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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
24,4 (1983)

COMPACTNESS AND HOMOGENEITY
OF SATURATED STRUCTURES |
J. MLCEK

Abstract: Ve investigate 51-saturated models of power
¥qe In such a structure we define, using monads, some topolo-

gies, To clear up some relatioms among these topologies we im-
troduce a notion of homogeneity of structure. This notion of
homogeneity is comnected with the existence of certain types
of automorphisms-. of the structure in question. The mentioned
notions give us possibilities to study some typical syntactic
problems, e.g., to decide whether a given theory is complete,
what functions or predicates are undefinable in it and whether
every formule is equivalent to a formula of a certain form.

Key words: Saturated models, totally disconnected relati-
on, homogeneous structure, isomorphism, undefinability.

Classification: 03C50, 03C65

Introduction. We work with ¥,-saturated models of power
¥4 for a countable first-order languege L. Having such a model
A we_define for every kz1, ¥¢ Form; and C £ A\, the relation

k
A
‘Lc- on [A)E;

{8y 4ene ,Ji_.g(b, yeresby) 1f2

Ahv(a,,...,ak,o“...) «> w(a,,...,ak,c1...) holds for every
\r(x1,...,xk,y1,...)e’9' and ¢q4..0 €Co

On the assumption that C is at most countable, we prove a com-
pactness principle for these relations. To clear it up, the
L(C)-definable classes of lAlk can be geen as clopen sets in a

compact topolosv of 1ALk, the neighbourhood generating system
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of a point a€ |AIX of which has the form {X < |Al%: X 1s L(C)-
definable in A samd ~. " {a}lcX}. We deduce from this compact-

ness principle and from the equality
¥ o Yorm, ,u¥
(x) =7 = =%
that every L(C)-formula 9:(11 ,...,xk) is equivalent in A to a
boolean combinatiom of formulas from ¥(C),

We give a notion of ¥ -homogeneity of a structure A such
that for every structure A havimg this property, the relations
() are satisfied for all k=1, Note that our netion of homo-
geneity is connected with the existence of certain automorph-
isms on A. We present a oriteriomn of honogeioity in § 3.

We can prove, as a comsequence of our imvestigations, that
the theory of real (algrebraically resp.) elosed fields and
Presbourgher arithmetic are complete. These results are presen-
ted in the part II of this article, We discuss there some que-
stions of umdefinability in models of Presbourgher arithmetic,
too, We prove, e.g., that in the "additive part" At ot & given
model of Peano arithmetic, the predicate "x is prime"™ is not
definable.

These investigations have been inspired by the possibili-
ties which afford the univerase of the alternative set fheory.

§ 1. Preliminaries. Writing L we mean a countable first-

order language (with = ), If AkL and C& |A| we denote by L(C)
the language Luf{gcioce C}, where ¢ is a new constant symbol for
c. We expand A to the atructure (A,c?c for L(C). If there is
no denger of confusion we shall write A instead of {A,c )c.
Let § be a class of formulas of L. We shall sometimes denote
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this fact by the symbol & < L. We shall uee &,¥,V, 3 ,...
as names for an arbitrary set of formulas. $(C) is the set

of all formulas of L(C) of the form ¢(gq,e..,8,), Where
@(XyeeeyXy) 6 § @nd xy,0..,x are the 1ist of some free va-
riables in ¢ . Ve use Q(k) to denote the set {¢& P : @ haa
exactly k free variablesj.

We now come to an extremely important convention. By a se-
turated model for L we mean an 51-saturatod model for L of po-
wer Yiy.

Let AL and suppose L4 is an I-formula with exactly k>1
variables.

yia¥) ={{ayyeee, > 6| 4150 = y(a, seccsm)ie

Suppose ¥g Porm;. Then we put

bool(¥) ={y: ¥ is a boolean combination of formulas

trom ¥}

(YY) =sWiy:sye ¥}
and v (¥) = {y: y 1s a finite disjunction of formulas from

¥i.

