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25(3) 1984

BOUNDARY VALUE PROBLEMS WITH NONLINEARITIES HAVING
INFINITE JUMPS
Jean MAWHIN

Dedicated to the memory of Svatopluk FUCIK

Abstract: We extend some results of Ward for nonlinear
perturbations of linear operators whose kernel is made of con-
stant functions to the case where the kernel is spanned by a
positive function. Applications are given which extend earlier
results of Aguinaldo~Schmitt and Castro.

Key words: Boundary value problems for ordinary differen-~
tiel equations, jumping nonlinearities, Leray-Schauder method.

Classification: 34B15

1. Introduction., In his fundemental work on nonlinear non-
coercive equations, Fudik has emphagized the important concept
of "jumping nonlinearity"™ and has given in [6] the first syste-
matic study of the Dirichlet problem for second order ordinary
differential equations with jumping nonlinearities, namely

x"(¢) + g(x(%)) = n(t),

x(0) = x(a7) =0
with }1_3‘00 g(x)/x st=“1}_’m+w g(x)/x. As most of Fu¥ik s papers,
[6] not only contains significant results but also a number of
interesting open questions. Orte of them was solved by Aguinal-
do and Schmitt [1] who proved that the problem
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(1.1) x"(t) + x(t) - ¢ x" (%) = h(%)
x(0) = x(ar) =0
with o >0, x~ = max(-x,0) and h continuous has & solution if
and only 1if
(1.2) j’rh(s) sin s ds£0,
0

Aguinaldo and Schmitt use & continuation theorem due to the au-
thor (see e.g. [8]) and obtain the required a priori bounds by
a delicate argument linked to the special nature of the nonli-
near term in (1.1). Their result was generalized by Castro [5]
who proved the sufficient condition (1.2) for the more general
problem
(1.3) x(t) + x(t) + g(x(t)) = n(v),

x(0) = x(ar) = 0
with g:R—> R continuous, g(x) = 0 for xZ0 and g(x)/x —> >0
when x —> =00 . Castro’s proof uses a rather sophisticated va-
riational argument which strongly uses the sublinear character
of g.

The aim of this paper is to provide & partial extension of
the method initiated by Ward [ 9] for the study of periodic so-
lutions of semi-linear ordinary differential equations whose
linear part only admits constant periodic solutions. This exten-
sion allows the kernel of the linear part to be spanned by & po-
sitive function and provides generalizations of the results of
Aguinaldo-Schmitt and Castro to ordinary differential equations
of erbitrary order and to some classes of nonlinearities which
do not have necessarily a linear growth. Finally, the underlying
abstract tool is simply a continuation theorem of Leray-Schauder
type L8] and the corresponding a priori bounds are obtained in

a rather simple way,
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In the case of (1.3), our theorem implies the existence
of a solution when (1.2) holds when heL1(O,JI’), g(x) = 0 for
xZ 0 and

1lim sup &(x) = = oo -
X —y =~ 00

Another easy consequence of our results is that the problem,
with he L'(0,sr)

x"(t) + x(t) + o« exp x(t) = h(t)

x(0) = x(&) =0
with o0 > 0 has a solution if and only if

w
(1.4) fo h(t) sin t dt>O.

Finally, our method easily shows that (1.4) is also sufficient
for the existence of one solution for the problem
xm (t) + x'(t) + < exp [x(t) + sin x"(t)] = h(¥),
x(0) = x'(0) =x"(ar) = 0.

2. Preliminary results on linear operators., Let I = [a,b],
kZ0 an integer, Ck(I) the Banach space of real functions of

cless C¥ on 7. with the usual norm lul K =:>, max )u(j)(t),
c ¥-0 et

LI(I) the Banach space of real functions L-integrable on I with
the usual norm

USRI fl fult)i at.

