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HARD IMPLICIT FUNCTION THEOREM AND SMALL PERIODIC
SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS
Pavel KREJCI

Dedicated to the memory of Svatopluk FUCIK

Abstract. In the first part we investigate the existence
of small solutions of the equation F(u) = h in a system of
Banach spaces via "modified Newton'’s method". The abstract
result 1s used in the second part for proving the existence
of periodic solutions of partial differential equations of the
second order.
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Introduction

Recently many new existence results have been obtained in
the theory of partial differentiel equations by means of the
Nash’s iteration procedure which is a modification of the
clasaical Newton’s method. From a more general point of view it
was developed e.g. by Schwartz [15], Moser [81,[9], Ptik [13],
Craven and Nashed [3], Shatah [16], Altman [1], issuing from the
original Nash’s paper [10]. These results are applied in the
theory of PDE’s for proving the existence of small solutions in
the cases when one has some apriori estimates, but with a "lost
of derivatives". This situation:occurs frequently in the theory
of nonlinear hyperbolic equations. The existence proofs are based
either on the use of Moser’s theorem (Rabinowitz [14], Craig [2],
Petzeltovd [12]), or on a direct application of the Nash’s scheme
(Hormander [5], Klainerman [6], Shibata [17],[18]). All these
results are obtained under the assumption that the data (i.e.




right-hand side, initial conditions, if any, etc.) are
sufficiently small and sufficiently smooth.

In the present paper we want to emphasize that in fact,
this theory can be put in a rather elementary framework. In the
firat part we derive sufficient conditions for the solvability
of the abstract equation F(u) = h in a system of Banach spaces
{xP'L}. Our aim is to minimize the requirements on the smallness
and "smoothness" of the data. In the second part we apply the
abstract theorem for proving the existence of classical periodic
solutions to the equation

¢(u, btu,axu,aiu,biu, bxbtu) = h(t,x)

with zero Dirichlet boundary conditions on [0,1], where (i) and
h are given functions.

Throughout the paper, we denote all constants whose values
depend essentielly only on quantities a,b,... by °a,b,...
Especially, cq denotes any constant depending essentially
only on L.

I. Operator equation

1. Statement of the main theorem

(1.1) Assumptions.

(N) Let 2£q5§ be given real numbers and let Nm’Nqué:

N+,N_,N°,N be nonnegative integers such that
N, = max{N_,N_}
N_o= N =
& N

oo

q
¥ = max{N++N°+Nq+Nq-2N_; N +N,; N +N_-N_}
and put
M = 2N+1+N”+1\I_-N°—Nq—NL-1 .

'

(X) Let {XP'L, p=2,0,4,00 , L=0,1,2, ...} be a system of

Banach spaces endowed with norms |.| 1 and let the
’

following relations hold (the symbol & denotes the

continuous embedding):

xPr I+t o xPsl SA9T each p and each L=O




L o xPl for pzp, LzO

X2’L+Np o xPrb for p=qQ,dye , L&EO .
Let xi,N_ be a closed subspace of x2'%_ ana for LEN_
put AT AN I Gl

(S) Let r>1 bYe a given real number and let {Sn}n-o be a

sequence of "smoothing operators™ such that for each L&0,
Kz0, uexP'® there is Snue.xp'L and there exist con-
stants g, such that

(s1) sl & of r(I-K)n lul, g+ LZK, n&O

(L—K)n -
(s2) l(z-sul [ = o r lul) g » LEK=MN_, nZ0.
(F) Let é; > 0 be a given number and let F: DL(F) —*X"’L.

where DL(F) = {uex”’L*'N-'- ’ Iul,,'u < 50} » be a continuous
o

mapping for O=L =M, F(0) = O, which is twice Fréchet
differentiable for O&L=M-N -N_+N_ and such that

