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COMPACTNESS AND HOMOGENEITY
OF SATURATED STRUCTURES It
J. MLCEK

Abstract: We apply the oriterion of homogeneity which

is presented im the part I of this article, to the study of a
homogeneity of the saturated models of the real (algebraical-
1y resp.) closed fields and Presbourgher arithmetio. We dedu-

ce from the homogeneity of models in question that the menti-
oned theories are complete, We investigate the prodlems of wum-
definability in Presbourgher arithmetioc, We obtain, e.g., the
assertion that the set of all primes of a given model of Peane
arithmetic is not definable in the "additive part™ of this medel.

Key words: Saturated model, homogeneity, real closed
fields, Presbourgher arithnetic.'undefinnbiliiy.

Classification: 03C50, 03C65

$§ 0. Introduction. We have proved, in § 3 of the part I

of this article, a criteriomn of homogeneity for the saturated
structures (and some corollaries, following from this homoge-
neity, too).

To show an applicability of this criterion, we shall stu-
dy, using the criterion mentismned above, the homogeneity of
saturated models of real closed fields, algebraically closed
fields and Presbourgher arithmetic. We shall discuss some
problems of definabilitiy in models of Presbourgher arithmetio,

too.

§ 1. We shall formulate, at first, a criterion of home-

geneity for a certain class of saturated models for a language
»
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L=<413,, , ‘h’i}w » 47, where £, is an n -place function sym-
bol, ¢, is a comstant, 1 € @ , and £ is a binary relation
syabol. We denote by ™m‘X) the class of all terms of L with ex-
actly k variables.

Let us introduce now one notion, Given a model A= 1L and
CclAl, we denote by De!.é the set

{aelAly a is definable in A by a formula of L(C)%.

Theorem. Let 7 be a class of saturated models for L with
the following properties:
(1) AeM => A &k < is linear dense ordering withomt emdpeints,
(11) 424 ¢ M and £(x),g(x) e ™1 (A) then
A(V¥x<y)((£(x) 2g(x) & 2(y)> g(y)) —> (3 2)(x< < y) &
%2(z) = g(s)).
Let = be a closure on @, in 7. Assume further that
(i11) ~ respects { w,, ,At)-similarities, .
(1v) 12 A e M , C & @b 15 closed and £(x),g(x) « Tal1)(C) then
(VaclAl)(A = £(a) = g(a) => ac )
hold.
Then (1) M 1is { @y, ,At) ~homogeneous,
(2) AL e M&C s w,‘,lﬁnotéiﬁ.
(3) AeMKC e @LLC 1 closed =» Defg = C.

Proof. It suffices to prove only the following statements
(a),(b):
(a) ~ 1is (1 (At),0,1{x6ey, x = y}? -stadble,
(b) At, ix£y, x = y} are conjugated by —,
(Recall: " Y = ¥uity; ve¥3,)
{(a) Suppose G is a closed At-similarity of two models from 7,
We deduce from (1) that G respects types over {x&y, x = y} M,
(b) Suppose Ac gt and let Ce c),: be closed. Put
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V.A At,A
Varn{xéy, x = yl. To prove === = =, we must only clear
(v c

up the inclusion £ . Suppose

c ==é d, 4, ¢<d and £(x), g(x)e T™m* “(C).

Assume that there exists ¢ such that A= oc<e<d&f(e) = g(e).

v,A
Thus, e¢€C, and o:;%d, which is a contradiction. We deduce

from this (by using the assumption (11)) that A w £(o) 4 g(c) >
«> £(4) % g(d) which is requireds It remains to prove that O
1s dense in |Al w.r.t. Y24 . But this fact 1s easy and (1) is
proved,

The proof of (2),(3) follows from the statement:

if AeM and C € @y 18 & closed subset of (Al then
{Cal V,A‘Z 2 holds for every aclAl - C. (See 14] in § 3 of

the part I of this article.) Suppose ac|Al - C and [‘JV.l =

=3

= ﬂ[cn,dn] (where [c,d] =fxeclAl; A= c£x£4}) with some

eprd €Cy cpbe 1 <d 444, n @ . Suppose { [‘IV,A’ =1,
———

C
Then there exists m such that {a} = [a] 74" [o-,%]. But

c
Cp< d., which is a contradiction.

