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ON THE G-SPACES HAVING AN 9> -G-CW-APPROXIMATION 
BY A G-CW-COMPLEX OF FINITE G-TYPE 

M. MARKL 

Abstract: Let G be a compact Lie group and if a set 
of G-isotropy types, i . e . a set of conjugacy Glasses of 
closed subgroups of the group G. 

In the paper the notion of an ^-G-CW-approxiaatiott 
of a Q-apace is given and the existence theorem is proved* 

Key words: Compact Lie Group, G-CW-complex, -J0-G-n-
equivalence, y--G-CW-approximation, G-Whitahead Theorem, 
Finite G-type, Isotropy Type. 

Claasifikatlom 57T99 

§ 1* Introduction* Let G be a compact Lie group 

in the paper .The terminology and notations,used in the paper, 

follow closely [4} .By a G-CW-complex we mean a G-CW-complex 

in the sense of [73.The special case of G-CW-complexes with 

a f inite group G is studied in t i l , fcl and [9] • 

Let if be a set of G-isotropy types ( a set of conjugacy 

classes of closed subgroups of the group G ).Results of [7,§ 5] 

suggest the following definition. 

Definition 1 .1 . A G-space X i s said to have a G-isotropy 

type J^,if the conjugacy class (Gx> of the isotropy group Gx 

belongs to if for each x c X . 

Nbw,let us denote Jf * [(fi^n . . .r\Hn) | (Hi)€«iP»a • 1,2,•••}• 

The system if i s said to be closed with respect to f ini te 

intersections 9 if if * if m 
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T-»1TT n,g, Lot y be e ee%of Q-ieotropy typee. 
Then: 

i) Xf the eot if ie finite,the eot iP ie finite,too. 

i i ) Xf the eot & i t eXoeed with reepeet to finite inttr-

sectione,thtn i t ie cleted with reepeet to arbitrary intereectieae. 

Scaaf: Lot H bo e oXoeed subgroup of the group Q.The aaxiaal 

torua T of the group G acta locally smoothly on the eoapoct aanifeid 

G/H ( eeo [4] ,ehopter I? ).So the eot {T^. • gHafVlT |g€ G> * 

* {H'nT |(H#) » (H)} ie finitt by Thooroa IT.1.2 in [4] .Let If be 

o finite oyetoa ,11 « |H^,...,H^} ,containing oae group froa eech elaaa 

ia tf.Tkm oyetoa (B.Jn . . . n * j n ...nH*n...nfif nT I (H*) - (H4)} 
auet be finite by the prerioue not a .By the Hoetow Thooroa [2, page 94] 

the oyetoa {(i^n...niljn ...ru£n...nil£) I (H*) » (H1)} ie finite, 
too.Thie proToe the port i ) of our Xeaaa. 

let (H-)e»y,rf€A.Thtn there ie e eequenee <*,, . . . ,«*€ A such 
* a a 

that dia( MHrf> " dia(nHof >»*»©tt L • C\*<* •»-«» *orrf€A 
*€A 1 ^ i X °"i 

the nuaber of coaponente of LAS^ <the number of eoaponoate of L. 
So there ie e eequenee £i>-*#»r**€ * •ttCtt t a * t f^H«C* 

* Htl > X Pi • LГU O н ћ . Л 
q.t.d. 

.Defin|^^op }Tfr_, Let n be e poeltiTe integer Un equiToriant 

aap f :X—»X of Q-apacea ie celled on y-Gh-n-equiTelence ,if the indu­

ced aep T^tX~-+?r ie an n-equivalanct ia the eoaee of D-X,pege 404] 

for eaeh H with (H)£ jt*.An equivariant aep of G-epecee ie ceXXod 

an Ĵ -G-wtak hoaotopy equlToXenee ,if i t ie on ^-Q-n-equivalence 

for each n. 

Xf the eyotea if containe eon/jugaey cXoeeee of e l l closed 

eubgroupe,en #-G-weak oquiTaXence will be ceXXod simply a G-week 

hoaotopy equlToXenee. 

