## Commentationes Mathematicae Universitatis Caroline

## Erich Miersemann <br> On higher eigenvalues of variational inequalities

Commentationes Mathematicae Universitatis Carolinae, Vol. 24 (1983), No. 4, 657--665

Persistent URL: http://dml.cz/dmlcz/106263

## Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1983

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.


This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

# ON HIGHER EIGENVALUES OF VARIATIONAL INEQUALITIES E. MIERSEMANN 

```
    Lbstract: A new oriterion for the existence of eigenva-
lues of a class of unilateral eigenvalue problems is given.
    Zey words: Variational inequalities, eigenvalue problems,
plate buckling.
    Classification: 49H05, 73H1O
```

1. Introduction. Let $H$ be a real Hilbert space and $K C H$ a closed and convex cone with its vertex at zero, that is, a set such that $t u \in K$ for all $t>0$ and for all $u \in K$. Furthermore, we assume that $K$ is nonempty.

By $a(u, v)$ and $b(u, v)$ we denote bounded, real and symmetric bilinear forms defined on H.

In this paper we make the following assumptions:
(1) There exists a $c>0$ such that $a(v, v) \geq c\|\nabla\|^{2}$ for all $\nabla \in H$, and
(2) $b(u, v)$ is completely continuous on $H$.

We are interested in the eigenvalue problem for the variational inequality
(3) $u \in K: a(u, \nabla-u) \geq \mu b(u, v-u)$ for all $\nabla \in K$,

Where $\mu$ is a real eigenvalue parameter. That is, we look for nontrivial solutions $u$ of (3) and for associated eigenvalues.

In [3,4], there was proved that the problem (3) has inilnitely many eigenvelues if for the eigenvectors of the equation (4) $u \in H z a(u, v)=\lambda b(u, v)$ for all $v \in H$
certain conditions are fulfilled. Partioularly, one has to agsume that infinitely many eigenvectors of (4) lie in the interior of the cone $K$.

There exist also higher eigenvelues if no eigenveotor of (4) belongs to the cone, of. $[8,9]$. An application to the clamped oim cular plate is given in [10].

For further results, applications and references with reapect to (3) see [2,11]. We mention that in [5], there was first prored a result for the nonsymmetric case.

In this paper we give a variational approach for the proof of existence of eigenvalues of the inequality (3). Purthermore, one obtains lower and upper bounds of these eigenvalues if the eigenvalues of the equation (4) are known.

To simplify the presentation, we consider here the problem (3) which is linear with reapect to the operators. The results atay true for nonlinear problems of type
(5) $u \in K:\left(f^{\prime}(u), v-u\right) \geq \mu\left(g^{\circ}(u), \nabla-u\right)$ for all $v \in K$.

Here $f^{\prime}, g^{\circ}$ are the first Gâteaux derivatives of functionals $f$, $G$ defined on H. Under certain assumptions for $\mathcal{f}, G, c f_{\text {. }}[8]$, the eigenvalues which we obtain, are also points of bifurcation of associated nonlinear inequalities of type (5) if we assume that (3) is the innearization of (5).

In the case of equations it was proved in [1] under suitable assumptions that eigenvalues of the linearized problem are also points of bifurcation and vice versa.

For variational inequalities one can cheak easily under cert－ ain asaumptions on $I$ and $g$ that a point of bifureation is aleo an eigenvalue of the asmoiated linear problem．But not every eigenvalue of the linear problem is a point of bifureation，as the following easy example ahows．

Set $f(x)=1 / 2 x_{1}^{2}+x_{2}^{2}-x_{1} x_{2}^{2}, g(x)=1 / 2\left(x_{1}^{2}+x_{2}^{2}\right)$
where $x=\left(x_{1}, x_{2}\right)$ and $K=\left\{x \in R^{2} / x_{1} \geq 0\right\}$ ．The mamber $\mu_{0}=$ is an eigenvalue of the asmociated linear problem（3）with $a(x, y)=x_{1} y_{1}+2 x_{2} y_{2}, b(x, y)=x_{1} y_{1}+x_{2} J_{2}$ ．One can aasily cheak that $\mu_{0}$ is no point of bifurcation of（5），that means， there does not exist a sequence of solutions $x^{(n)} \neq 0$ and asso－ ciated eigenvalues $\mu^{(n)}$ of（5）such that $x^{(n)} \rightarrow 0$ and $\mu^{(n)} \rightarrow$ $\rightarrow 2$ as $n \rightarrow \infty$ ．