(F1) for each v GDL(F) » Ugru € X'°'L"N+, 0 &L &M-N_ ~N +N_

there is
® ! ) )
‘ (V)(\LI :u2)l 2,L & C'L % (1 + lV‘m,}"’No) lu‘\l Q’A‘_-l'No
l).l=L+N+—N°

lulaagn,

(F2) there exists some 5_>0 such that for every ve
oo, M+N _+N
exX o -, |V|w’N0+N_< 8__ end for every heXZ’M

2
there exists a unique solution u eXO*M"N.. to the

equation P (v) u = h , such that

buly & g (lhlZ.L * ‘V(M.L+NO+N_ h‘[2,o)

holds for each L, O£LEM.
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{1,2) THEOREM. Let (1.1) hold . Then there exists some é&:>0

auch that for each h eXz’M
2, N+N
Xo' -

N |h|2,M < 5N there exists at least

one solution ue to the equation F(u) = h.

(1.3) Remarks.

(.) Since there is x2'N*N_ o x= N, , the value of F(u)
in the theorem is well defined.

(1i) In the applications, the number N, characterizes the
"order" of the equation, N+-N_ is the number of "lost
derivatives", N, is the highest order occurring in the
"argument of the nonlinearity".

2. Iteration scheme

The iteration process is almost the same as in [5],[6] or
[Vﬂ . Ve are to solve the following sequence of linear equations

(2.1) 7! (0) ug =

. ! _
(2.&)o F (Souo) Wy = ho
!
(2.2)n F (Snun) W= hn
: n-1
where u, = u, + E= Wy
1)
hy = Sge e = - F(uo) + P (0) ug
n-1
h, = Spe, ¢ (8p= Spq) %;% ex
en = fhte,
= - oy
f, = Plu ) + Flu_4) + Filu_4) w_,
gy, = (P(S;_qu ) = P/ 1)) w .
ie check easily that one has
n
(2.3) F(un+1) = h - e 4 - (I-5) §=o ey
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First, let heX?'M pe arbitrary. Following (1.1)(F2) we

2,M+N_ e (2.1). There is

find the unique solution uoexo

(2.4) ‘“olz,Lm_ < cLlhlz'L , OSLEM .

For the solvability of (2.2)o we require

(2.5) IsouolmNo < &
lu‘olm,,l\lo < 50

lsouol-o,No-r-N_ < 4 .

These conditions are satisfied if h is taken sufficiently
small, say [nl, , < 8, . On the other hand there is
»

1
n
(2.6) lholz,L = lsoeolz’L P cL[lF ('“o)(“o'“o)lz,o dr S
= % lAl:IW_,,"Na(1 * luolw’)\*No)!uol q'Afooluol&’}‘S"No !
so that the unique solution woexi'M+N- of (2.2)o satisfies

Wolp,par_ & o1 (Imola,n + Iugla,0 Inglp,o) » 08L&

Let € >0 be for the present arbitrarily chosen. From
(2.4) and (2.6) it follows that one can find some 55 , 0¢ 3£§ €
such that if

2.1 nlyy < & »

then there is

(2.8)o , O£LEM.

wolo,an_ & €
Put
(2.9) g = W+ % .

Our next goal is to choose € in (2.8)  in such a way that
the inequalities

(2.8), ¢ r(-T+L)k

lwela,pen_ 2

hold for arbitrary integers kO and O=£L<ll. The constant
r>1 1is introduced in (1.1)(3).
2 -
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For this purpose we proceed by induction over k. We make
the following assumption:

(2.10) For some & >0 and n&0 there exists the sequence

n 2 ,M+N_
{'k k=0

respectively, satisfying (2.8)k, k=0,1, ... ,N.

cx? of solutions of {(2.2)k, k=0,1, ... ,n},

3. Estimates
(3.1) Proposition. ZLet (2.10) hold . Then there is

e, € » O=LSN

1) l“ln-Hl 2,L+N =
- (= 3’+L)(n+1)

(ii) (%+1I2,L+N é c Er N<LEaSM
(111) lunlz’L+N % c &€, O&L=N
W) lugly gy = o €xTED 0 yargy