¥e shall use the last theorem to show a homogeneity of the
class of all saturated models of the theory of real closed
fields (RCP).

We can see this theory in the language L = {+,+,0,1,£)
and we have RCF - x4y ¢ 3 2)(22 = Y - x). Writing At we mean
here the class of all atomic formulas of this languege L.

Theorem. The class 7 of all saturated models of real
closed fields is {4, ,At) -homogeneous.
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Proof. If A =RCP and CSlA) we put
C ={xelAly x 18 algebraic over 003,

where C  is the smellest subfield of A which contaims C. The
following statements are well known in field theory.,

Let A,B = RCF., Then
(1) A v & 1is linear dense ordering without endpoints,
() 2(x),g(x) ¢ Tl ()b d 1w (V) ((2(x) £8(x) &2(y) 2
z2g(y) = (3s)(x<s<y&t(s) = g(z)).
(3) Let G be an At-similerity between A, B. Then G can be ex-
tended to an isomorphism between A/dom(G) and B/rng(G)(w.r.t.
L.
(4) If£Cs|Al then® = C. Suppose CS|A) is at most countable.
Then € is countable,

Using these facts and the previous theorem, we can conclu-

de that M is {c, ,At> -homogeneous.

Corollary. (1) The theory of real closed fields is com-
plete.

(2) (vge 18) (24 € bool(At))(RCP Pev).
Let us investigate a homogeneity of saturated mode's of the the-
ory of algebraically closed fields (ACP).

Theorem. The class M of all saturated models of algebra~-
ically closed fields is (om,At) ~homogeneous.

. Proof. We want to use the criterion of homogeneity. If
Aws ACP and CS|Al, let C denote the same as in the previous
proof, We have ¥ = G and assuming C countable, we obtain G coun-
table, too. The following statement is well known in field the-
orys Suppose A, = ACP? and let Ti be a subfield of Ay, 1 = 0,1,

G an isomorphism of 'l.'° and Ty, Then G can be extended to an iso-
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morphism of i'o and T,. We deduce from the fact presented that
— 1is a closure or wy in M which respects At. (Not yet that
an <Qm yAt> ~similarity H can be uniquely extended to ean iso-
morphism of dom(H)o and rng(l!)o, where X has the same meaning
as in the previous proof.) Put & = 1 (A%), ¢, =0ena V=
={x =y, x*y}. Then the presumptions of the criterion of ho~
mogeneity ere satisfied and, consequently, M is { @y, ,At$ ~ho-

mogeneous,

§ 2. A homogeneity of models of Presbourgher arithmetic.
By Presbourgher arithmetic we mean the theory in < +,1,0) with

the following exioms: x40 —> {Iy)(x =y + 1), x+0 = x,
x+1%0, x+z2 =y +2z—>XxX=y, +1is commutative and assoei-~
ative, (Vx,y)(32)(x + 2 = yvy + 2 = x) and the schems
UVX)(IF)(x = neyvX =ney + 1V eeo VI =0y + 0 = 13 n214,
Here and further on, we write, for a fixed n21, the abbrevia-
tion ney for the expression y + y +eeet+ ¥y, n-times,

Let PrA denote again the above theory, extended on the de-
finition

x<y <> (3 2)(2%0&x + z = y).

Thus, PrA is formulated in the language L' =<+, <,0,1> and we
have PrA +— < 18 discrete limear ordering with 0 and without
the greatest element.

Let us denote At' the class of all atomic formulas of L'.
Writing

x=_1

we mean the formula (3 y)(x = msy + n). We put yet

Kon = {x = ny mz1&nz0%,

Proposition. Let M Dbe a class of saturated models of
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PrA. Then M is <o.>” +At* U Kon ) ~homogeneous.

Proof, Put J, = ath, ¢, = 1Kon, V={x<y,x = 5},
Suppose A )= PrA and let XC) Al. We define

T =f{eclali(3,FemV @t @) (A= t(a) = Wa))i.