2．Some known reqults．We assume that the equation（4） possesses at least $n+1$ positive eigenvalues $0<\boldsymbol{\lambda}_{1} \leq \boldsymbol{\lambda}_{2} \approx \ldots$ $\ldots \leq \lambda_{n} \leqslant \lambda_{n+1}$ ．Let $u_{1}, \ldots, u_{n}, u_{n+1}$ be the asaooiated eigen Fectors which are orthonormal with rempect to $a(u, v)$ ． Set $E_{n}=$ linear mull $\left\{u_{1}, \ldots, u_{n}\right\}$ and $B_{n}^{s}=\left\{u \in E_{n} / a(u, u)=s\right\}_{\text {．}}$ $0<m<\infty$ ．By $P$ we denote the projection operator of $⿴ ⿱ 冂 一 ⿱ 一 一 厶 儿$ onto $E_{n}$ which is assumed to be orthogonal with respect to $a(u, v)$ ．

Definition 1 ［1］．The set $A$ is said to be contractible within a set $R$ ，if there existim a homotopy $H(t, u), 0 \leq t \leq 1$ ， $u \in A$ ，such that $H(0, u)=u, H(t, u) \in R$ for all $0 \leqslant t<1$ and for all $u \in A$ ，and $\{H(1, u) / n \in A\}$ consists of one element of $R$ ． Set $K^{s}=\{\nabla \in K / a(\nabla, \nabla)=m\}, 0<B<\infty$ ．

Definition 2 ［8］．I is the class of all compact sets FCH such that
a) $P \subset X^{1}$.
b) there exiate an $\alpha>0$ such that

$$
\min _{u \in F} b(u, u) \geq \lambda_{n+1}^{-1}+\infty
$$

where $\alpha$ doea not depend on $F$,
c) Fis not contractible within the set $R=\{u \in H / P u \neq 0\}$.

This definition of $N$ depends on $n$. Here we have used slightly different notations as in [8], in particular, Definition 5.1 b) in [8] was changed.

If $I \neq \phi$, then there exista $u$ such that

$$
b(u, u)=\sup _{F \in N} \min _{w \in F} b(w, w) \text {, }
$$

which is also a solution of the variational inequality, of. [8]. The proof is based on the topological technique due to Erasnosel'skil [1]. More preelsely we have the

Theorem. Asame $N \neq \emptyset$, then there exdeta an eigenvalue $\mu_{n}$ of the inequality (3) with

$$
\lambda_{n} \leq \mu_{n} \leqslant \frac{\lambda_{n+1}}{1+\alpha_{n+1}}
$$

Furthermore, if the eigenapace to $\lambda_{n}$ does not belong to the cone $K$, then there exista an eigenvalue $\mu_{n}$ of (3) auch that we have $\lambda_{n}<\mu_{n}$ in the previous inequality.

The second assertion of the Theorem says that one obtains in this general case an eigenvalue of the variational inequality which is not eigenvalue of the associated equation (4). The inequality $c \geq \lambda-1, \lambda_{n+1}^{-1}+\infty$, where $c=b(u, u)$, follows directiy from our definition of N. The eatimate $c \leqslant \lambda_{n}^{-1}$ one obtaing in the same manner as in [8]. Since $c=\mu_{n}^{-1}$, of. [8], we get the inequality of the Theorem.

One sufficient condition for $H+\emptyset$ was given in $[8,9]$ s
Iet $H_{1} \subset H$ be a clesed mbepace with $H_{1} \subset K$. We consider the equation
$u \in H_{1}: a(u, \nabla)=K b(u, \nabla)$ for all $\nabla \in H_{1}$
and assume that there exist at least $n$ positive eigenvalues.
Lemma $1[7,8]$. If $K_{n}<\lambda_{n+1}$, then $\mathbf{H} \neq \varnothing$.
3. A new oriterion for $I \neq \emptyset$. Set
$u^{1}=\left\{u \in E_{n} / a(u, u) \leq 1\right\}$ and $\nabla=\left\{v \in E_{n}^{1} / u+\tau \in K\right.$ for all $\left.u \in M^{1}\right\}$ where $E_{n}^{1}$ is the orthogonal complement to $E_{n}$.

