Commentationes Mathematicae Universitatis Carolinae

Pavel Krejčí
Hard implicit function theorem and small periodic solutions to partial differential equations

Commentationes Mathematicae Universitatis Carolinae, Vol. 25 (1984), No. 3, 519--536
Persistent URL: http://dml.cz/dmlcz/106323

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1984

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

HARD IMPLICIT FUNCTION THEOREM AND SMALL PERIODIC SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS Pavel KREJČI

Dedicated to the memory of Svatopluk FUCIK

Abstract

In the first part we investigate the existence of small solutions of the equation $F(u)=h$ in a system of Banach spaces via "modified Newton's method". The abstract result is used in the second part for proving the existence of periodic solutions of partial differential equations of the second order.

AMS classification: $\quad 47 \mathrm{H} 17,35 \mathrm{G} 30,35 \mathrm{~B} 10$

Key words: Modified Newton's method, Nash's iteration scheme, smoothing operators, classical periodic solutions, second order equations

Introduction

Recently many new existence results have been obtained in the theory of partial differential equations by means of the Nash's iteration procedure which is a modification of the classical Newton's method. From a more general point of view it was developed e.g. by Schwartz [15], Moser [8], [9], Pták [13], Craven and Nashed [3], Shatah [16], Altman [1], issuing from the original Nash's paper [10]. These results are applied in the theory of PDE's for proving the existence of small solutions in the cases when one has some apriori estimates, but with a "lost of derivatives". This situation:occurs frequently in the theory of nonlinear hyperbolic equations. The existence proofs are based either on the use of Moser's theorem (Rabinowitz [14], Craig [2], Petzeltová [12]), or on a direct application of the Nash's scheme (Hörmaider [5], Klainerman [6], Shibata [17], [18]). All these results are obtained under the assumption that the data (i.e.
right-hand side, initial conditions, if any, etc.) are sufficiently small and sufficiently smooth.

In the present paper we want to emphasize that in fact, this theory can be put in a rather elementary framework. In the first part we derive sufficient conditions for the solvability of the abstract equation $F(u)=\dot{h}$ in a system of Banach spaces $\left\{x^{p, I}\right\}$. Our aim is to minimize the requirements on the smallness and "smoothness" of the data. In the second part we apply the abstract theorem for proving the existence of classical periodic solutions to the equation

$$
\phi\left(u, \partial_{t} u, \partial_{x} u, \partial_{t}^{2} u, \partial_{x}^{2} u, \partial_{x} \partial_{t} u\right)=h(t, x)
$$

with zero Dirichlet boundary conditions on $[0,1]$, where ϕ and h are given functions.

Throughout the paper, we denote all constants whose values depend essentially only on quantities a, b, \ldots by $c_{a, b, \ldots}$. Especially, c_{L} denotes any constant depending essentiaily only on L.

I. Operator equation

1. Statement of the main theorem

(1.1) Assumptions.
(N) Let $2 \leqslant \mathrm{q} \leq \dot{q}$ be given real numbers and let $N_{\infty}, N_{q}, N_{\dot{q}}$, N_{+}, N_{-}, N_{0}, N be nonnegative integers such that
$\mathrm{N}_{+} \geq \max \left\{\mathrm{N}_{0}, \mathrm{~N}_{-}\right\}$
$\mathrm{N}_{\infty} \geq \mathrm{N}_{\dot{\mathrm{q}}} \geqq \mathrm{N}_{\mathrm{q}}$
$\mathrm{N} \geq \max \left\{\mathrm{N}_{+}+\mathrm{N}_{\mathrm{o}}+\mathrm{N}_{\mathrm{q}}+\mathrm{N}_{\mathrm{q}}-2 \mathrm{~N}_{-} ; \mathrm{N}_{\mathrm{o}}+\mathrm{N}_{\infty} ; \mathrm{N}_{+}+\mathrm{N}_{\infty}-\mathrm{N}_{-}\right\}$
and put

$$
M=2 N+1+N_{\infty}+N_{-}-N_{0}-N_{q}-N_{\dot{q}}
$$

(X) Let $\left\{X^{p, L}, p=2, q, q, \infty, \quad L=0,1,2, \ldots\right\}$ be a system of Banach spaces endowed with norms $1 . l_{p, L}$ and let the following relations hold (the symbol G denotes the continuous embedding):

$$
X^{p, I+1} \subset X^{p, L}-520^{\text {for each }} p \text { and each } L \geq 0
$$

$$
\begin{array}{ll}
x^{\dot{p}, L} \subset x^{p, L} & \text { for } \dot{p} \geqq p, \quad L \geq 0 \\
x^{2}, L+N_{p} \subset x^{p, L} & \text { for } p=q, \dot{q}, \infty \quad L \geq 0 .
\end{array}
$$