It is clear that ' is a closure on @y, in M which respects
$,v O -similarities, It is not difficult to prove that d

and V are conjugated by ~ '

o« Thus, to obtain our statement

by using the criterion of homogeneity, we must prove that eve-
ry — *-closed $,u P,-similarity G betweem two models A,B €

€ M respects O, vV ~types. Let us denote S = dom(G) and sup-
pose 25 (®,u ¥ )(1(5) 15 & tinite type im A, Since a formula
(x =, m) is equivalent in PrA to a formula of the form

Vt xsni m, we can suppose that 'L'S(Koan)“)(S).

4.,
Assume that a ¢|A| realizes © in A, If a €S then G(a) realizes
% in B, Suppose a¢ S. Let {ci'ﬁ be & mumbering of {c &Sy A & c<
<a} and let &dj_} be & numbering of {deS; A= a<dl. We have
["]v,A '{.}“‘1"‘3]'
where loi,dal =${belAl; A K eiébédj"s ir -thH-o and toi,d‘J-
= {belAlj A oy & by if {djl = 0, Every interval 501.431 is
infinite, thus, %ﬁétci.ddl contains an infinite interval. We
1
deduce that the intersection i’f\i_ [G(ci) ,G(dJ)J obtains an in-
2
finite interval J, too. It is not difficult to prove

Lemma, Let M= PrA be a saturated model, I an infinite
interval in M and suppose that the system

(%) Tog Mo t= et
has a solution in @ « Then there exists bcI such that

M /N 0 .
PR Rl Ml §
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(We can fimd byc I suoh that M= b, = 0 holds for every m21
and, assuming I = [oc, 81, the interval [b,, 81 1s infinite.
If kew is a solution of (x) then b = b, + k is that one
which we are looking for.)

Now, suppose that (k) is ¥ N Kon. Let b&J be a soluticn

of (#) in B. It is clear that b realizes T ¢ in B,

Before deriving some corollaries of this proposition, let
us denote PA* the Peano additive arithmetic. An explicit way of
giving the theory PAY is the following: PA"' is the theory in
{+,0,1> with the axioms x + O = x, X + 1 =1 +x, (X +J) +1 =
=x+(y+1), x+1%0, x%0 > (3y)(x=y+1), x+1 =y +
+1—2>x=y3, (Vx,7)(32) (x + 2 = yvy + 2 = x) and with the
schemea of induction.

It is not difficult to see that PA* 1s stronger than Pra.

Corolleries. (1) PrA and PA* are equivalent.

(2) PA* is & complete theory.

(3) (VoelLY)(3y e bool(At*uKon)) PAT- @ « ¥ -

(4) The class M of all saturated models of PA' is
(6’m ,At*u Kon) -homogeneous.

Proof. (1),(2) and (3) follow immediately from the previ-
ous proposition.
(4) Ve use the criterion of homogeneity. Put Qo = -|At+, %, =
=1 Kon, V= 1{x<y, x = yt. We deduce from (1) that —  coun-
tably determimes V ., (It holds because every definable part of
each model of PA* has the first element and, thus, the monad

laly 4 of an element aclAl, where A k= PAY and S Al 15 a

3{M-class, has the form () [c;,d;] with some c;,4,6 S, i6w,)

Because every formula from Q.‘ has exactly one free variable,
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the olosure — * countably determines Q1, too. By using these
facts, we can deduce gimilarly as in the previous proof that
—+ 18 (@o, Q,, V ) -stable closure on 6'@ in M . It is not
diffioult to prove that & and V are conjugeted by ~* . Thus,
the presumptions of the criterion of homogeneity are satisfied
end (4) is proved.

§ 3. Undefinebility. Let M be, here and down, a fixed sa-
turated model of Peano arithmetic. Its restriction M* on the

language it is a saturated model of PrA, too. We shall write

oot

down g instead of _=
S S

Note first that
Mt is <O’H,At+u Kon ) ~homogeneous.

It can be proved quite similarly as the point (4) of the previ-
ous corollary.

