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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

25(3) 1984 

BOUNDARY VALUE PROBLEMS WITH NONUNEARITIES HAVING 
INFINITE JUMPS 
Jean MAWHIN 

Dedicated to the mentory of Svatopluk FUČÍK 

Abstracts We extend some results of Ward for nonlinear 
perturbations of linear operators whose kernel is made of con­
stant functions to the case where the kernel is spanned by a 
positive function. Applications are given which extend earlier 
results of Aguinaldo-Schmltt and Castro. 

Key words: Boundary value problems for ordinary differen­
tial equations, jumping nonlinear!ties, Leray-Schauder method. 

Classification: 34B15 

1* Introduction. In his fundamental work on nonlinear non­

coercive equations, Fucfk has emphasized the important concept 

of "jumping nonlinear!ty" and has given in 161 the first syste­

matic study of the Dirichlet problem for second order ordinary 

differential equations with jumping nonlinearities, namely 

xM(t) + g(x(t)) - h(t), 

x(0) m x(sr) M o 

with lim g(x)/x4=l im g(x)/x. As most of FuSik's papers, 
,x~>~co *—.•+£0 

161 not only contains s ignif icant resul t s but also a number of 

interesting open questions. One of them was solved by Aguinal-

do and Schmitt [1] who proved that the problem 
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(1.1) x«(t) + x ( t ) - ocx"(t) » h ( t ) 

x(0) - x(jr-) a 0 

with ot> 0 , x~ a max(-x,0) and h continuous has a solu t ion i f 

and only i f 

(1.2) f h (s ) s in s ds^O. J0 

Aguinaldo and Schmitt use a continuation theorem due to the au­

thor (see e.g. 18J) and obtain the required a priori bounds by 

a delicate argument linked to the special nature of the nonli­

near terra in (1.1). Their result was generalized by Castro [5J 

who proved the sufficient condition (1.2) for the more general 

problem 

(1.3) x"(t) + x(t) + g(x(t)) » h(t), 

x(0) - x(jr ) -- 0 

with g:R—> R continuous, g(x) *» 0 for x £ 0 and g(x)/x —> cc> 0 

when x — > - oo • Castro 's proof uses a rather sophisticated va­

riational argument which strongly uses the sublinear character 

of g. 

The aim of this paper is to provide a partial extension of 

the method initiated by Ward L9J for the study of periodic so­

lutions of semi-linear ordinary differential equations whose 

linear part only admits constant periodic solutions. This exten­

sion allows the kernel of the linear part to be spanned by a po­

sitive function and provides generalizations of the results of 

Aguinaldo-Schmitt and Castro to ordinary differential equations 

of arbitrary order and to some classes of nonlinearities which 

do not have necessarily a linear growth. Finally, the underlying 

abstract tool is simply a continuation theorem of Leray-Schauder 

type [8) and the corresponding a priori bounds are obtained in 

a rather simple way. 
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In the case of ( 1 . 3 ) , our theorem implies the existence 

of a solution when (1.2) holds when h c L (0 f rt) 9 g(x) » 0 for 

x2"0 and 

lira sup g(x) a - oo • 
y —̂  - oo 

Another easy consequence of our resu l t s i s that the problem, 

with he L1(OfJf) 

xM(t) + x ( t ) + cC exp x ( t ) • h ( t ) 

x ( 0 ) - x ( j f ) * 0 

with o G > 0 has a solution i f and only i f 

r* 

(1.4) J0 h(t) s in t d t^O . 

Finally, our method easily shows that (1.4) is also sufficient 

for the existence of one solution for the problem 

xM« (t) + x»(t) + oc exp [x(t) + sin x1 (t)J - h(t)f 

x(0) = x'(0) m x'(^f) . 0. 