() =Sl ray = op £ 2 (T @D gy

(vi) [(I'Sn)“nlz,mm_ = cLsr('f"L)(n*”, 0SLEM

(=27 +L+N_+N +N el Q'ZN—) (n+1) ,08L%

2
(vii) |fn+112'Lch& r $M-N -N_+N_

(vit1) lgp,qlp, S0y, g2 (~RPHIAN AN 4N 4Na=2N ) (n41) oorey LN

(1x) e 415 LscLe 2 (-2 +Lal W #N o+ Nq=2N_) (341) ogray N N+ _
e 2
e < ¢ & 0=2L<M-N, ~N_+N
= k 2,L L= + -
k=0 “12,M=N_-Nj#+N_
n
(x11) I(I_S ) S e l < CLEZr(-2§+HN++N°+NQ+N6—2N_)(n+1)’

k

2,L .
’ 0 2L &M-N N +N_
n

2 (=2¢+L+N +N otV N =2N_) (n+1
(x111) | (I-8, ) - ek]z g op (-2 Vg2l (ns1)
oL 0 & LEM-N ~N+N_
£2p (-2p+IN ++N0+I\Iq+N ﬁ—ZN_) (n+1) ,

(xiv) |n 0&L .

ail2,n €0
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Pr oo f. Using (2.10), (2.4) and (2.6) we obtain

B (=F+L)k
[ugla, 1am_ E welo, o, = € (op + Lot )
In the case L=N there is E) :r("“mkg é r{-T+L)k s o
for L>N we have kyf—bj PP 1D () (ae1) 5B (L)
= k-o

£ cp, r('“L)(nﬂ), and (i) - (iv) follow easily.
For proving the inequalities (v) and (vi) we use (1.1)(S) and
(ii), (iv). There is

l(I-Sn)unIZ,IﬁN_ £ p(L baplo wen & op € p(=0+L) (ne1)

which yields (vi) ((v) is analogous).

Next, we express

f /(1 0‘)F(u+¢rw)(w,w)d°’

n+1

&n41

Using (1.1)(F1), (X) and (N) we obtain for OZLEM-N -N +N_

12041l 2,1, & %TL;N?;— (+ l“n12,3,+No+N., * l"nlz,)‘#nomw )e

]

- / P (u_+ o (S ~I)u_ ) ((I-5_Ju_,w ) ac

: l“’n‘z,a,_m o*Vg |"n|2,;\3+n o*Fg
'Snn‘e,L‘écL%,—;m——?; L P R  A PIP WS SR
| (I‘sn)“nl 2,040y
Therefore, we estimate both lfn+112,L and [gn+1l
hence lZ,L) from above by

2,L (and
le1:x+1
2 1+ r(—'5‘+7\1+N°+Nw—N_)(n+1)).

=LK =N, . o254 A AgH2N 4N +Ns 2N ) (n41)

¢ €
2 (=2 +L+N +N N 4N s =2N_)(n+1)

which is (vii). (widd) (==}

% ¢ €

The assertions (x) and (xi) are similar to (i) - (iv).
Ve use the fact that the estimate
leklz,L £ o €2 r(-23'+L+N++N°+1\Iq+1\7& -2N_) k

holds for each k=0,1, ... n+1525and that one has



l\fI-I‘I+—Nn+N_ = 2N-N+—N°—Nq—Na +2N_+1 .

The proof of (xii) and (xiii) is analogous to (v) and (vi)
and we don’t reproduce it here. For proving the last assertion
(xiv) we observe that

Is = g, rL(n+1) le

n+1en+1!2,L n+1|2,0

holds for arbitrary L&0. Further, for LEM—N+—N,.+N_ we have
n n n

(s —s)zjel P l(I—S)E:ZeI +l(1—s )}:el

I o+l "0’ 45 klo,1 n’ o Klo,1, 195 Elg,1]
so that we can use (xii) and (xiii), for L>N-N _-N +N_ we obtain
( ; n n

Sp1™ S) T @ l = ls T e l + !s
n+1 n = k 2,L n+1 =0 k 2,L

. n
= cL r(L-M+N++1\I~—l\._)(n+1) Izekl
k=0 K12, M-N -N+N_

n

ey
n 45 Klo,1,

and using (xi) the proof is complete.