Let .':'Df designate the set {qr[Asz ve !orn&i)}, kz1.
Suppose CclAl, Pisu\n", 1 € @ . The expansion of A on the
predicates Pi' i1 ew and the constants c€ C 1s designated by
<AyPdce

A Czexpansion of A is a structure <A,P;>y, where K<C and,
for every i, 1’1 is an ni-placo relation such that Pis cni.

Suppose that ~v is an equivalence on a set X, aeX, We put
al, = {x€Xix~a}, We use 1,J,k,1,m,n,i,,.0. a8 names for ele-

ments of @ . Having AL we shall write sometimes AP instead

of l‘lno
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§ 2, Compactness theorem for saturated structures. A re-
latiom ~ on A" is totally diseconmected iff there exists a se-
quence {X, ., suon that

(1) e 1€ w,

(11) X, is an equivalence on A" and the set “n]xiue AR}
of factor-classes modulo X, is finite, i€ w ,

(111) ~ = N{xy, 1 e 0k

Suppose that the relation ~ is an equivalence on AR and
ncA” A set Ug ‘-'6: is said to be & ~ -neighbourhood of & 1iff
~"4alcU, Let Us P(I 2) and XS A%, U is & ~-covering of
X iff UU=X and (VxeX) (30 ¢U) (U iz & ~ ~neighbourhood
of a), We say that a class YSA® is dense in X w,r, t. ~ 1ff
Y&X and (VxeX) (VU) (U i8 a ~n -neighbourhood of x —» Un Y=
+0).

Theorem, (Compactness theorem for saturated structures.)
Let A be a saturated model for L end let ~ be a totally die-
connected equivalence on AP, Suppose X s@i’ and let 2 be a
~n =-covering of X.

Then there exists a finite part U’c U such that UU'=
= X,

Proof: follows from the statements (a),(b):

(a) There is & € U such that U is at most countable

and Ul =X,
~ (b) Suppose U is a8 above. Then there exists a finite
class U’ c U such thet UU'= X.

To prove (b) we denote by 7 the set {X-U:Ue U{ and sup-
pose: if U'c U is finite then UWU'+ X, We deduce from the
relation X = UW' = N{X-U:Ue U’} that UV 1is a centred set.
By using the saturativity of A we obtein MN% # 0, which is a
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contradiction,

We shall prove (a). Let n --;'Q"S:l where {8,} EQE‘ and
sach set 3, is an equivalence such that the factorisatiom L"/S1
is finite, We can assume without loss of generality that 8“1 (=4
[ S1 holds for every 1 € @.

Lemme 1, Let e A and suppose U is a n -neighbourhood
of X, Then there exists i such that 8] {XicU,

Proof. Suppose the statement is false., Thus, we have,-for
all 1, A= (37)(F¢S] {X% - U). We deduce from the saturativity
of A that there exists 8¢ A" such that AkS€S]{x} - U holds
for every i, Thus we have & ~ X, and, comsequently, @< U, which

is & contradiction.

Lemma 2, X contaims a dense subclass Y whioh is at most
countable,

Really, let {ni'{w be a sequence of finite subsets uy of X
with the following property:

(View)(VxeX)(lu nsy {xtl=1).
The class ¥ = U{xi.i e @} has the required properties. Let us
finish our proof. Put
Uy = 1s(y,m)iye Yam = min {m (30 e U)(S(y,m)sVIE} , whe-
re S(y,m) denotes the oclass sp {yt . The class ‘MY is at most
countable. Suppose x€X. Choose U € U and m sueh that S(x,m)&
cU. Let yc S(x,m)n Y. We have x6 S(y,m)(= S(x,m)) and, conse-
quently, my<m holds. Thus x€ S(y.%) € ‘ZL! is true and we de-
duce from this that U%Uy = X. A class in question is, for e-
xample, a class U with the property:

(vTeupalnwerstev.

Let AL, Q< Form;, C<SlAl. We define, for all k=1, the
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Ak

$ r
relation =C on A~ as follows:

k

A L]
Capreensmd == Copune iy 417 (Vg€ $ ) (cy)
(Ahcp(sﬂ""’&k)ﬁ?(bi’°."bk)).