2. Preliminary resul ts on l inear operators. Let I » [ a f b J f 

k > 0 an integer, C (I) the Banach space of real functions of 

class C on I , with the usual norm i u i v • . K n max iu***'(t)| , 

L (I) the Banach space of real functions L-integrable on I with 

the usual norm 

I ul - » / .u(t)*| dt. 
L* I 

Let L:D(L)cC ( I ) — * L (I) be a closed linear operator having 

the following properties. 

(L.j) ker L « span^cjpj f with <j> e D(L) such that <$ ( t )> 0 

for a .e . t a l and J" y ( t )dt * 1. 

(L2) Im L - s^y&L^I) : f y ( t ) y ( t )dt » 0} for some 

if e L°°(I) such that f <p (t) y ( t )dt = 1 and f ( t ) ^ 0 for a .e . 

t £ l . 
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Let us denote by Iy(I ) the Banach space of rea l functions 

L-integrable on I with the norm 

U l y - Jj lu(t)l y (t)dt f 

and l e t us introduce the following closed subspaces of C ( I ) , 

L 1 ( I ) f 1^(1), 

# (I) i s a topological direct flummand of ker L in C*(I) f 

L1(I) - < y 6 L 1 ( I ) : ^ y ( t ) r ( t )d t - 0 } f 

Iytt) - -tycL^I): St y(*> r ( t ) d t " oJ* 

We introduce another assumption upon L. 

(L^) There e x i s t s a continuous l inear operator A:C (I)~-> 

~> L1(I) such that L - A:D(L)c C k ( I ) -* - L1(I) i s one-to-one 

and onto and such that for some M£0 and a l l y c L ( I ) f one has 

ICL- A) - 1 yl k * M l y L 
C " 

Proposition 1, If conditions (L.j) to (L-%) hold, there ex­

i s t s A 2. 0 such that, for each x • x + x c D(L)f with x c k e r Lf 

x є C ( I ) f one has 

I3ÉI j j í A l l ^ l ^ - A l l i l ^ 

Proofs The res tr i c t ion of L to D(L)r.C (I) being one-to-

one and onto L II), i t s u f f i c e s , by the closed graph theorem, 

to show that th i s res tr i c t ion i s a closed operator. By condit i­

on (L 3 ) f (L - A)"" : l i ( I ) — > C (I) i s continuous and hence 

L - A:D(L)cC ( I )—> Iy(I ) i s closed. Let (x^) be a sequence 

in D ( L ) A Ck(I) such that x^~> x c T ^ d ) and La^--* fttyl) i n 

L^(I). Then Ajf̂  —> Ax in L1 (I) and hence in I.y(I) so that 

(L - A)*^—> f - A* in L^tt). By the closedness of L - A as a 

mapping between D(L)e Ck(I) and Iy(I) f we have ic D(L) and 
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y - A x « L x - A x f so that y » Lx. Thus LsD(Ii )c3 k (I) - * V^CD 

i s closed, and the proof i s complete. 

In our applications, L w i l l be a d i f ferent ia l operator and 

condition (L-J can often be deduced from the following more con­

crete assumption. 

(Lp k » 0 and there e x i s t s A:C°(I) —> L 1 (I ) l inear conti­

nuous and G A e C ° ( I ^ I ) such that L - A:D(L)c C°(I) —> L1 ( I ) i s 

one-to-one and onto f 

(2.1) (L - A)-V(t) - JГ Gж(t,в)y(в)dв, t £ І 

and G A /f e L ° ° ( I x I ) . 

Proposition 2. If conditions (L-),^) and (L^) hold, then 

the conclusion of Proposition 1 is valid with k » 0. 

Proof. By (2.1), we have, for each y£ L (I) and tel, 

|(L-Ar1y(t)l « »/x CGA(t,s)/r(s)3 y(s)y(s)dsl _* 

*U A /Yl «, / i \y(s)ly(s)ds - .GA/yi J y l y * 

Hence condition (LO with k » 0 holds and the result follows from 

Proposition 1. 