1.4. Let X end X be Q-apacte hoTing a Q-itotropy type <f. 
Lot en equiTarient map f :X—*Y be a jft-O-veak hoaotopy equivalence. 
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Then it is a G-weak homotopy equivalence. 

Proof: Let us denote L • frfe'cy.H'b l] .Then L€$* and we have 

the following commutative diagram: 

XH se». yH 

XJ L. 

q*e«4# 

Inalyslng proofs in [7] ,we obtain the following two theorems. 

Thoorom 1.5. Let f sX—•X bo an equivariant map of G-opaooe* 

Then f i s an :/-Gnu-equivalence i f and only i f the induced map 

f|s(K|Z]g ^[K;X1Q 

ia Directive tor every G-CW-oomplex K of the G-isotropy typo IP 

with dirn̂ CK) <n and aurjectlve fbr every O-CW-complex K of the 

O-ieotxopy type if with dim^KXn. 

Thoorom 1.6. Lot f iX—*»X bo an eqttivariant map of O-opaooo, 

whore both X and X have G-homotopy typo of a G-CW-complex 

of the G-isotropy type Ĵ » 

Then f i s a G-homotopy equivalence i f and only I f i t io 

an iî -G-weak homotopy aquivalonce. 

Theorem 1.6 and Lemma 1.4 givo rioo the following eqttivarimmt 

version of J.H.C. Whitehead Theorem. 

Thoorom 1.7. Let X and X bo G-spaces having a G-isotropy 

typo .y.Let X and X have G-homotopy type of a G-CW-complex. 

Than an equivariant map f :X—>Y ia an jP-G-weak homotopy 

equivalence i f and only i f i t i s a G-homotopy equivalence. 

§ 2. Main Thoorema. In the view of the previous note 

i t seems to be natural to introduce the following notions. 

•Definition 2 . 1 . Let X be a G-spaco#-*n ^--0-CW^pproxi»atiift 

of the space X i s a G-CW-comjaax X of the O-iootropy type ? 

543 -



together with an <JP-G-weak hoaotopy equivalence f :X—*X. 

If iP consists of a l l con/jugacy classes of closed subgroups 

of the group G,an i^-G-CW-approxiaatlon wi l l be called simply 

a G-CW-approxiaation.The following proposition follows from the defi­

nit ion. 

Imposition 2 .2 . Let f:X—*X and f':X —*X be two ^-G-CW-

approxiaationa of the apace X. 

then there i s a G-hoaotopy equivalence giX—>x' such that 

f i s G-hoaotopic with f og . ln addition,the G-hoaotopy class of g 

i s uniquely determined by the G-hoaotopy classes of f and f'. 

We are going to prows the following theorem in the paper. 

Theorem 2 .3 . Let X be a G-space of the G-isotropy type &* 

Let the following two conditions be satisf ied: 

1) Ibr (H)€ IP the space Xs has f initely many components, 

the groups Of-JX3,:*) are f ini te ly generated Abelian or f ini te 

and the groups 0T, (X1*,*) are f initely generated for i s 2 , 5 . . . 

i i ) There are f ini te sets ^ C ^ C . . . j'1C...Cy> 

of G-isotropy types,closed with respect to f in i te intersections 

such, that: 

For n • 0 , 1 , . . . and (H)€$ there i s H'D H,(H')C ^ a n d , 

i f we denote L * H [ H ' | ( H ' ) € J ^ , H ' D H } ,the inclusion Yh<^^ 

i s an n-equivalence of topological spaces. 

Under these two conditions there is an i^-CW-approxiaation 

f:X—**X,where X is a G-CW-coaplex of f inite G-type. 

The theorem wi l l be proved in the following paragraph. 