Ak ror-L,A
Writing == we mean the relation ===,
C C

Let us present some trivial comsequences of our definitien.

k k k k
WA b001(®),A A Al
o B - s e B,

P,k
(3) Suppose C is at most countable. Then —'_E is &
totally disconnected relation on Ak.

Theorem. Let A be a saturated model for L, § ¢ Pormy,
kz1, CalA\| at most countable. Suppose that
R A
Tt
holds.
Then (Vy ¢ 1%(0))(3ge pood( V(@) A mp sy ).
() $.4
Proof., Suppose ye€ FornL(c) and let us denote v = -a’;; .
At first, we shall prove that {g[AXl; ¢ € bool( 31¥)(c))}
is a neighbourhood generating system of the equivalence ~/i.e.
The following statement holds:
(VU)(YaerX)(U 15 a ~ -neighbourhood of a —>

~»(39s boo( $ (¥ (c)) (q:[Lkl 18 a ~/-neighbourhood of & &
% glaficD).
Let {@,%, be & numbering of Q(k)(C). Let
Ry = {<a,b> e akx Ak; Am @ (a) > qi(b)?.
We have n~» = N{R,31 e w} and, moreover, the A/8,;, where S, =
=ﬂ‘iRJ',j £1%, is the class of all atoms of the boolean algebra
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which is generated by {QJ[AkJ;Jé if. Thus, we can see that the
following statement is true:

(Vaea5)(3iy 41, € bool( P (€)))(n " £t = Ny, [45).

Suppose now that X = yI Ak,) for some ye L(k)(c) and let ac X,
If b~ a then beX and, consequently, X is a ~n -neighbourhood
of a, Assume U = z[AkJ is a ~ -neighbourhood of &,z ¢ 1K) ).
Let {'Lﬁw c bool(q;(k)(c)) be such a sequence that ~."{al =
= G q,i[kkl. Suppose that

AR(3D)( /‘\;' 13(E) & g(2)

holds for each J e w ., We deduce from the saturativity of A that
there exists be AX such that

b e ) '{j[A"Jn xukl.
which is a contradiction., Thus, there is je€ @ for which
SO e g A (=W
We deduce from these facts that there exists, to a given formula
g€ L(k)(c), a ~ -covering {-:L[Ak]; % € "} of the class gv[AkJ,
where " is a part of bool( Q(k)(c)). Now, the statement in our
theorem follows from the compactness theorem for saturated struc-

tures.

§ 3. (I) =homogeneity. In this section we want to present
a notion of @ ~homogeneity of a structure A, which is connected
with the reletion %—‘: = g%ka.nd which is, under assumption that
A is saturated and C is at most countable, equivalent with it.

Before we give the definition of homogeneity, we define the
notion of & gort over a class M of models. Let 7 be a class of

models for L. A gort over M is a class Yc U{{Alx P([Al);aemMm}
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with the following properties: if A ¢ M then

(1) Fa,0),

(2) aclAl, XsiAl=p (F(A,X) =» F(A,Xuial)),

(3) F(A4,X )X SX ., holds for each n =p F (4, Y x).
Writing Xe 92 we mean ¥(A,X) and we say that X is of the
sort J in A,

For example, the class

{<{A,X)y X i8 an at most countable part of |Al & A e M}
is a sort over Tl . We shall denote this sort by wy,

We define, for a given model A so called &'-classes in A
in such a way: Xc Al is & @~-class in A iff X is a finite or
countable union of definable classes of A (possibly with para-
meters).

The class {{A,X>; X is a G-class in A% Ae M}
is a sort over M ; let Oy, denote this sort.

Let A,Be M and let G be a mapping from [A] to [B[. We
say that G 1s of the sort & iff dom(G) and rng(G) are of the
sort ¥ . Let dc Pormy, G is & Q-similarity (of A and B) iff
the following astatement holds:

(YEZ1)(Vay,een,ape dom(®) (Yoo @)U m 9 (a,0n. ok
¢ B w ¢(G(ay),...,6(a))).