Let $X_{0}^{2, N_{-}}$be a closed subspace of $x^{2, N_{-}}$and for $L \geq N_{-}$ put $\quad X_{0}^{2, I}=X_{0}^{2, N} \cap X^{2, L}$.
(S) Let $r>1$ be a given real number and let $\left\{S_{n}\right\}_{n=0}$ be a sequence of "smoothing operators" such that for each $L \geqq 0$, $K \geqq 0, u \in X^{p, K}$ there is $S_{n} u \in X^{p, I}$ and there exist constents c_{L} such that
(Si) $\quad\left|S_{n} u\right|_{p, L} \geqq c_{L} r^{(L-K) n}|u|_{p, K}, \quad L \geqq K, \quad n \geqq 0$ (SR) $\left|\left(I-S_{n}\right) u\right|_{p, L} \leq c_{L} r^{(I-K) n}|u|_{p, K}, L \leqq K \leqq M+N_{-}, n \geqq 0$.
(F) Let $\delta_{0}>0$ be a given number and let $F: D_{L}(F) \rightarrow X^{\infty, I}$, where $D_{L}(F)=\left\{u \in X^{\infty, I+N}+,|u|_{\infty, N_{0}}<\delta_{0}\right\}$, be a continuous mapping for $0 \leqq L \leqq M, F(0)=0$, which is twice Fréchet differentiable for $0 \leqslant L \leq M-N_{+}-N_{\infty}+N_{-}$and such that
(F1) for each $v \in D_{L}(F), u_{1}, u_{2} \in X^{\infty, ~} L+N_{+}, 0 \leqslant L \leqslant M-\mathbb{N}_{+}-\mathbb{N}_{\infty}+\mathbb{N}_{-}$ there is

$$
\begin{aligned}
\left|F^{\prime \prime}(v)\left(u_{1}, u_{2}\right)\right|_{2, L} \leq c_{L} \sum_{\substack{\lambda=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right)}}^{|\lambda|=L+N_{+}-N_{0}} & \left(1+|v|_{\infty, \lambda_{1}+N_{0}}\right) \cdot\left|u_{1}\right|_{q, \lambda_{2}+N_{0}} \\
& \cdot\left|u_{2}\right|_{\dot{q}_{,} \lambda_{3}+N_{0}}
\end{aligned}
$$

(F2) there exists some $\delta_{-}>0$ such that for every $V \in$
 there exists a unique solution $u \in X_{0}^{2}, \mathbb{M}+N N_{-}$to the equation $F^{\prime}(v) u=h$, such that
$|u|_{2, L+N_{-}} \leqq c_{L}\left(|h|_{2, L}+|v|_{\infty, L+N_{0}+\mathbb{N}_{-}}|n|_{2,0}\right)$ holds for each $L, 0 \leqq I \leqq M$.
$(1,2)$ THEOREM. Let (1.1) hold. Then there exists some $\delta_{N}>0$ such that for each $h \in X^{2, M},|h|_{2, M}<\delta_{N}$ there exists at least one solution $u \in X_{0}^{2, N+N}$ to the equation $F(u)=h$.
(1.3) Remarks.
(土) Since there is $X^{2, N+N}{ }_{-} \subset X^{\infty}, N_{+}$, the value of $F(u)$ in the theorem is well defined.
(ii) In the applications, the number N_{+}characterizes the "order" of the equation, $\mathrm{N}_{+}-\mathrm{N}_{-}$is the number of "lost derivatives", N_{0} is the highest order occurring in the "argument of the nonlinearity".

2. Iteration scheme

The iteration process is almost the same as in [5], [6] or [17]. ide are to solve the following sequence of linear equations

$$
\begin{aligned}
& \text { (2.1) } F^{\prime}(0) u_{0}=h \\
& (2.2)_{0} \quad F^{\prime}\left(S_{0} u_{0}\right) w_{0}=h_{0} \\
& \text { ! } \\
& (2.2)_{n} \quad F^{\prime}\left(S_{n} u_{n}\right) w_{n}=h_{n} \\
& \text { : } \\
& \text { where } u_{n}=u_{0}+\sum_{k=0}^{n-1} w_{k} \\
& h_{0}=S_{0} e_{0}, \quad e_{0}=-F\left(u_{0}\right)+F^{\prime}(0) u_{0} \\
& h_{n}=S_{n} e_{n}+\left(s_{n}-S_{n-1}\right) \sum_{k=0}^{n-1} e_{k} \\
& e_{n}=f_{n}+g_{n} \\
& f_{n}=-F\left(u_{n}\right)+F\left(u_{n-1}\right)+F^{\prime}\left(u_{n-1}\right) w_{n-1} \\
& g_{n}=\left(F^{\prime}\left(S_{n-1} u_{n-1}\right)-F^{\prime}\left(u_{n-1}\right)\right) w_{n-1} .
\end{aligned}
$$

ire check easily that one has
(2.3) $F\left(u_{n+1}\right)=h-e_{n+1}-\left(I-S_{n}\right) \sum_{k=0}^{n} e_{k}$