Let L:D(L)c Ck(I) — L1(I) be a closed linear operator having
the following properties,

(L;) ker L = spanig} , with ¢e D(L) such that ¢ (£)> 0
tor a.e, te¢ I and 'fl y (t)at = 1,

(L) ImL =i{ye L (D) fx y(t) y (£)dt = O} for some
y e L%®(I) such that flcy (t) ¥ (t)dt = 1 and y(t) >0 for a.e.
tel.
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Let us denote by L::,(I) the Banach space of real functions
L-integrable on I with the norm
luly = f: lu(t) | v (t)at,

and let us introduce the following closed subspaces of Ck(I),
11D, 1,1,

'ﬁk(I) is a topological direct summand of ker L in ck(I).
IND =gyer'@: [, y() ¥ (D)at = 03,

Tyo - {yeL;,(I)x J, 7(8) y (at = ok

We introduce another assumption upon L.

(I.j) There exists a continuous linear operator A:Ck(I)~>
— 1'(1) such that L - A:D(L)c ¢¥(1)— L'(I) 1s one-to-one
and onto and such that for some M~ 0 and ell ye¢ Ll,(I), one has

-1
I(L - 4) y\ck < llylv .

Proposition 1, If conditions (L;) to (L3) hold, there ex-
ists A Z 0 such that, for each x = X + Xe D(L), with Xcker L,
~ _ i
xeC (I), one has

~
I'i\oku\n.xl‘r- AleIw .

Proof. The restriction of L to D(L)N CX(I) being one-to~
one and onto 'i;,(I). it suffices, by the closed graph theorem,
to show that this restriction is a closed operator. By conditi-
on (LB)’ (L - A)"1:L.}(I) —> ¢¥(I) is continuous and hence
L - A:D(L)c Gk(I)-——éLJr(I) 1s closed. Let (%) be a sequence
in D(L)nEE(T) such that X, —> Fc¥E(I) and 1Z, — ?;"1'.:,(1) in
Ly(I). Then A%, —» A% in 1'(I) and hence in Li(I) so that
(L - A%, —> § = A¥ in LI(I). By the closedness of L - A as a
mapping between D(L)= C¥(I) and 13'(1), we have ¥¢ D(L) and
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Y- A% = I - A%, so that § = I, Thus LiD(L)c ¥¥(D) — TYT)
is closed, and the proof is complete.

In our applications, L will be & differential operator and
condition (L3) can often be deduced from the following more con-

crete assumption.

(L;) k = 0 and there exists A:C°(I) —> L'(I) linear conmti-
mious end G,e C°(IxI) such that L - A:D(L)c C°(I) — L'(I) 1s

one-to-one and onto,
(2.1) (@ - 0750 = [ 6, (+,005(s)as, tel
and G,/y & L®(IxI),

Propoai tion 2. If conditions (L1),(L2) and (L3') hold, then
the conclusion of Proposition 1 is valid with k = O.

Proof. By (2.1), we have, for each ye& 1.1(1) and tel,

1@E=07"5(0)) = ) [ [6,(t,8)/ v (8)] y(s)y (a)as| £
cley/v) [ \y@ vy = loy/vi vl -

Hence condition (L3) with k = 0 holds and the result follows from

Proposgition 1.

Example 1. As a first example, let L be defined by D(L) =
={xcC°l0,m): x 18 of class C' on I = [0,#], x° 1s absolutely
continuous on I and x(0) = x(sr ) = 0%, L:D(L)c c°(I) — ! (1),

X +> - x" = x, 80 that L is closed, ker L = span {sin (-)},
InL ={yel'(I): fl y(t) sin t dt = 0} and we can take C°(I) =
= {xecCo(I): fI x(t) sin t 4t = O%.

Moreover, for A = -~ Id, G, = G, the usual Green function of
-3%/at? with the Dirichlet boundary conditions on [0,7r] , name-

1y
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(/5 )(3r - ¢t) if Ottt £,

G(t'l) =
(t/a)(x = 8) 42 O£t&a<ar .