4. Proof of the mein theorem.

Up to now we have shown that for an arbitrarily chosen
€ >0 we can find some & >0 such that if |hl, , < &, the
t4

equations (2.1) and (2.2)o have solutions u,, w,
regpectively, satisfying l“ol2,L+L- = OLE ’ ‘%'2,L+N £ &,

2,M+N
€ XO' -

0=L=k. Purther, assuming (2.10) we have derived the estimates
(3.1).

By (1.1)(®2) the sufficient conditions for the solvability
of (2.2) ., are

(4.1) lsn+1un+1l°°,N°+N_ < 5_
lun'oo,No <,
|Snunloo,N° < 6;
lu

n+1 I oo,No < 50

Since there is 1+ N_ & U  + Ig+ N_, we see that by (3.1)
(i), (iii) the conditions (i.1) are fulfilled provided € is
taken sufficiently small.
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Following (1.1)(F2) the solution w,, ,eXx2/MHli_ oo (2.2)_,,
satisfies the inequality (O£L=M):

lWn+1‘2,l’.-+]\!__ = °y (,11n+1!2,L + lSn+1un+1’oo,L+No+N__ lhnﬂlg'()ﬁ
Lin+1) |, |

Using (3.1)(i),(xiv) we find the estimate

<

£ o (h‘nn‘z,L +r n+ 2,N+N_Ihn+1‘2,0) .

2_(=2y+L+N_ +1 +N 4N, -Z
‘wn+1l2,L+N_é cy, 13 I'( L+, “q q ZN-)(IH"I), O£ LEM
On the other hand, by (1.1)(1:) and (2.9) there is
T 1
--'b"-\uh_._4»1*10+I\Jq+1\1(-l -2N_ £ -3 < 0 , hence

<

(4.2) Iwpqlp an 2 2 (T (1) ey,

The constant c¢; in (4.2) is independent of n. Thus the choice

(4.3) € < (max e, LELEUH™
yields (2.8) ..
By induction over n we conclude that we can construct the

. . 3% -2y . L
infinite sequence f{w } _, ¢ XJ* 7'~ of solutions of {(2.2)n§"‘o

provided &g = 511 is taken suf.iciently smell (so that (2.5},
(2.8)0, (4.1), (4.3) are fulfilled) and each v, satisfies
the corresponding inequality (2.8)n. Since the series

P —-/ 3 °o
< & § 2 4g convergent, we gee that {un}n-o
n=C -

wa.l =

n=0 7 2,1+h_

is a fundamental sequence in I(2),IJ+L_ and hence it admits a limit
2, N+ \ . ooy Iv

uex:’ ~. kspecially, u —>u in X *. By continuity of &,

o
F(un)——rF(u) in XW'O. On the other hand, by (2.3) and (3.1)
(ix), (xii) there is

) - nl

n

(I-8,) 3 e =

. z o (
|F(u w,0 =°© \ien+1l2,1‘1,° + 2 klz,n_o ) &

n+1
< ¢ E2r—2(n+1)/3,

hence PF(u) = h, which was to be proved.
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II. A nonlinear equation of the second order

5. Existence theorem.

As an application of the above theory we consider the
problem of the existence of time-periodic solutions of the
equation

2

(5-1) ¢(u, atu' axu! atur aiu. bxbtu> = h(t,x)
with period ®>0, teR', x€ L2 = 10,1[, satisfying boundary
conditions u($,0) = u(t,1) = 0.

The spaces in which the equation (5.1) is to be solved are
chosen in a natural way: we put for L20 and 1£p < oo
Pl o wln), x* - L) end for 1z1 x2T
= fuew2l(a), u(t,0) = ult,1) =03 , where W2rL(N) denotes
the Sobolev space of all real functions u(t,x), t eR1, xe ),

w -periodic with respect to t and having all derivatives up to
the order L 1in Lp(]O,w[x.Q), with norm

L K P
falp = 5= > (//1983 0%l axa )P

P,L K=0 J=0 ( w n‘ t 'x )
(the symbol /w denotes the integration with respect to t over
any interval ]to,to+w[ ).