G is a (¥,3> similarity iff G is a § -similarity of the
sort & . The class M 1is (¥, > -—homogeneous 1iff every
(¥, D) -similarity of two models from 7 is immediately ex-
tendable to a {¥, Q)-similarity of these models. (Note that
a § -similarity G of two models A, B is immediately extendable
to a @ -similarity if
(Vaelal)(3bclBl)(Gulb,a) 18 a § -similarity) and
(VoelBl)(3aelal)(Gulv,a) 18 a $-similarity).)
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Let us agree that the letter $ c L denotes a class d o2
formulas of L such that ¢ contains the set

{p(xqy40004x))3 P 15 an n-ary relation symbol of L, n2z1g

U{f(xyyeeesx,) = y3 £ 18 an n-ary function symbol of I,
nz1?

u {x=d 3y is a variable or a constant symbol of L}.
Now, we shall give some consequences of our definitions,

Let M be a class of models for L, AeM => llAl = 1,
and let ¥ be a sort over M , & © Li Suppose M is <(¥, &)~

homogeneous and let us denotenrn = 9.:’..— o Then
S

[11 Every (%, ¢)-similarity of iwo models from T ocan
be extended to an jsomerphism of these models,
[2] Suppose that A€ M , S €S X and let F:A—> A be &
function with the following property:
(3ees) (1IMe)] N(A-38)lz2.
Then the function F is definable in no S-expansion of A (see § 1),
Proof. Suppose F(c)~ d,F(c)4d. The mapping Id PSui<d,F(c))}
is a (¥, ¢r-similarity of A and, comsequently, it can be ext-

ended to an automorphism of the model in question. Thus, F is
not definable in this model,

I31 Suppose A e M , Se ¥ and let Uc|Al be such & class
that

(3ceU=8)(|Lel n (lAl-D) 1.

Then the predicate U is definable in no S-expansion of A.

Proof, Suppose d~c, d#c, d € (A-U)-S. The mapping

IaPS u{dd,e?t 1is a (¥, O)lsimilarity of A which can be
extended to an automorphism of every S-expansion of A, Thus, U
18 not definable in such a structure,

41 Suppose AeM . Se<? and 1et ac|Al - S be such that
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(el t=z2.

Then & is definable in no S-expansion of A, This is an immedi-~
ate consequence of { 3].

Theorem, Let AwL be a model of power %, ¥ a sort over

{A}, d L.

(1) Let A be (¥, Pr-homogeneous. Then, for each k=1, Se¢ 9‘.

k k
A o4
S S

holds,.

(2) Suppose, moreover, that A is saturated and Se 92 5 8 18

at most countable. Then A is (¥, @)-homogeneous iff the relatiocn
a¥ & ,A¥ A

= = X holds for each k21, 3e¥ ™,

[ ]

@ ,a%
Broof. (1) Let {ay,eces8y? =§- {Byseenydy e

The mepping Idt Su{<by,e;>; 1 = 1yeee, ki i8 8 ¥, D)-simila-
rity which can be ext:gded to an automorphism of A. Thus, the
relation {ay,e..s8) =5 (byyeee )7 1is satisfied,

(2) We must prove the implication from right to left., Let
G be & (¥, @)-similarity of A. We need to prove that G is a
Formy-similarity of A. Let Y(xgpooe .zk)s L(k). Then there ex-
ists & formula ge bool(®d (X)) such that A w p<>¥. We have
Arglag,eee,y) <> @ (G(ag),...,(ay)) for each ay,...,8 €

€ dom{G) and consequently,

Al y(agyeees8y) <> y(G(ay)yee0,G(ay)) holds for each
ByeeesBy & dom(G), too,.

Now we shall give ome criterion for <, ¢)-homogeneity
of a class M of saturated models for L.

Let A, B be two saturated modeles for L, ¢ € L and let ¥
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be a sort over {A,Bt. Suppose that G is a (¥, @)-similarity
of A, B, What possibilities exist for an immediate prolongation
of G to a Q-similarity?