Wt can show,making use of the Mo a tow Theorem, that the following 

two conditions are equivalent with the con t i t ion i l ) of Theorem 2 .3 . 

i i ' ) There are f inite sets X f t , 3 ^ f . . . , j C ^ . . . C $ > 

of G-isotropy types,closed with respect to f in i te intersections, 

such,that: 
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For n * 0 , 1 , . . . and (Hjej^ there i s H^Ht(H*)c3C and. 
n * 

i f we denote L * H { H ' K H ' K ^ . H ' D H} ,the inclusion YLq; ^ U 

an n-equivalence of topological spaces. 

i i " ) There are f ini te sets *3 , t/ . , , . . . f IL, . . .*-- <P 

of G-isotropy types,closed with respect to f in i te intersections, 

such that: 

I) If (H)€ y ,then there i s H ' 3 H with (H')€ t ? n such that 

inc l^ : (FTn(Y
H , *)—SMT^Y1*,* ) i s an epimorphism. 

II) If (H*)€ Vn and (H)€<£ with H b H are such that 

incl^ : 0Tn(YH ,*)~^•QTn(YH
f*) i s an epimorphism,then there i e 

(H")€ Vn r i th H D H ' b H such that fgerCinclfl : OLC*11 , * ) — 9 » 

^(]Tn(YH ,*)) - - K e r ( m c l # : C.Tn(YH',* ) ^ 0 y x H ' , # ) ) • 

Corrolarv 2y4. Let X be a space,having the G-isotropy 

type # L e t the space X satisfy the conditions i ) and i i ) of 

Theorem 2.3 with OT^x1*,*) f inite.Let the G-space X have a G-

homotopy type of G-CW-complex.Let (x,y) be a point of XxX and 
l e t us denote L * G HG • x y 

Then the loop space -XL y\Cx) * i l (X) i s endowed with 

the natural structure of the L-space of the L-isotropy type J^HL, 

where J ^ L denotes the set {(HOL) I (H)€#}«The space i l (X) has 

L-homotopy type of an L-CW-complex of a f in i te L-type* 

Proof; Theorem 2.3 gives r ise an ^--G-CW-approximation 

f :Y->X of the space Xfwhere Y is a G-CW-complex of f in i te G-type» 

For the space X has the G-homotopy type of a G-CW-complex,the equi-

variant map f is ,by G-Whitehead Theorem,a G-homotopy equivalence* 

So X has G-homotopy type of a G-CW-complex of f ini te G-type. 

fbr L^H we have (fl(X))H =- H(XH).Using the exact homotopy 

sequence of the fibration Ji<XH)—>P(3?>—^X*1 we can verify that 
«%» 

X1(X) 8atisfie8,as an L-space of the L-isotropy type J^f\Lfthe con-
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d i t ions of Theorem 2.3 ( the role of the set iP± plays her© a set 

y i n H L ) . 

By r8lfJfr(X) has the L-homotopy type of an L-CW-coaplex. 

The Q-Whitehead Theorem completes the proof. 

q.e .d. 

§ 3 . Proof of Theorem 2 .3 . We assert that in order to 

prove Theorem 2.3 i t suffices to construct the following sequence of 

Q-CW-comp*laxea Xn ( n =- 0 , 1 , . . . ) and e qui variant mappings 

f||:Xn—*X-having the following properties: 

i ) X̂  i s a Q-CW-complex of the Q-isotropy type iP and 

tuiXg-~*t i s an ^-n-O-equivalence, 

i i ) ' X ^ ^ S * *a * n d • a c n *h U * f l n i t e G-CW-complex, 

*"> W** - V 
Let us put X » U 3 ^ *** l e t ue define f :X-*X by f(x) * f (x) 

a " 
fbr » 6 \ * 

We have to prove that f i s an JP-G-weak homotopy equivalence. 

Suppose that (H)€ JP and l e t n be an integer .Let L = H { H ' I 

(H#)€ y n + 1 > H ' 3 f i } .Because X ^ has the G-isotropy type iPn+19 

we have ( X ^ ) * » i^)*. 