Similarly, C‘E',(.ﬁ_) denotes the space of all continuously differ-
entiable functions on R 'x fl up to the order 1 and w-periodic
with respect to t, endowed with the norm

lul i é sup {137 ¥ uce, 0, ter’, xell} .

L ¥35 F=0

The existence theorem is stated as follows (the symbol Bid)(o)
denotes the derivative of ¢ with respect to the i-th variable
at the point (0,0,0,0,0,0)).

(5.2) THEOREM. Let w >0, d,>0, N24 be given, N integer.
Put I = 2N. Let ¢ be a mapping of class C'*2 in its domain
of definition D(¢) = [—i, 6016 such that

(1) @@ = o
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(15)  O,f0) >0, d,f0) <0, J;f(0) = 0.
Then there exist positive constants 51 >0, 5N>0 such that if
a1¢>(0) >-51, then for every hex2'M,
at least one solution uexi'N*"l to the equation (5.1).

lhlz’m < (SN there exists

The proof consists in verifying that for the operator
(5.3) Flw) = (f?(/\u) = ¢(u, Opus Qi Biu, 3iu. Bxatu)
the conditions (1.1) are fulfilled.

Putting N, =Ny =2, N_=1, q= § =4, N =Nz =1,

q

N, =2 we check immediately that (1.1)(N) and (X) hold.

Next, we state without proof two lemmas. The first one is
an easy consequence of the Nirenberg inequality (cf. [11]), the
proof of the second one can be found in [9] or [17].

(5.4) Lemma. Let O0%J£K#$I5L, 1%p,q %oco. Then there exist

I, v exq'w

constants cp I such that for every u eXP?
’

c
P»Q, L
there is e

D g & o WD R0

A1) uly g [Vlg, 1k £ ¢p,q,1 (‘u'p.le‘q,L-J +l“[p,llv'q.h-1)'

(5.5) Lemma. Let 50>O, O%L=M+2. There exists a constant
cg 1 independent of ¢ such that for each v eX ®I+2
1]

lvlm’a < 50 there is 4)(/\v)€x°°’1’ and

|¢(/\v)[m,L écé’L 1+ (vloo,L+2) l“¢mL » where
"|¢”,L = Sup{|611 LR aiK¢(S1’ soe gss)l' lsil<60’ OgKéLv
1£1;56 }

We introduce the smoothing operators {Sn} following [51,
[6], [17]. First we define the continuous linear prolongation

operators P, : WI,’JI‘(Q) —»v:I;;L(R1), 14pgoco, OSLENM+1 by
the Hestenes formule (cf. [4]). Then we find & C* -function ¢

= 529 -



«with support in ]-1,1[ such that (see [17])

(v.6) (1) /\P(s) ds = 1

(41) [::Bk‘f(s) ds = 0, k = 1,2, «vu ,M.

¢inally, for uexPl and nzo0 we put

LTy (s (t,x) = [32 % p(x"(t-8)) P(x"(x-y)) B, puls,y) dyds,

where r >1 is an arbitrary fixed real number. We can directly

. «eck using (5.6) end (5.4) that the sequence {sni;o
~otisfies (1.1)(8).

Since the verification of (1.1)(F1) follows from & straight-
“crward computation employing (5.4) and (5.5), for proving the
Theorem (5.2) it remains to show that (1.1)(F2) holds.