Example 1» As a first example, let L be defined by D(L) » 

» 4x£C°(.Of*r3 : x is of class C on I » tOf .jrJ , x' is absolutely 

continuous on I and x(0) « x(tt ) » 0*, L:D(L)c C°(I) —> t1(I)» 

x *—> - x" - xf so that L is closed, ker L » span I sin (*)}# 

Im L » -vyeL1(I): / y(t) sin t dt - 0) and we can take 3°(I) * 

»^X€C°(I): / x(t) sin t dt - 0}. 

Moreover, for A « - Id, G^ * G, the usual Green function of 

-d2/dt2 with the Dirichlet boundary conditions on [0,^3 » 

iy 
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r ( s / # ) ( Sf - t ) i f 0 £ s . 6 t £*c , 
G(t fe) - \ 

I ( t / * )( * - s) i f O-^t^a^ ?r -

Therefore, l f O < 8 £ t < - * f we have 0 < st - t * jr - 3 and hen­

ce 

0 £ G ( t f s ) / a i n s * s( JT - s ) / jr s in s ^ C 

as lim a/s in s • lim (jf - s ) / s i n s • 1 f and similarly for 
4-*0 A - * * 

0 < t £ s <rar • Thus, a l l the conditions of Proposition 2 are 

s a t i s f i e d and hence 

Ixl _ £ A f I x«(t) + x ( t ) | s in t dt - A I x" + x l 4 f l QO JI s in 

for a l l x • "x + xcD(L) with x - c s in (•) and f x ( t ) s in t dt* 

« 0. 

Example 2« For a l e s s direct application of the above re­

s u l t , l e t L1 be defined by DCL-) » - { x € C 1 ( I ) : I - t 0 , j r j , 

x e C ( I ) , x" i s absolutely continuous on I and x(0) = x ' (0 ) « 

• x ' ( j r ) - 0 i f L . ,:D(L-)cC1(I) —* I-1*!), x t-* - xMI - x \ so 

that L1 i s closed, 

ker L1 « soa.i (1 - cos ( • ) } 

Im L, =. A y e L ^ I ) : f yCt) s in t dt • :% 

Let y s- x ' , s-» that, as x£0) a 0 f x(t) • ft y(s) dsf and 

y ( 0 ) w y ( # ) -- 0 f - x M - x» • - y" - y . 

Therefore, by Fxample 1 applied to y f we have, for a l i y • f -

* y€ I>(L) wlfci- y ( t ) * c s in t and f* y ( t ) s in t dt • 0, 

» * I 0 * A I » - • y i r t n - A l y " + y , s i n - • A l x , , , + x l , s i n -*»• 
Consequently, &a 

1 tfc) - y(t) * c sin fc * y£t) 

we have 

i : ..) ~ c sin (Ol 0 . f e A l x « « -> y«l B i a 
C 



I x ( - ) - c(1 - cos ( O ) l 0 « \f y ( s ) d s | Q ^ J T A I X " ' + x « i s i n 

c c 
for a l l x€D(L .j). Thus, i f we define the bounded l inear operator 

P:C1(I) —> C1(I) by 
(Px)(t) » t(2/jr ) f* x f ( s ) s in s ds ] (1 - cos t ) 

Jo 

2 i t i s easy to check that Im P * ker L-j and that P = P so that 

we can take C (I) » ker P. Thus, i f we write x ( t ) =- x ( t ) + x ( t ) 

with x a- Px and x » (I - P ) (x) , then, with the notations above, 

x ( t ) » c(1 - cos t ) , and the above inequal i t i es can be written 

IxM n -6A .X"1 + x1 I , „ , I Set ft * tfAi x"« + X1! .„ «o sin* QO s in 

i .e . 

ix*! 1 * (1 + sr ) A I x"« + x« i s i n . 
c 

3. .An existence theorem for abstract boundary value problems. 

k+1 
Let now f:I*R — > R be such that f(t,*) is continuous on 
k+1 k+1 

R for a. e. tel and f(»,y) is measurable on I for each y€ R • 

Assume moreover that for each r>0, there exists a € L (I) such 

that 

lf(t,y)|*ar(t) 

whenever t e l and l y i ^ r . Such an f w i l l be cal led a Caratheodo-

ry function for L ( I ) . 