Therefore, if 0<s<t <N |, we have 0 < - t &« o - 3 and hen-
ce
0£G(t,8)/8in 8 € 8(w - 8)/o 8in s £ C
as 1lim s/sin s = 1im (& -s)/sin s = 1, and similarly for
40 L 24

O<ts<s<x , Thus, all the conditions of Proposition 2 are
satisfied and hence
\x‘co £ Afx Px"(8) + x(¥)) sin ¥ at = A 12" + xl
- ax
for all x =X + ¥€D(L) with X = ¢ sin (-) and ]‘; ¥(t) sin t at=
= 0,

Example 2. For a less direct application of the above re-
sult, let L, be defined by D(L;) ={xeC'(I): I = [O,s] ,
xec! (1), x" is absolutely continuous on I and x(0) = x'(0) =
= x"(x) = 0§, Ly;:D(Ly)c c‘(I) -—>L‘(I). X =x" ~x', 80
that I‘i ls closed,

ker L, = soaa {1 - cos (<)}

Inm L, =«\yeL'([)= j, yott sin t @t = 0%,

Let y = z', 8) thut, as %{0) = 0, x(t) = J;]t y(s) ds, ana
y(0) = y(at) = 0y =x" - x' = =y" -y,

Therefore, by Fxample | applied to y, we have, for ali y = ¥ -

+ e (L) witi 7(t) = ¢ sin t and fo" F(t) sin t dat = 0,

\9‘(“0 £ AVEY ¢ Flggy = Ay +ylgy = Al 4 xt
Consequently, &3

» (t) = y(t) =c sin t + F{t)

we huve

j:.+) - ¢ gin (~)|c°sl\.|x"' + "‘sin



1x(+) = o(1 = cos (+))) o = L[ Foran] o oAbz o xtlyy,

for all x€ D(L1). Thus, if we define the bounded linear operator
p:ct (1) — ¢'(1) by

(ex) () = [(2/7) [T x*(8) sin & as] (1 - cos 1)

it is easy to check that Im P = ker L, and that P2 = P so that .
we can teke G'(I) = ker P, Thus, if we write x(t) = X(t) + X(t)
with ¥ = Px and ¥ = (I ~ P)(x), then, with the notations above,
x(t) = ¢(1 - cos t), and the above inequalities can be written

\'i'lco cAlx + x! |sin' lf\co & AA]xm + x'lgin
i.e.

~ .
|x|c1é(1 +ar) Alxm + xt ‘sin’

3. An existence theorem for abstract boundary value problems.
Let now f£:Ix RE*1 —» R be such that £(t,+) is continuous on
Rk+1 for a.e, t¢I and f(+,y) is measurable on I for each ye¢ Rk+1.
Assume moreover that for each r >0, there exists a.€ L1 (I) such
that

£(t,5) 1< a.(t)

whenever te I and |yl{<£r, Such an £ will be called a Carathéodo-
ry function for ! (1),

Let us introduce the following condition of Ward type (see
[9) and [2 - 4, 10) for various extensions).

(£4) There exists ¥ ¢ 1! (I) end € = £ 1 such that I«ﬂy >0
and

(6, 7)) 2 € £(t,y) + y(t)

for a.,e. t¢l and all y¢ Rk"’1_

Such a condition expresses the fact that f is either bounded
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below or bounded above with respect to y.

We shall oconsider the following abstract boundary value
problem
(3.1) (@) = 206,x(8),x (1) ..., x (1)), tel

where L is a linear operator of the typ; oconsidered in section
2 and satisfying moreover the following compactness condition.

(L,) The inverse of the operator LiD(L)c ¢¥(1) — (1)
is compact.

The oconditions (L) to (L4) and (f,) are not sufficient
to insure the existence of a molution for (3.1), as shown by
the trivial example

x"(t) + x(t) = gin t
x(0) = x(ar) = 0
for which they are satisfied and which has no solution.