First, let $h \in X^{2, M}$ be arbitrary. Following (1.1)(F2) we find the unique solution $u_{0} \in X_{0}^{2, M+N}$ - of (2.1). There is
(2.4) $\left|u_{0}\right|_{2, L+N_{-}} \leqq c_{L}|h|_{2, L}, \quad 0 \leqq L \leqq M$.

For the solvability of (2.2) we require
(2.5) $\quad\left|s_{0} u_{0}\right|_{\infty, N_{0}}<\delta_{0}$

$$
\begin{aligned}
& \left|u_{0}\right|_{\infty, N_{0}}<\delta_{0} \\
& \left|s_{0} u_{0}\right|_{\infty, N_{0}+N_{-}}<\delta_{-}
\end{aligned}
$$

These conditions are satisfied if h is taken sufficiently small, say $|h|_{2, M}<\delta_{1}$. On the other hand there is
(2.6) $\left|h_{0}\right|_{2, I}=\left|s_{0} e_{0}\right|_{2, L} \leqq c_{L} \int_{0}^{1}\left|F^{\prime \prime}\left(\sigma u_{0}\right)\left(u_{0}, u_{0}\right)\right|_{2,0} d \sigma \leqq$

$$
\leqq c_{I} \sum_{|\lambda|=N_{+}-N_{0}}\left(1+\left|u_{0}\right|_{\infty, \lambda_{1}+N_{0}}\right)\left|u_{0}\right|_{q, \lambda_{2}+N_{0}}\left|u_{0}\right|_{\dot{q}, \lambda_{3}+N_{0}},
$$

so that the unique solution $w_{0} \in X_{0}^{2, M+N_{-}}$of (2.2) satisfies

$$
\left|w_{0}\right|_{2, L+N_{-}} \leqq c_{L}\left(\left|h_{0}\right|_{2, L}+\left|u_{0}\right|_{2,0}\left|h_{0}\right|_{2,0}\right), 0 \leq L \leqq M
$$

Let $\varepsilon>0$ be for the present arbitrarily chosen. From (2.4) and (2.6) it follows that one can find some $\delta_{\varepsilon}, 0<\delta_{\varepsilon} \equiv \varepsilon$ such that if
(2.7) $|h|_{2, M}<\delta_{E}$,
then there is
$(2.8)_{0} \quad\left|w_{0}\right|_{2, L+N_{-}} \leqq \varepsilon \quad, 0 \leqq L \leqq M$.
Put
(2.9) $\gamma=N+\frac{1}{3}$.

Our next goal is to choose ε in $(2.8)_{0}$ in such a way that the inequalities
$(2.8)_{k} \quad\left|w_{k}\right|_{2, L+N_{-}} \leqq \varepsilon r^{(-\gamma+J) k}$
hold for arbitrary integers $k \geqslant 0$ and $0 \leqslant L \leq M$. The constant $r>1$ is introduced in (1.1)(S).

For this purpose we proceed by induction over k. We make the following assumption:
(2.10) For some $\varepsilon>0$ and $n \geq 0$ there exists the sequence $\left\{w_{k}\right\}_{k=0}^{n} \subset X_{o}^{2, M+N} \quad$ of solutions of $\left\{(2.2)_{k}, k=0,1, \ldots, n\right\}$, respectively, satisfying (2.8) $k, k=0,1, \ldots, n$.