Let us introduce the following condition of Ward type (see 

193 and [2 - 4, 103 for various extensions) . 

(f-.) There ex i s t s y c L1(I) and e • - 1 such that I r l y ^ O 

and 

I f ( t , y ) | *£ g f ( t , y ) + r(t) 

for a. e. t £ l and a l l y tR^ + 1 , 

Such a condition expresses the fact that f i s e i ther bounded 
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below or bounded above with respect to y. 

We shall consider the following abstract boundary value 

problem 

(3.D (Lr)(t) - f(tfx(t)fx'(t)f...fx
(k)(t))f t€l 

where L is a linear operator of the type considered in section 

2 and satisfying moreover the following compactness condition. 

(L4) The inverse of the operator LlD(L) c C^I) —> L1(I) 

is compact. 

The conditions (L^) to (L-) and (f .j) are not sufficient 

to insure the existence of a solution for (3.1 ) f as shown by 

the trivial example 

x"(t) + x(t) « sin t 

x(0) • x(jr ) • 0 

for which they are satisfied and whioh has no solution. 

We introduce a supplementary sign condition upon f. 

(fp) There exists <?m -t 1 and p > 0 such that 

(̂/j f(t, c<y(t) + v(t),...f09>
(k)(t) + v(k)(t))r(t)dt^O 

whenever o 4. - jo and IT I k <£ A IT'-JT $ and 

cTjJ f ( t f 0 9 ( t ) + T(t) C 9 ( k , ( t ) + v ( k ) ( t ) ) y ( t ) d t 2 . 0 

wheneTer C 2 : p and IT I k £ Ai^rly f where -A i s given by Pro-
c 

posit ion 1 and T € D ( L ) with fx v(t)cp ( t ) dt » 0 . 

We can now prove the following existence theorem. 

Theorem 1. Assume that L s a t i s f i e s the conditions (L.j) to 

(1,-) and that f s a t i s f i e s the conditions (f.j) and (f2)« Then 

problem (3*1) has at l eas t one solution* 

Proof. Let P:C (I) —* L (I) tore the Nemitsky operator 
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associated to f and defined by 

Px . f ( . f x ( O f x ' ( • ) , . . . t x ( k ) ( 0 ) , 

so that (3.1) i s equivalent to the abstract equation 

Lx - Px 

in C k ( I ) f and P i s L-completely continuous on C k (I ) . Let x ( t ) « 

« x ( t ) + 3c(t) f with x e k e r L and x c 8 k ( I ) f and define G:Ck(I)-^ 

- * L 1 ( D by 

G x . d - ixi kr
1(<r<» /2)x(o f n- \ r \ / i v i 1 f 

C L 

so that G i s odd, L-completely continuous and 

| ( G x ) ( t ) U ij/fc 

for a .e . t e l . By Theorem IV.3 and Proposition 11.18 of L83f 

(3»1) w i l l have a solution i f the se t of possible solutions of 

the family of equations 

(3.2) Lx m (1 - X )Gx + X?x, ^ € C O f l C f 

i s a priori bounded independently of A . Let Xe C0f1f and x 

be a possible solution of ( 3 . 2 ) . Then, 
(3.3) 0 • (1 - X ) / ( G x ) ( t ) y ( t ) dt + A j j ( P x ) ( t ) y ( t ) dt 
and 
J1l(I»x)(t)lf ( t ) d t * ( 1 - X) J 1 l (Gx)(t ) j y ( t ) d t + X / » ( F x ) ( t ) l y ( t ) d t . 