Suppose that — 1s a mapping from {X; ¥(A4,X)} to
{Xy 9(4,X)} and from {Xj; L(B,X)} to {X; ¥(B,X)} such that the
following holds: every <%, Pr-similarity G of A, B can be
extended to & @ -similarity G*¥ with dom(G¥) = dom(G) and
rng(G*) = Tng(G) and, moreover, X = X is true for every X of
the sort ¥ in A or B. Now, we can work with G* end our aim is
the following: given a 6lA)l ~ dom(G*) we want to find b €|Blsuch
that G¥u {<b,a)} 1s a }-similarity.

Let 't:((b(”(dom(c*)),a) be the class

1@ 6§ (dom(@*))54 = @ ()3,

The class T = rc(Q(”(dom(G")).a) is a type in the structure

a*

<A’°>cedom(G*)' We denote by =t the set

{qG*(x)r, P(x)e i,

where CyG*(x) is the formula of the lenguage L(rng(G*)) of the
form q(x.G'(e1),...,G*(ak)), where 8,,...,8, is the 1list of
all parameters of the formula ¢ from dom(G*). We shall give &~
me conditions for — and ¢ which assure that 'rG’ is realized
in B.

At first, we must give a few necessary notions. Let M be
a class of models for L and let ¥ be a sort over 7 . A mapping

is a glosure on & (in M ) iff for every A ¢ 7 it holds:

“19h o 92 (die. Xe Y2 T ¥t ana
Seyh— { oA ¢ 18 a constant of L}cF&S< § = T,
Aget Sc 2 18 —-glosed 1ff S = § holds. A mapping G
between two models from M is ~—-closed iff dom(G) and rng(G)
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are “-olowed. Let $ £ L, ¥ < L. The slosure — on ¢ res-
peots ¢ —pimilarities 1rf every <Y, &)-similarity of two mo-
dels trom M ocan be extended to & closed J-similarity of the-
se models. The closure — om ¥ ($-respects types over ¥ iff
the following condition holds:

Let G be & closed § -similarity of models A,Be M . If
T e Y“)(do-(c)) is a type im A then LETIY type in B and
it ©t < “I“)(rns(G)) is a type in B then ,,0'1 is & type in A,

Let &, $,0 Ve Porm;. A closure ~ on S (dn M ) is
{y» ®4, V> =steble 1ff ~ respects ( § v §,)-similerities
and ((ﬁou ®,)-respects types over (¢, v V).

Let M DYe a class of saturated models for L., Suppose that
¥ 1s a sort over M such that f o @ . Let §= $, v Q1

and suppose that <§°, $;, are closed under 7 , If ~ ig a
(Pqs 01» > -stable clogure on & in M then M 1is (¥, O~
homogeneous, This is a trivial fact. Our aim is now the foll-

owing: to describe conditions on tﬁo, ®4,V < L and such
that the (& , §;, V> -stability of — (on & in M ) assures
the (¥, § v $,> -homogeneity of M without the assumption
that ¥s wy and Ve d,-

We say that V, QO € L are conjugated by & closure — (on
¥ in M ) iff we have, for every A € 7l and every closed

get S & S"z S is dense in A w.r.t.

v,A V,A A
"'——‘%nnd =-’=§- i—“‘%.l&sme Y¥e L. A clo~-

sure — (on ¥ in M ) gountably determines ¥ 1iff we have,

for every A € M and every closed S e ek

(Vaelal - s)(a{vilws’f(”(s))([alym) REEARNASIE
1

S
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Note that if ¥ & o, then every closure — on & in 7 coun-
tably determines each ¥ < L.

Theorem (Criterion of homogeneity). Let 7 be & class
of saturated models for L,V, § , ®,cL such that x = y & V<
€ 9, v §y and let v, <}°, ®, ve closed under 71 . Suppose,
moreover, that & 1s a sort over 7 and let — be a closure
on ¥ in M such that

(a) — 18 <3, ®,, V> ~stable,

() V, Qo are conjugated by ~— and

(¢) ~ oountable determines both V eand &,.