We introduce a supplementary sign ocondition upon f.
(ta) There exists d'= & 1 and @ > O such that

d‘fI £(t, o (%) + V(t),'..,eq(k)(t) + “v'(k)(t))y(t)dt £0
whenever c £ - © and W‘Ck < Al'[lq, , and

5[ 24,098 + ¥ ,een,e 9 (8) + 3 (1)) y(Datz 0
whenever ¢ =~ © end % ‘c“ £ Al'a“,, , where /A 1s given by Pro-
position 1 and ¥€D(L) with [ ¥(t)g (t) at = 0.

We can now prove the following existence theorem.

Theorem 1. Assume that L satisfies the conditions (L) to
(1.4) and that f satisfies the conditions (f,) and (ra). Then
problem (3.1) has at least one solution,

Proof. Let F:C¥(I) — L'(I) be the Nemitsky operator

- 408 -



asgociated to £ and defined by
Fx = £00,x(+),x°(+) ... ,x0(0)),
so that (3.1) is equivalent to the abstract equation
Lx = Fx
in Ck(I), and F is L-completely continuous on CX(I). Let x(t) =
= X(t) + ¥(t), with Teker L and ¥ 65(I), and define G:C¥(I)—>
— 1l (1) by
Gx=(1- mckr‘(a'«; 23, n = lyly 1Y) g
so that G is odd, L-completely continuous and
IGx)(£)1 £ m /2

for a.e. t€I, By Theorem IV.3 and Proposition II.18 of [8],
(3.1) will have a solution if the set of possible solutions of
the family of equations

(3.2) Ix = (1 = A)Gx + APx, A elo0,1l,
is a priori bounded independently of A , Let A& [0,1[ and x
be a possible solution of (3.2). Then,

(3.3) 0= (1-=2) II (6x) (£)y (1) at + A [, (Px)()y (%) at
and

[ (91 (et 20-A) § HGx) (8] y ()8t + A[1(FR) (D)l (t)at.
Using condition (f) and (3.3), the last inequality implies that

\Lx|1(£(1 - Jx)\x\,‘,/z + A "fz (Fx) (%) y ($(at) +
Al a®y a0 -2 \rl/2- e 0 -0) [ G0y
() at + A _[I (D yB)at£(1 = A) Iyly + A Il = Iyly -
Consequently, using Proposition 1, we have

(3.4) |'i’|ck4/\.\7\\r.

It we set X(t) = ¢ ¢ (t), then by (3.4) and condition (f,) we
get, if ¢ = - ,

- P -
(1=2)y jl « +lx(ck) T(t) y (£) at + d’J\fI 2(t,x(t) yous
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ooz () (1) at = (1 =2)(1 4 121 e ¢
+ A [ 2(t,0q (1) + F(t),eeey0g (1) + EX (1)) y(w) at <
£(1-2)(1 + l‘ilck)'1vlo£-(1 )1+ \;\ck)" me < o

so that (3.3) cannot hold. Similarly if ¢ Z@ , which implies
that we have necessarily
lel < ©»
and hence, by (3.4),
ix\cké \°?‘ck + Ii\ck < @\q}ck + Alyly=r
and the proof is complete.

It has elready been noticed that the sign oondition (12)
oontains as special case Landesman~Lazer conditions of the fol-
lowing type. .

(£;) k = 0, there exist functions o, €L'(I) am J_e1'(X

such that
2(t,y) = d,(¢) i y2o0

£(t,y) €« J_(t) if y<o,
and the measurable functions &, and w, defined by

@q(t) = lim sup 2(t,y), &p(t) = lim inf £(t,y),
2>~ a0 g+

are such that
J, sy ymat <0< f; @0 yat.

We give a proof for ocompletemess.

Proposition 3. Conmdition (12') implies condition (f,)
withk = 0 and d'= 1.

Proof. If it is not the case, there will exist sequences
(o,) and (Vn) with \’Vn lcoé./\\'f\Y such that either ¢ —» - o0
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and
Jte, 0 (9) + F () w(®) at>0

or such that en—-> + 00 and

J 1, @(8) + F() ¥ (+) av<o.
Considering, say, the first case, we have, for a.e, teI,
o, P (t) + ?’n(t)—» - o0

it n—>c0 , and hence, by Fatou ‘s lemma,
041lim sup I 2(t,0, @ (1) +F () y (%) at =
efl lim sup £(%,0, ¢ (t) + V() v (t) at <
< f; Un sup £(t,x)y (%) dt = fI “q () y () at<o,
a contradiction.