Criterion of undefinability. Suppose S&|Ml is a " *-clo-
sed ©y~class.
(1) If£ P:(Ml|—>IMI| i8 a function such that P'SN(|A| - S) 4 O,
then P is definable in no S-expansion of M,
(2) I£ UcliM| is a set such that (3aeU - S)(3 an infinite
interval Iclal Eey,x ;[})(InU = 0) then U is definable in no
S-expansion of N, s

Proof. We use the propositions 32) and 13) in § 3, part I.
(1) Suppose ac S and ¥(a)¢ S hold. The class [F(a)l X<y, x=y}

S

contains an infinite interval I. We have proved above that there

exists beI such that M = P(a) =, b holds for each 1z 1. Thus
\IF(a)] n(M=-38)z2,
v
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(2) can be proved similarly.

Una. redicate undefinability. Let Uc|M|. We say that
U has i-property iff the following holds: if IC/M! is an infi-
nite interval then there exists an infinite interval JESI such
that JnU = O,

Proposition. Suppose that Uc| M| has i-property and let
X be a GM-cle.ss such that (¥ =w)n (U = T+)%+ 0 holds, Then U

is definable in no i"'-expa.nsion ot N*.

=+
Proof. Assume ac (M -w)Nn (U~X"). The slass [°]{x< X
=+
X
contains an infinite imterval I. Thus, there exists an infini-

te intervel JS I such that JNU = O, The required conclusion
follows from the previous criterion.

Let us give some examples of sets which have i-property.
We use the following rotations: we put, for every §e I M,
g(M’ = {§%3 oce M} and ) ook ey,

(1) If1<f<iMl then both ¢ ana u(E) nave i-property and,
consequently, they are not definable in M+.

(2) The class Prol = {ae|Mly M= a is prime} has i-property.
Thus, Prm™.is not definable in M'.

Proof. Assume I<! M| is an infinite interval, I = [a,b],
There exists ca[a,-’-?—] such thet M« ¢ =, 0, 121, We have
Pm"n le + 2,c + nl = 0, n>2, Thus, there exiats an N ¢ IM|-@
such that Prm¥nle + 2,0 +7 )= 0.

(3) Assume that Sc(M| is a 6 ~class such that

(VaesS)(¥Vnzl)(Me a=_0).

Then the predicate E(M) is definable in no—§+-expanaion ot u*,

Proof. Suppose o & 3*. Then there exist °1'd1" e ,

ce€Z and ¥y, d €S, 14k such that m-t = § oy ¥y = 3 4, I g+c.

L
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Thus m|c and we have o =3 + b, where beZ and [3=_ O holds
for every mZ1, Suppose ¥ € |M| - and let 21‘ s ( =f3+0),
It is clear that bl = 2™ for some me & . We deduce from this
that 2°(2¥® + 1) =« 3 holds. But 2™'|p and, comsequently,
2272 31, which is a contradiction. Thus (2“‘)n A -w) -
= 0 and the required statement follows from the previous propo-
sition,

Unary function undefinabiliiy, Let us range r, ry, fiew
over standard rationals. Put

K =4{x} x is rational over M2x2 0},

We defime, for each x,yc& K:

x~vy «>(3me a))(1;~x <y<m+x).

It is clear that ~» is an equivalence on K and the class
{la) A |Mijac |M]} is dense ordered by <¥ (1.e. assuming a,be
e, a<¥ v ana aXb, we can find cel M| such that a<oe <b
and a % ¢, b ¢, The following properties of ~ hold for eve-
ry x,y& K.
(&) x~vx’&yny’— x+youx” +3°, (V) x + y~Mexix,yi,
(¢) »r>21—> rexwx, (d) XL y—>(x =320 x - y~x)e

To simplify the next formulas we put, for every d e | M\,

& =iwel Miys<coct.

