « $ and 

hence G c (J,* - {G$f a contradiction. The proof is now comple

te, a 

Since a cardinal n is Ulam-nonmeasurable if and only if 

9t< m(i3->+) tCHT, 8.31]» we have: 

2.5« Corollary. If X is T-, (resp. normal ?-,)» then the 

following are equivalentt 

(1) X is closed-complete (resp. realcompact). 

(2) Every closed sereenable subset of X has Ulam-nonmea

surable cardinalityf and every nowhere dense closed subset of 

X is closed-complete (resp. realcompact). 

The realcompact case of 2.5 (see 0.2 above) is proved by 

a different technique in CBlf 43. As noted in CB1, 8(c)J f the 

hypothesis of normality cannot be omitted in 2.5* 

2.6. Corollary. If X is a Tychonoff cb-space tU)9 then 

the following are equivalents 

(1) X is realcompact. 

(2) Every closed screenable subset of X has Ulam-nonmea

surable cardinality, and every nowhere dense closed subset of 

X is real-compact. 

Proof. In view of 2.5» we need only note that every re

alcompact space is closed-complete [D. l.l6Jf every closed sub-
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space of a cb-space is cb tMlf and every Tychonoff closed-cora-

plete cb-space is realcompact CDf 1.10]. a 

2.7. Corollary. If oC is an infinite cardinal and if X 

is T-̂  (resp. normal f-^)f then the following are equivalents 

(1) The set of nonisolated points of X is ec -closed-com

plete (resp. eC-compact). 

(2) Every nowhere dense closed subset of X is oc-closed-

complete (resp. oc-compact). 

Moreover, if (2) holds and the set of isolated points of 

X has cardinality <m(oc) f then X is ec-closed-complete (resp. 

oc -compact). 

Proof. This follows readily from 2.1, 2.2f 2.4 and 1.5. D 

2.8. Remark. We note that the o-closed-complete (** com

pact) case of 2.7 implies (once again) the Katetov theorem cit

ed in the Introduction. 

3» Pseudo-( oc. afr)-compactness. Let oc and at be infini

te cardinals with 9t < oc and let Y c X. We shall say that Y is 

relatively pseuao-(ot .ac*)-compact in X if for every locally < ae 

family 11 of open subsets of Xf HUnY;u"€ U\\<tC% and that Y 

is rel atively pseudo- oc -compact in X if Y is relatively pseudo-

( ocf 6>)-compact in X. The space X is pseudo-( oc , ae)-compact 

(resp. pseudo- oc-compact) if X is relatively pseudo-(oC , at)-

compact (resp. relatively pseudo-or-compact) in itself (see 

LCN-J), (Thus Y is relatively pseudocompact in X (resp. X is 

pseudocompact) if and only if Y is relatively pseudo- co-comp

act in X (resp. X is pseudo- 6> -compact).) 
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3«,1» Theorem. Let oC and ac be i n f i n i t e ca rd ina l s with 

K, £ oc . I f e i t h e r cC i s r egu la r or 3 t < oC » then the follow

ing a re equivalent : 

(1) X i s pseudo-(oo , t*,)-compact. 

(2) Every screenable subset of X is relatively pseudo-

(oG , 9̂ )-compact in X. 

Proof. (1) »=> (2)t This implication is trivial. 

(2) «-> (1): If there is a locally <: at family 11 of non

empty open subsets of X with 1161= oc , choose $ maximal (re

lative to inclusion) such that $ is an infective function, 

(# = dom $ is a pairwise disjoint family of nonempty open sub

sets of X, and, for every G ^ f ^ , G c $ ( G ) e U and !1l(G)|< 

< ae • Then Q- is locally < K. and (by maximal!ty of $ ) % = 

= UCuQ-). It follows that 1^1= XUU(G)l: G c q~} , so the 

hypotheses on oc imply that IQ-I = I 111 • For each G & (J. , pick 

X Q S G . Clearly {X &:G e <̂ -} is screenable, but not relatively 

pseudo-( «c, ae)-compact, in X. D 

3.2. Remark. The word "relatively" cannot be omitted in 

the implication (1) *=> (2) of 3.1: The ordinal sr>ace c*>+ is 

pseudocompact, but a) is screenable in CO and nonpseudocompact. 

3.3. Corollary. If ot is an infinite cardinal and if eve

ry screenable subset of X is relatively pseudo- oc -compact in 

X, then X is pseudo- oc -compact. 

Various other corollaries can of course be deduced. For 

example, from 3.1 and 1.5 we have: 

3.4. Corollary. If X is T-. and without isolated points, 

and if every nowhere dense subset of X is relatively pseudo-
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compact in X, then X is pseudocompact. 
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