<. Linear equations.
Let us consider the linear equation
(1) au+a, Ou+a, du+a, OU + a. du + a 3. Qu = h
e 1 2 7t 3 Vx 4 7t 5 “x 6 “x
and assume
{%.,2) PFor i=1, ... ,6 there ig a:.LeX""”‘H"I and

S A,

la‘i‘ 00,1 i

1323l 0 & T3

13l 0 = §1

inf fa,(t,x), teR', xe N} 2 m, >0

inf f-ag(t,x), teR', x e O} 7 mg >0

a,(t,x) = -1/(8v%) min{;\mz, ms} , where 71 ia the

constant such that for every u €Xi’1 there is
J!)_Iulzzix at £ 1}2[4( thu.l2 + l'bxulz) dx dt , and

2
= —4 .5
A m, *Em

o
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k3 s 1/(41) min {mg, Am,}

[ and the numbers T, fi satisfy the inequalities
Ay + 86+ 55 + YT + (T, + §3) + V0T, + §5 + T) & ’Z\ m,
?\(tS + §5 + vz'l’1) + 1)2(1’2 + §3) + 1)‘('!:4 + 3;5 +3%) & %ms
(2m + 1) T3 + §5 + MT, & 717‘"15

@M-1)T + § + § + MY, = gm

(6.3) THEOREM. Let us assume (6.2). Then for each n e x2 1

2,M+1 e (6,1) and the

there exists & unique solution uexo

inequality 6
. ‘
(6.4)  lulppir = Cp,a;,m, v, 8} (Infp,g + Inly g DL L

holds for every L, OSL&M.

Proof. We use the classical Galerkin-type procedure. Let

hex2’m be given. For mg1 we put
(£,3) — s (t,x) 1, xel
t = TyX teR X € h
KR < ED B gm0t xed s e
Zﬂkl
wka'(t’x) S sin jXx , i is the imaginary unit, “k,j:G-kj‘

The constant vector U = {“kj’ 3=1y e oM, K==, ... ,m}

is required to satisfy the system (ij denotes the complex
conjugate of ij)

6.5)[[(o1 i+ 223 B+ &% B+ 2% B+ 0% B+ 2% B -
- Wy dx at = _w/éhwkddxdt,
==M, e.. om, J=1, ... ,m,

which is & linear algebraic equation of the form
(6.6) A U = H o,
where A~ is a square matrix of the type (3m+1)X(3m+1) .

Let us multiply the (k,j)-th equation in (6.5) successively
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by Ekj apd by -1 ?«ag lej and in both cases sum over
k=-m, .. ,m and J=1, ... ,m. Summing the two relations we
obtain after integration by parts

IL(A% 19,412 - asladlz +a,lgl?) ax at -

= LLe s B v e y® - Fasag®

+ 3Oa, + e, + qey) 1312 4 (ay +AYsy + 8 )Ay Ay +

+ O, dpp + (ag + 0a)qpp + nOJ{p + p) § ax at .
Estimating

(6.7) |/4 a6 O A ax 4t | 2 L, G1gl3 0 + ﬁ”atﬁlg.o )

with M = m5/16 and using (6.2) we obtain
6.8) [gply,0 + [3alo,0 & I RS L

<
S o m Ly, 5t Bl
where "“ is a norm in R3m+1.

From (6.8) it follows that the matrix A  1in (6.6) is
nonsingular, hence there exists a unique solution U, of (6.6).
Moreover, by (6.8) the sequence fu‘ ”1 is bounded in x2 1

Consequently, there exists a subsequence of { H‘} which converges
weakly in 12'1 to some ueXg 2,1, Taking the limit in (6.5) we
see that

(6.9) //{a1uv+azatuv+a auv-Bu—a(av) - Opu- o, (agv) -
-du-(agn }ax at = [/hv dx dt
holds for every v = -'-'.kj and hence for every v¢x§’1. Remark

that (6.9) can be considered as the definition of the weak
solution of (6.1).

The passage to the weak limit in (6.8) gives

€.100  fuly , £ Clagm, v, 6} Inloyo .

In order to obtain further estimates we multiply the (k,j)-th
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equation in (6.5) consecutively by (i '%ﬂ‘)n‘ -G'k:l and

Ald 'g.,"%k)z:["+1 Ek;] , L being an arbitrary integer 1&#L=M.