Let XcIM), We say that X is~ -dispersed iff (x,yc X &x+y)~>
—> XLy holds for every x,yeX. X is said to be almost v/ -

dispersed iff there exists o“c | M| such that X N & is~ -dis-
persed.,

Let us denote yet by 1X1, the set U{Ix]  nIMi;xext,

Lemma, Suppose that Xc|M| is almost ~v -dispersed, Then
there existe d” s | M| such that
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(VE=d )xn § 18 ~ -dispersed & (X* n g )elX n gJN).

This lemma follows immediately from the definitioms and (d).
Let Pz |MI— (M| be a function. F is called ~/ -regular iff
(1) selMl - @ = ¥(a) X s,
(2) suppose that Ic)M| is an interval such that
(3xeI)([x) N IMISI) holds. Then there is ne rv -dispersed
class Y& O} such that P*IcLY] -

Proposition, Assume that P ¢ .‘.'Di is & ~ =regular increas-
ing function and let X & O 4 be an slmost ~ -dlspersed part of
|Ml. Then ¥ is definable in no X'-expansionm of N'.

Proof. Note first the following: Let 9(11 yeeesYqsece) €
5;.(!). Then (VXjeee)(Imyece)M E @ (Xgp000ymyyeqe) 118
(Fmgee)ME (VX1ee) (3 71£meee) P(Xyg0eesTysees) holds, It
follows immediately from the saturativity of M.

Choose o"€ M| - & guch that X nd’ 1s ~ -dispersed and
I*n Ferx ng‘JN. Let @ be the formula
(VX,yeX)((x,y>0"&% x<y&[x,yInX = {x,y}) —

—(Vselx,y))(x s wy— Ks)e (X1, A & ).
(We denote by [x,y] the interval with endpoints x,y.)

Our aim is to prove that M= 1 . Assume M = @ . By us-
ing the first fact of this proof we can see that there exists
m and n such that M v (V x,y€ X)((x,y > &x<y & [x,yINX =
= {x,y1) —> (IV4m,wén)(Vzclx,yl)(3 V,eT,weW) ((vex<zd
&3V, < ¥) > (3 xeX)(x< weP(2)& P(z)< w:.x))). Let x,y € |M| be
tixed, x,y>d , x<y and [x,y]nX = {x,y}. Choose z &[lx,y] such
that m*x <z&mez<y. Then VgeX£mex<g and v .z£mex<y. Thus,
P(z)elX] n & holds.

The interval [m-x,fl--y] contains an element t such that
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It), & Em-x.%vl

We have just proved that P" Lm-x.%oyl g[x),,,m;‘ s which
is a contradiction with our assumptiion that P is ~/-regular.
Thus, M =1 @ 1is true.

Choose x,y & )M| such thet x,yeXnd , [x,ynX =ix,y},
x<y, and let a<lix,y] be such that x ¢ ay, F(a)¢ [X] n £.
We have P(a) ¢ [Xu{all, and, comsequsatly, l‘(a)tf:’m*.
(Note that the relation Xuisi'nd < [(X nd)u{all, follows
from the fact that (X ~&) uiel is n -digpersed.) Now, the re-
quired statement follows immediately from "ch; criterion of un-

definability.

Exemples. (1) If fe IMl - then §M 1~ -dispersea.
(2) Every functiom x%, nZ 2, is ~v-regular.

(3) Every function n*, nz2, is ~ -regular.

Proof. (1) is quite clear, (2),(3): Let n22 be fixed.
Conversely, suppose that there exist an infinite interval
[, 3] 1in M and a class Y & Sb:l such that Y is ~ -dispersed

and F* o, 3lc [ Y], , where F 1is x° or n*,

1
(2) The monads {[a),_n |Ml3a € Lt, 1} are dense ordered by
< 8nd x~y <> x"~ y° holds for every x,ye IM|l. But the monads
{La.]Nn | Mly ac Y} are not dense ordered by < , which is a
contradiction.

(3)‘ Put, for every x,ye IM|l, xR ye> |x - yl& @ , Then =

is an equivalence on |M| and the relation x =<y <> n%~ n¥ holds
for every x,ye |Ml. The monads {laly:ae [, 3] are dense
ordered by < , but the monads §{lal_ N /M jae Y? are not, which

is a contradiction.
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