By f7] the map i i i c l | : ^ ( ( X ^ ^ ^ , * ) - ^ 0 T n ( X H , * ) i s 

an isomorphiam.Tha map inc la : 0 T n ( Y L
f f ) — - ^ ( Y 1 * , * ) is an Iso­

morphism by 11) of Theorem 2.3.He nee the following diagram 

competes our proof. 

xn*X% | ~ -n+i» } —' 

шn(ïL, *) ~ *. gг (łH, 4) 
iлcX, » 

We will need the following lemmas In our construction. 
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Mwm 3.1., I«et G b n compact J*i© group *nd *- ante H be I t s 

closed subgroups* 

tyier t*-̂  «pac# (G/H^K *•*« the howotopy type of a f in i te 

CW-eontpXex, 

Proof: The group K acts locally smoothly on G/B [4 ,VI.2.4]. 

Hence,by [4,1*.3.33 »the space (G/H)K is a coapact topological 

manifold.The reet of proof follows froa [6,page 744] . 

q.e.d . 

Leaaa 3.1,the G-cellular Approxiaation Theorem [7] and 

hoaotopical properties of attaching [10,chapter 2.33 allows us 

to prove the following leaaa. 

Lemma 3.2 . Let G-CW-coaplex X have only f in i te number 

of G-cells.Then the space A has the hoaotopy type of a f in i te 

CW-coaplex for each closed subgroup H of the group G. 

Leaaa 3 .? . Let Z be a connected CW-coaplex of f inite type, 

l e t GT,(Z,#0 be f in i te ly generated Abelian or f inite groups and 

l e t OT^Z,^) be f inite ly generated groups for i = 2 , 3 , . . . , x - l . 

Then the groups 3L(Z 9 $ ) are f initely genrated (fi^CZ,^.)-

aodules• 

Proof; Let the group GL(Z t£) be f in i te ly generated Abel**** 

Let us take the universal covering space Z of the space Z.Hk(Z) 

i s f ini te ly generated ^ ( Z , ^ )-aodule,beceo»e Z has f in i te ly a*ny 

ce l l s in each d la en s i on and ?( ^ ( z , ^ ) ) i s a Noetherian ring* 

Let us denote C the class of f in i te ly generated Abelian groups. 

Making use of the Generalized Hurewicz Theorea modulo C ( • • • C**"» 

we obtain,that 0Tk(Z,$) * GI^Z,*) i s C-isoaorphic to \&). 

Hence 0-^(Zf#> is f in i te ly generated ^ ( Z , ^ )-nodule. 

I f the group ^ ( Z , ^ ) i s f inite ,the universal covering apa^e 

Z contains only f initely many ce l l s in each dimension,so Hk(Z) 

is a f initely generated Abelian group. 
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The rest of the proof follows froa the Generalized Hurewicz 

Theorem aodulo C in the case. 

q.e *d© 

3.4* Let vF be a set of G-isotropy types and l e t M be a set 

of closed subgroups of the group G containing one group froa each 

class in \T .Let,for H€Mf{yrj i € jH be a set containing one point 

froa each coaponent of the space i .Let f :X~>Y be an equlvariant 

aapfwhich,for any J generates the isoaorphiaa f^ : CT.(X , . # ) — > 

"*vTj(Y^ ff(^)) for each H€M and * € {yj]• 

Then the aap f induces the isomorphisa for each H with (H)cjr9 

and^€YH . 

3.5. Let us consider the situation,described in Theorea 2 .3 . 

Let,fbr n - 0 ,1 , . . . ,M be a set of closed subgroups of the group G, 

containing one point froa each elasa in ^ • * ® c a » suppose that 

M CMjC . . . C \JUn » M.Let .!yi}i€IH be,for H€M,a set containing 

one point froa each component of the space Y .̂By i i ) of 2.3 we can 

suppose that fy^} i g jHC { y ^ } i € jH' for suitable H'c MQ.SO we can 

8upposefby i ) of 2#3,that the eystea {y^} i € jH i s f inite for 

each H€M.Now,we are able to construct our sequence. 

3 .6 . Let us put XA • O (CG/H) x hf\)9 
0 H€MQ

 c iJ 

i^iH 

x? * (•Hfyi),where e denotes the unit of the group G,and let us 

define f0:X0—»Y by fQ(gxJ) * gyf. 