Summing again over k and J and integrating by parts we obtain
respectively

(6.11) [4{—% 112 - aslaiadl? - ag vyt laxat -
L -
< L (e STyt - 2 (e, ATy Ay +
+ g(ﬂ;‘) (208 % F Moy + eyl Ty + e, 2l Ep.
L-1
Ay . Kg(l‘;1)(3§a4 LRl o ool B gyl 4
+ Mmooy 1 axat,
and
6.12)  AJ[ {(a, + t-pos, - FaaAT 2 4
+ (L+%) btaslai'ax&la + (ag - axas + thas)ai'axﬂ-a?1n}dx at =
AL LA 7 (B) <, D2y - Dag 20 21y

+

L
;(%)(b}éaxa 3y oy - o%a, 0Ty - ofa, 2 Ko oty -

};(g})a“”a:-aﬁ"‘aﬂfaﬁaﬂ - 25 () 81 3L'KE'BI’"1
+ ity } ax at

Now, adding (6.11) to (6.12) and using (6.2) and an estimate
analogous to (6.7) with the same M ve derive the inequality

L+l j2 La .12 L+1

o3 lz,0 + 1050 4lz,0 = °L.fki.mi,'¢i,§i§”at k2,0 *

+ 193041, o) { Inl, o, + g—;‘é lagl o a1 (1T glp 0 +
L-K

+l'bt 3&]2’0)}.

By induction over L wusing (6.10) and (5.4)(ii) we obtain
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L+1 L
(6.13) |6t+ 312,0 + lbtaxﬁlz'o = .
S CL,iA;,m, 1,861 (‘mz,L + Inly o g‘ai‘m,m1).

Hence, the weakly convergent subsequence ZH} of {HS can be
chosen in such a way that B%H converges weaxly to ai‘u in
Xﬁ" and lai"\x(z,1 is estimated from above by the right-hand
side of (6.13) for all L, OSL=EM.

From (6.9) we see that the distributional derivative Biu
equals to some function from X2,O’ hence u is an element of

xg'z and satisfies (6.1) a.e. in R'x . Differentiating
formally the equation (6.1) up to the order M-1 we show by
induction (using (6.13) and (5,4)(ii)) that u is an element

of Xi'M“ end satisfies (6.4) for O=LEM. Thus, the theorem

(6.3) is proved.

7. Completing of the proof of (5.2) and final remarks.

The theorem (6.3) ylelds sufficient means for verifying that
the operator (5.3) satisfies (1.1)(F2). In fact, we have

F(v) u = 31¢(/\v)-u + 32¢(Av)-3tu + 3¢(I\v)~3xu + Bﬂ)(/\v)%iu 4
+ 35¢(Av)-a§u + 36¢(Av)-axatu .

Ifr é:_ >0 1is taken sufliciently small, then for I[vl 0,3 < J_

the zjelations (6.2) hold e.g. for m, = %32¢(0), oy = —%dfﬁ(o),

Ay = 13O + 8,8 =1 for 141,3, 53 = 4 win {Am,,mt

51 = 1—;{;2 min {?rmz.ms} . Using (6.4) and (5.5) we obtain exactly

(1.1)(F2). Thus, the proof of the theorem (5.2) is complete.

(7.1) Remarks.

(1) Another application of this method can be found in [7] ,
where one investigates the existence of periodic solutions



of the Maxwell equations in nonlinear media in the Sobolev

spaces HP'L

of divergence-free vector functions in three
dimensions. In general, the proof in more space dimensions
requires further considerations concerning the prolongation of
domains of definition outside () and the regularity of

solutions of linear elliptic equations.

(i1i) If the operator (5.3) is quasilinear of the type
Bt(<l>1(u, atu. axu)) + bx(¢2(u' atu, bxu)) + ¢3(u, atu, Bxu) .
we can "save" one derivative by putting NO =1.

(1ii) The method remains valid for a nonhomogeneous equation
qb(t,x,Au) = h provided we assume that the conditions (5.2)
(1), (ii) hold uniformly with respect to (t,x) € R'x JL ,
and 3t¢ is sufficiently small.
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