Then M is <¥, &, v & ,7 -homogeneous,

Proof. It suffices to prove: Let A,B € M and let G be
a closed (@, v &,)-similarity of the sort ¥ bvetween A and
B, Then, for each ac A,

0:6(9(1)(40(6)),3) is realized in B, where d= 9 v D ,.

Let us denote ¥= V u ¢, and S = dom(G). Suppose a &
€ |Al = S. Choose a sequence { Vi‘{m (= ‘5{{"1)(8) such that

Wy Q ¥l

The mapping G respeots types over ¥ , thus, there is a b¢ B
which realizes the type -(qrg’xw in B. We shall prove that b
realizes cG(( o, v Q1)(1)(S).a). At first, let us prove two

lemmas.

Lemma (a). Let M be a saturated model for L, k=1,
(1) Suppose that U,,Us DX, 1¢ @ ,and let () U, S U hold. Then
there exists m ¢ @ such that ’iQmUisU holds, too.
(2) Let ¥ e L, SciM| and suppose ¥ ¢ Y(k)(s). Then

-qr[llk] is s !_%k-noighbonrhood of each element of y[l‘kl.
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The proof is easy and we omit it. We shall use this lemma
(a) frequently during our proof,

Lemma (b). [v] wi " o) -\yi[B].
& s
Progf. Note that the following statement holds:
Lot {3y YgreecoApl € Y(U(s). Then

G @
(£) D, Wl qlAl=p N 7081 ¢ 7°8]

This follows immediately frem thé fact that ¢ (P U P, )-res-

peots types over (Q,u V) and ¥ is closed under -1 . To sim-

plify our designation we put T = G"S. The inclusion & ia que-
. G

stion is olear. Assume that there is b'c /) (Bl - [b) ¥,B

We deduce from this that there exists v ¢ w(1)(2) suoh tnat
b6 yI[Bl, b°¢ yIBl Suppose A = 1y%(a). Then my® 4]

Y,A
is o -;; ~neighbourhood of a snd, consequéently, there is m such

-1
that f\ \filfls ‘H(“ LAl. Prom this fact and from our assum-
ption on b’ it follo'l b'e 7 y (Bl, But this is & contradiecti-
on, Therefore 4 = 1° (a) holds. Then there exists m such tha.t
FANR A VRS 1{“ 'LA1 ant, by using the statement (+) above
we obtain .M 1(1\',3] S w[Bl. But this is a comtradiction with
v<m

our assumption b’ ¢ w [BJ.

Now, we clear up the statement: b realises 8yt (8),a)
in B,

Let vy & ¢ ("f“)(s).a). It is enough to prove: B '\yq(b).
¥,B
Suppose B = 7 "rq(b). 1 70 B is s --'; ~neighbourhood of b.

Tma, there exists m such that () vy 98] < 1 w® B. We deduce
from the statement (x ) that &meitugqy[u, which is &
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eontradiction,

Te prove b realiszes 't‘o((éov 91)(1)(3),5) in B it re-
mains to clear up the following implication:
(g e84 m g(a))=> B g%m),
Suppese the presumption is true and the consequence is false.
v,A
The set ¢[A) is a ='? -neiglibourhood of a, beceuse pLAJis

0,A
& ==y -aeighbourhood of & and ?2% - Za-;. . Similarly, we

v.B
can see that -1¢%Blie a .&; ~neighbourhood of b.

Let {v,1,¢c V‘”(s) be a sequence with the property:

‘.a]v.A = Q ‘Diu]'
S

It is clear that b realizes the type {vg(x)la and, by using the
lemma (b), we obtain [b]V,B = Q ngBl. Prom this, the facts

=5

mentioned above and the lemma (a), we deduce that there exists
@ guch that

) _»lec glal

Leé€m
and

g@m‘?g(BIS‘\q[Bl.
The class S is dense in A w.r.t. -_ys_%é « Thus, there exists
o & )P lA1nS, It 1s clear that A w g (c) and G(c) e
e ), ¥(Bl. We deduce from this that both A = g (c) end

B qG(G(c)) hold - which is a contradiction with the assump-
tion that G is a & -similarity.
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