Using condition (f.j) and (3 .3) f the las t inequality implies that 

tLx. 4.(1 - X ) l r l y / 2 + ^ e J I ( P x ) ( t ) y ( t ( d t ) + 

+ X J - r ( t ) Y ( t) dt . (1 - X) l r * r / 2 - & (1 - X ) J7 (GxHt)y 

(t) dt + x$ ^ (t)y(t)dt.*(i - x) \r^ + ^ i r V • ^ ^ ' 

Consequently, using Proposition 1 f we have 

(3.4) l x l k * A M Y -

If we set x ( t ) a c cp ( t ) f then by (3.4) and condition ( f 2 ) we 

ge t , i f c 6z - p> , 

(1 - X)n J (1 + Ix{ k ) " 1 x ( t ) Y ( * ) df + <TA/ f ( t , x ( t ) , . . . 
* c -* 
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ЛЪ)fЪÌ\ш,f+A Л+ - fЛ - ^ U 1 J. I ^ ţ 1-1/ 

c* 
. . . t x w ( t ) ) y ( t ) dt - (1 - Я ) ( 1 + I x l k Ґ П o + 

+ cfA^ f ( t t c 9 ( t ) + x ( t ) M . . f o ?

( k , ( t ) + ' x ( k ) ( t ) ) Y ( t ) dt £ 

^ ( 1 - 3 t ) 0 + IxM k ) " 1 ^ o - ^ - ( 1 -^t)(1 + H I k ) " 1 ̂ f <: 0 

00 that (3*3) cannot hold. Similarly i f c > fi> , which imp l ies 

that we have necessarily 

|c I < f , 
and hence, by (3«4) t 

i-\,k* >c<yick
+ [1

 ck < p^i c k + * i * V R 

and the proof i s complete. 

I t has already been noticed that the sign condition ( f 2 ) 

contains as spec ia l case Landeaman-Lazer conditions of the f o l ­

lowing type. 

( f 2 ) k « Ot there ex iet function© of + €L 1 ( I ) and cT.€.L1(I 

such that 

f ( t t y ) > <fjt) i f y * 0 

and 

f ( t t y ) * <fj%) i f y * O t 

and the meaeurable functions ^ and (i2
 d « f l n e d *ZT 

(*«(« « lim sup f ( t t y ) t xc 2 ( t ) « lim inf f ( t t y ) t 

are euch that 

Sj ^ ( t ) y ( t ) d t <0*c fx <u , 2 ( t )Y( t )dt . 

We give a proof for completeness. 

Propo0itlon 3 . Condition ( f 2 ) imp l ies condition ( f 2 ) 

with k • Oand / • 1. 

Proof. I f i t i s not the casey there w i l l exiet sequences 

(c n ) and (v*n) with \?n\ 0&J^\f\ much that either cn~-> - eo 
C i 
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and 

Jiřt*»cn<ř<*) + • t t (*))Y(*) ***<> 

or such that ©.„ -> + oo and n 

J i f ( t f c n ^ ( t ) + v | 1 ( t ) ) r ( * ) d t * 0 . 

Considering, say, the first case, we have, for a.e. t € l f 

onCf (t) +irn(t)—> - oo 

i f n —> oo , and hence, by Fatou s lemma. 

0-6lim sup / f ( t f o 9 ( t ) + ^ n ( t ) ) y ( t ) dt £ 

£-1 lim sup f ( t f e Y 1 9 ( t ) + • Y 1 ( t ) ) y ( t ) dt * 
I nv—> oo u ** 

£ f lim sup f ( t f x ) y r ( * ) dt - X ^ i ( t ) t i r (* ) dt<O f 
"I >c -> — oo •* ' ' 

a contradiction. 

One can show similarly that the following condition (fg) 

implies condition ( f 2 ) with k « 0 and cT« - 1. 

(fg) k « 0 f there ex i s t functions / + 4 L 1 ( I ) and / e l 1 © 

such that 

f ( t f y ) .6 cT+(t) i f y £ 0 

f ( t f y ) £ ctjt) i f y.*£0 

and the measurable functions ^ and ft-2 defined by 

(U.9(t) - lim inf f(tfx)f ^ ( t ) » lia sup f(tfx) 
<- •)<—>... «-i • * _ * « * « ? 

are such that 

J- ̂ (t)Y(*) d t < 0 < î  (U,2(t)i|r(t) dt. 