One can show gimilarly that the following condition (15)
implies condition (ta) with k = 0O and d'= - 1,
(£3) k = 0, there exist functions o}, cL'(I) and dJ_eL'(D)
such that
£(t,y) & d (t) if 320
2(t,y) = J_(t) 1t y<o0
and the measurable functions 4y and @, defined by
t lim inf f£(t,x) t) lim su £(t,x
fLZ()“v:--»-«;vo (8,3), ¢y -v.-a‘ng (+,3)
are such that
[, e w0 at<o < Ji @0 ¥ (1) as.

Let us mention the following obvious Corollary of Theores 1.

Corollary 1. Assume that L satisfies conditions (L,),(L,),
(L_-;),(L4) end that f satisfies condition (f;) and (fz') or (£3).
Then the problem

(Lx) (¢) = £(t.x(t))
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has at least one solution.

In perticular, if f(%,x) = h(t) - g(x), with hel' (1),
gR—> R is continuous, g(x) = 0 for x= 0, 1lim sup g(x) = - 0,
then condition (f;) holds with €= 1 end o

1lim inf f£(t,x) = h(t) = lim sup g(x) = + oo,
X3 = @ X~ — @0

1im sup £(t,x) = h(t) - 1lim inf g(x) = h(%),
X=y 4+ 00 X —> + o0
so that condition (t'z') becomes here

Ji )y (1) at<o.

In the special case where Lx = x" + x with the Dirichlet boun-
dary conditions on [0,#], ¥(t) = sin t, all conditions (I,),
(L2),(L3'),(L4) are gatisfied (see Example 1 in Section 2) and
we obtain the generalization of the results of Aguinaldo-Schmitt
and Castro announced in the Introduction.

If £(t,x) = h(t) - « exp x, with he L'(I) and o > O, then
condition (f;) holds with € = - 1 and

}(iin_)%_nfw £(t,x) = h(t), ]‘,.‘12’11120 £(t,x) = - a0,
so that condition (15) becomes

0 < j; h(t) v (t) dat.

In the special case where Lx = x" + x with the Dirichlet boun-
dary conditions on [O,ar] , we again find the condition

o<f1 h(t) sin t at

announced in the Introduction., Notice that when o¢ < 0, our re-

sult can also be applied and furnished the existence condition
fx h(t) sin t at<oO,

but, in contrast to the case where o > 0, the situation with

o < 0 can also be treated by the method of upper and lower
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solutions (see e.g. [ 7], Chapter 32). Notice that those condi-
tions are also necessary for the existence of & solution.
As a last example, let us consider the following boundary
value problem
(3.5) x™ (%) + x'(t) + o« exp [x(t) + sin x'(t)] = h(%)
x(0) = x'(0) = x'(3v) =0

where heL'(I), I = [0,%] and o %0, It follows easily from |
Example 2 that a necessary condition for the existence of a so-
lution of (3.5) is that

(3.6) ocf:h(t) sin t at>0.

Combining the results of Exemple 2 with Theorem 1, it is easy
to show that this condition is also sufficient.

Remark 1. In the case of nonlinear perturbations of line-
ar operators Whose kernel is made of constant functions, Ward's
growth conditions on the nonlinear term f are of the form

l2(t,y)l «e2(t,y) + Blyl + g (%)
with 3 sufficiently small. Our approach in the setting of a
kernel spanned by & positive function does not seem to extend
easily to such & growth condition with (3 > O and it is an open
problem to know if the resulis of this paper are true or not in
this more general setting.

Remark 2, The same method can obviously be applied to

boundary value problems for functional-differential equations,
as well as to boundary value problems for systems of equations,

with generalized Ward conditions in the line of [2, 3].
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