Lemma 2. We have $H \neq \emptyset$ if the following assumptions are fulfilled: 1) There exista a $V \in E_{n}^{\frac{1}{n}}$ with $u+v \in K$ for all $u \in M^{1}$. 2) There axists a $\eta>0$ such that

$$
\lambda_{n}^{-1}-\lambda_{n+1}^{-1} \geq \eta+\min _{v \in v}\left(\lambda_{n+1}^{-1}+\eta\right) a(v, \nabla)-b(v, \nabla)
$$

Proof. Observe first that for an arbitrary fixed $\nabla \in V$

$$
\begin{aligned}
& F=\left\{\frac{u+\nabla}{\sqrt{a(u+v, u+\nabla}} / \text { for all } u \in E_{n}^{1}\right\} \text {, where } \\
& E_{n}^{1}=\left\{u \in E_{n} / a(u, u)=1\right\} \text {, is not contractible within } R \text { sin- }
\end{aligned}
$$ ce $\mathrm{E}_{\mathrm{n}}^{1}$ is within $R$ homotopically removable in $F$ by the homotopy $H(t, u)=\frac{u+t \tau}{\sqrt{8(u+t v, u+t v}}, 0 \leqslant t \leq 1$ 。

It remains to show that b) of Definition 2 is fulfilled under the assumptions of Lemma 2. Set

$$
w=\frac{u+v}{\sqrt{2(u+v, u+v)}}
$$

We get
$b(w, w)=\frac{1}{1+a(v, v)}\{b(u, u)+b(v, v)\} \geq \frac{1}{1+a(v, v)}\left\{\lambda_{n}^{-1}+b(v, v)\right\}$.
The leman is proved if there exieta a $V \in V$ mach that

$$
\begin{aligned}
& \frac{1}{1+a(v, \tau)}\left\{\lambda_{n}^{-1}+b(v, v)\right\} \geq \lambda_{n+1}^{-1}+\eta \\
& \text { 'he last inequality can be written as } \\
& \lambda_{n}^{-1}-\lambda_{n+1}^{-1} \geq \eta+\left(\lambda_{n+1}^{-1}+\eta\right) a(v, v)-b(v, v) .
\end{aligned}
$$

Thore exists a solution of the minimum problem in b) since $V$ is closed and comvex and aince we have

$$
b(\nabla, v) \leqslant \lambda_{n+1}^{-1} a(v, v) \text { for all } \nabla \in F_{n}^{\perp}
$$

relying on

$$
\lambda_{n+1}^{-1}=\max _{V \in E_{m}^{1} \backslash\{0\}} \frac{b(V, V)}{a(V, \nabla)}
$$

Cosollary. Aasume that $\lambda_{n+1}$ has the multiplicity $p$, that 1s, we have $\lambda_{n}<\lambda_{n+1}=\ldots=\lambda_{n+p}<\lambda_{n+p+1}$. Purther wo agsume that for an eigenvector $\nabla_{0}$ from the linear hull $\left\{u_{n+1} \ldots\right.$ $\left.\ldots, u_{n+p}\right\}$ the inclusion $u+\gamma_{0} \in K$ is true for all $u \in M^{1}$. Then $\mathrm{II}+\varnothing$.

Proof. By setting $V=V_{0}$ into the right hand side of the inequality of Lemma 2 we obtain

$$
\eta+\left(\lambda_{n+1}^{-1}+\eta\right) a\left(\nabla_{0}, \nabla_{0}\right)-\lambda_{n+1}^{-1} a\left(v_{0}, \nabla_{0}\right)=\eta+\eta a\left(\nabla_{0}, \nabla_{0}\right) .
$$

The inequality in 2) of Lemma 2 is fulfilled for a sufficientis small $\eta>0$ ance we have assumed that $\lambda_{n}<\lambda_{n+1}$. Q.E.D.

The corollary covers some results of M. Kučera $[2,3,4]$ concerning the symmetric case. It follows from this corollary that there exist eigenvalues of the variational inequality (3) which are not eigenvaluea of the
corresponding equation, if eigenveotors lie in the interior $\mathbf{x}^{\boldsymbol{0}}$ of the cone $K$.

Dr. M. Kučera pointed ores to me that the asaumptions of Lemma 2 are also satisfied if there exists an eigenvector $\gamma_{0} \epsilon$ $\in \partial K$ (the boundary of $K$ ) correaponding to $\lambda_{n+1}$ and there axIsts $\nabla_{1} \in K^{0} \cap \mathbb{E}_{n^{0}}^{\perp}$ This follows wince (1-t) $\nabla_{0}+t \nabla_{1}, 0<t<1$, 'men tisfies 1) and for $t$ small it satisfies also 2) of Lemma 2.