3.7 . Let us consider relations of the following kind; 

Let a =- (gP,y£) and b * (hQ,y^) ,PfQ€MQfbe points of the space X** 

for any H€ M.. such that fQ(a) and f0(b) belongs to tfca saae compo-

nent of the space I • 

Let us define (P:((G/H) x ai)~>X0 by if>(fcH,0) * (kgPfy£) 

and lf>(kH,l) » (kHQ,y^).The space ((G/H) x DUffi ±B then 

well defined. 
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We can ̂ed'jct by finitness of the systeas MQ and M^ that 

we obtain,ftttachine finitely aany those relfttinns,the sp«ce XQ 

such,that tlv* clear extension f^Xr—-*Y induces the isoaorphisa 

of the coapoaents of the spaces (XQ) H and x fbr HCM-,. 

Let,for H€Mlfbe J? the finite systea of generators 

of (JL (r,y^).Elements of the systea are represented by aappings 

<^:(S^c,8^)-~>(Y
H,y5[).Let us put 0** « 0H((G/H) x S^) *nd 

let us define * 

Let X-. be the space obtained froa X' by attaching the spaces 07 

by those a«ppings.$he extension *V*X—** ie clear .We can verify, 

that the object satisfies our conditions. 

3.8. Let us suppose that we have already constructed the 

sequence of spaces and mappings f,:Xr->Y for i4 k. 

We assert that,for H€Mk+1,Ker(fk#: CFTk(X^,#)—^GT^Y
1*,-*)) 

is finitely generated GT^X^,* )-aodule for k>2 and finitely gene­

rated subgroup for k =- 1. 

The case k = 1 is clear.Indeed,the groups (Jt,(X?,^) are 
H 

finitely generated, because the space X" has the homo topy type of 

a CW-coaplex of a finite type. 

If the group OT^y**^) is finite,the kernel is,as a subgroup 

of a finitely generated group with finite index,finitely generated, 

too ( see [5j,chapter VII,2.1 ). 
/"IT H 

I f vL(X , $ ) i s f ini te ly generated Abeli«n group,we c«n suppose 

th«t ^ i ^ t $ ) ie an Abellan group,too.In the opposite case we 

attach f initely aany G-2-cells to k i l l the coamutators of the set 

of generators of the group QL (X**, #).Hence Ker f̂  is ,as a 

subgroup of the f ini te ly generated Abellan group,also f in i te ly 

generated .By Lemma 3.2 the space XjJ has the hoaotopy type of a f in i ­

te CW-coaplex for k^2.By Lemma 3.3 the groups 0Tk(X^,#) are 
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finitely generated (^(X^-*)-«odule8.Because ^ ( ^ ( X j , 5(F)) is 

a Hoetherian ring,we obtain our assertion. 

3o9. Let,for H C M ^ ^ C ^ denotes the system of generators 

of Ker(fk#: Wki^9J[)--*><Xk{lP9vf)) as a 2(0T1(X
H,x^))module 

for k^2 and as a normal subgroup for k - l.By 3*8 the systems 0? 

are finite .Elements of C H are represented by mappings fe :(SK fs* ) " 

—^(X^,ac^).Let us put R*1 • X)u((0/H) x Bk£l) and let us define 

(pj: S R ^ - ^ by ^ ( g H , s ? ) -*(|3(sp». 

Let x' denote the space,obtained by attaching the spaces R£ 

by those mappings .She definition of the extension *fc:Xi£~"** 

is clear. 

In the following commutative diagram 

GLííx;,)11,*?)-s OLíÆ-f) 
* ^ * łncЦ Jť 

f 4 $kvP,# *5# 
the mapping inclk la an epimorphlsm ( see Theorem 4.15 in f7j). 

This fact implies,similarly as in the chapter 5.2 of f 12,],that 

% ( ( X k ) H , x f ) ^ ^ ( ^ y f ) f o r H C M ^ 

The space X ^ and the map fk+1 i s obtained from Xk and fk similarly, 

as in the end of 3.7.This completes our construction. 

q.e.d. 
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