Let us mention the following obvious Corollary of Theorem 1. 

Corollary 1. Assume that L satisfies conditions ( L ^ ^ L ^ ) * 

(Lpf(L4) and that f satisfies condition (f-,) and (f2) or (fg). 

Then the problem 

(Lx)ct) • f(t.x(t)) 
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has at l eas t one solut ion. 

In particular, i f f ( t f x ) « h(t) - g ( x ) , with h € L 1 ( I ) f 

giR —> R i s continuous, g(x) » 0 for x2rOf lim sup g(x) » - oo , 

then condition (f.j) holds with e « 1 and 

lim inf f ( t f x ) » h ( t ) • lim sup g(x) « + oo , 
* _ } . ~ CO , * — > — - « 

lim sup f ( t f x ) « h ( t ) - lim inf g(x) « h ( t ) f 
) j - y + <» x—> + «x> 

so that condition ( f | ) becomes here 

fx h ( t ) y ( t ) dt*£0. 

In the specia l case where Lx « xM + x with the Dirich let boun­

dary conditions on C0ftfr3 f y ( t ) » s in t f a l l conditions (1^) f 

(L2) f(Lo) f(L-) are sa t i s f i ed (see Example 1 in Section 2) and 

we obtain the generalization of the resu l t s of Aguinaldo-Schmitt 

and Castro announced in the Introduction. 

If f ( t f x ) « h ( t ) - oc exp xf with h £ L 1 ( I ) and oc > 0 f then 

condition (f-j) holds with £ » - 1 and 

lim inf f ( t , x ) « h ( t ) , lim sup f ( t , x ) « - oo , 

so that condition (fS) becomes 

0 < j ^ h ( t ) i f ( t ) dt. 

In the special case where Lx « xw •*• x with the Dirichlet boun­

dary conditions on CO,err 1 f we again find the condition 

0 < f h(t) sin t dt 

announced in the Introduction. Notice that when oc < 0 f our re­

sult can also be applied and furnished the existence condition 

f h ( t ) s in t d t<O f 

butf in contrast to the case where oc > 0f the situation with 

oC < 0 can also be treated by the method of upper and lower 
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solutions (see e.g. [7] f Chapter 32). Hotice that those condi­

tions are also necessary for the existence of a solution. 

As a last example, let us consider the following boundary 

value problem 

(3.5) x m (t) + x»(t) + cc exp Ex(t) + sin x»(t)J - h(t) 

x(0) m x'(0) - x*(.Jf) - 0 

where h € L (I) - I « C0fur3 and o C 4 0 . I t follows eas i ly fr©» 

Example 2 that a necessary condition for the existence of a so ­

lution of (3.5 ) i s that 

(3*6) ocf h ( t ) s in t dt>0. 

Combining the resu l t s of Example 2 with Theorem 1, i t i s easy 

to show that th i s condition i s also suf f ic ient . 

Remark 1. In the case of nonlinear perturbations of l i n e ­

ar operators whose kernel i s made of constant functions, Ward's 

growth conditions on the nonlinear term f are of the form 

l f ( t f y ) l -6 e f ( t f y ) + p l y ! + # - ( t ) 

with ft suf f ic ient ly small. Our approach in the se t t ing of a 

kernel spanned by a posi t ive function does not seem to extend 

eas i ly to such a growth condition with (b -> 0 and i t i s an open 

problem to know i f the resul ts of th i s paper are trufe or not in 

this more general s e t t ing . 

Remark 2 . The same method can obviously be applied to 

boundary value problems for funct ional-dif ferent ial equations, 

as well as to boundary value problems for systems of equations f 

with generalized Ward conditions in the l ine of L2f 33• 
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