In order to illustrate the Theorem we consider a problem for the clamped oiroular plate [10]. Let

$$
\Omega_{R}=\left\{x \in R^{2} / x_{1}^{2}+x_{2}^{2}<R^{2}\right\}, 0<R<\infty,
$$

and $K$ the cone
$K=\left\{v \in H_{2,2}\left(\Omega_{R}\right) / V(x) \geq 0\right.$ for $x \in \Lambda, V(x) \leqslant 0$ for $\left.x \in B\right\}$.
By A, B we denote subsets of the annulus

$$
\left\{x / R_{1}<\left(x_{1}^{2}+x_{2}^{2}\right)^{1 / 2}<R\right\}, 0<R_{1}<R .
$$

The compressive forces are acting in the inner normal direction. The inequality modelling this problem is given by
$u \in K: \int_{\Omega_{R}} \Delta u \Delta(v-u) d x \geq \lambda \int_{\Omega_{R}}\left\{u_{x_{1}}(v-u)_{x_{1}}+u_{x_{2}}(v-u)_{x_{2}}\right\} d x$ for all $\boldsymbol{V} \in \mathbb{K}$. Let $\tau_{n}$ be the zeros of the Bessel functions $J_{\mu}(x), \mu=1,2, \ldots$, which are ordered according to their magnitudes $\tau_{1}<\tau_{2}<\ldots$ $\ldots\left(\tau_{1}=3.832, \tau_{2}=5.136, \tau_{3}=6.380, \ldots\right)$.

From the Theorem and Lemma 1 it follows, provided $A \cup B \neq \varnothing$ and $\tau_{n} / \tau_{n+1}<R_{1} / R$, that there exists an eigenvalue $\lambda_{n}$ of the above variational inequality with $\tau_{n}^{2} / R^{2}<\lambda_{n} \leqslant \tau_{n}^{2} / R_{1}^{2}$.

From Lemma 2 it follows that there exiat infinitely many eigenvalues which are not eigenvalues of the associated equation, if $A \quad B$ is a nonempty set of finitely many pointa of $\Omega_{R}$.

This result obtained al so M. Kučera [3.4] from his theory of vem riational inequalities based on a penalty technique.

I would like to thank Dr. Milan Kucera for several disoussions from which note was initiated and for helping me to clam rify the presentation of this paper.

Referencea
[1] M.A. KRASNOSEL'SKII: Topological methods in the theory of nonlinear integral equations, in Russian, Moscow 1956.
[2] M. KUČERA: A new method for obtaining eigenvalues of variam tional inequalities. Branches of eigenvalues of the equation with the penalty in a special case, Casopis pro pěstování matematiky 104(1979),295-310.
[3] - - - A new method for obtaining eigenvalues of variational inequalities based on bifurcation theory, Časopis pro pěstování matematiky 104(1979),389-411.
[4] - - : 4 new method for obtaining eigenvalues of variam tional inequalities: Operators with multiple eigenvalues, Czechoslovak Math. Journ. 32(107)(1982), 197-207.
[5] - - - Bifurcation points of variational inequalities, Czechoslovak Math. Journ. 32(107)(1982), 208-226.
[6] M. KUČERA, J. NEČAS, J. SOUČEK: The eigenvalue problem for variational inequalities and a new version of the Ijusternik-Sohnirelman theory. In: Nonlinear AnaIysis, Academic Press, New York-San FranciscoLondon, 1978.
[7] E. MIERSEMANN: Verzweigungsprobleme für Variationaungleichungen, Math. Nachr. 65(1975), 187-209.
[8] - - : Uber höhere Verzweigungspunkte nichtlinearer Variationsungleichungen, Math. Nachr. 85(1978), 195-213.
[9] E. MIERSEMANN: Höhere Eigenwerte von Variationsungleichungen, Beiträge zur Analysis 17(1981), 65-68.
[10] - - - Ein Beulproblem für die eingespannte Kreisplatte mit Unterstützungen, 2 . Angew. Math. Meoh. 57(1977), 717.
[11] - - : Ejgenvalue problems for variational inequalities. In: Contemporary Mathematics Vol. 4(1981) 25-43, Providence, Rhode Island.

Sektion Mathematik, Karl-Marz-Universität, DDR-7010 Leipzig, Karl-Marx-Platz
(Oblatum 6.9. 1983)