3. Estimates

(3.1) Proposition. Let (2.10) hold. Then there is
(i) $\left|u_{n+1}\right|_{2, I+N} \leqq c_{I} \varepsilon, \quad 0 \leqq L \leqq N$
(i1) $\left|u_{n+1}\right|_{2, L+N_{-}} \leq c_{L} \varepsilon r^{(-\gamma+L)(n+1)}, N<L \leq M$
(iii) $\left|u_{n}\right|_{2, I+N} \leqq c_{L} \varepsilon, \quad 0 \leqq L \leqq N$
(iv) $\left|u_{n}\right|_{2, L+N_{-}} \leq c_{L} \varepsilon r^{(-\gamma+L)(n+1)}, N<L \leqq M$
(v) $\quad\left|\left(I-S_{n+1}\right) u_{n+1}\right|_{2, L+\mathbb{N}_{-}} \leqq c_{L} \varepsilon r^{(-\gamma+L)(n+1)}, 0 \leqq L \leqq M$
(vi) $\quad\left|\left(I-S_{n}\right) u_{n}\right|_{2, I+N_{-}} \quad$ 白 $\quad c_{L} \varepsilon r^{(-\gamma+L)(n+1)}, 0 \leqq L \leqq M$

(viii) $\left.\lg _{n+1}\right|_{2, L} \leqq c_{L} \varepsilon^{2} r^{\left(-2 \gamma+L+N_{+}+N_{o}+N_{q}+N_{\dot{q}}-2 N_{-}\right)(n+1), 0 \leqq L \leq M-N_{+}-N_{\infty}+N_{-} .}$
(ix) $\quad\left|e_{n+1}\right|_{2, L} \leqslant c_{L} \varepsilon^{2} r\left(-2 \gamma+L+N_{+}+N_{o}+N_{q}+N_{\dot{q}}-2 N_{-}\right)(n+1), 0 \leqslant L \leqslant M-N_{+}-N_{\infty}+N_{-}$
(x) $\left|\sum_{k=0}^{n} e_{k}\right|_{2, L} \leqq c_{L} \varepsilon^{2}, \quad 0 \leqq L<M-N_{+}-N_{\infty}+N_{-}$
(xi) $\left|\sum_{k=0}^{n} e_{k}\right|_{2, M-N_{+}-N_{\infty}+N_{-}} \leqq c \varepsilon^{2} r^{(n+1) / 3}$
(xii) $\left|\left(I-S_{n}\right) \sum_{k=0}^{n} e_{k}\right|_{2, L} \leqslant c_{L} \varepsilon^{2} r\left(-2 \gamma+I+N_{+}+N_{o}+N_{q}+N_{\dot{q}}-2 N_{-}\right)(n+1)$,
$($ xiii $)\left|\left(I-S_{n+1}\right) \sum_{k=0}^{n} e_{k}\right|_{2, L} \leqq c_{L} \varepsilon^{2} r^{\left(-2 \gamma+L+N_{+}+N_{o}+N_{q}+N_{\dot{q}}-2 N_{-}\right)(n+1),}$
$0 \leqq L \leqq M-N_{+}-N_{\infty}+N_{-}$
(xiv) $\left|h_{n+1}\right|_{2, L} \leqslant c_{L} \varepsilon^{2} r^{\left(-2 \gamma+L+N_{+}+N_{o}+N_{q}+N_{\dot{q}}^{-2 N_{-}}\right)(n+1)}, \quad 0 \leqslant L$.

P_r_o_of. Using (2.10), (2.4) and (2.6) we obtain
$\left|u_{0}\right|_{2, L+N_{-}}+\sum_{k=0}^{n}\left|w_{k}\right|_{2, L+N_{-}} \leqq \varepsilon\left(c_{L}+\sum_{k=0}^{n} \mathbf{r}^{(-\gamma+L) k}\right)$.
In the case $L \leqq N$ there is $\sum_{k=0}^{n} r^{(-\gamma+L) k} \leqq \sum_{k=0}^{\infty} r^{(-\gamma+L) k} \leqq c_{I}$, for $L>N$ we have $\sum_{k=0}^{n} r^{(-\gamma+L) k}=r^{\gamma-I} r^{(-\gamma+L)(n+1)} \sum_{k=0}^{n} r^{(\gamma-L) k} \leq$ $\leqq c_{L} r^{(-\gamma+L)(n+1)}$, and (i) - (iv) follow easily.
For proving the inequalities (v) and (vi) we use (1.1)(S) and (ii), (iv). There is

$$
\left|\left(I-S_{n}\right) u_{n}\right|_{2, L+\mathbb{N}_{-}} \leqq c_{L} r^{(L-M) n}\left|u_{n}\right|_{2, M+N_{-}} \leqq c_{L} \varepsilon r^{(-\gamma+L)(n+1)}
$$

which yields (vi) (v) is analogous).
Next, we express

$$
\begin{aligned}
& f_{n+1}=-\int_{0}^{1}(1-\sigma) F^{\prime \prime}\left(u_{n}+\sigma w_{n}\right)\left(w_{n}, w_{n}\right) d \sigma \\
& g_{n+1}=-\int_{0}^{1} F^{\prime \prime}\left(u_{n}+\sigma\left(S_{n}-I\right) u_{n}\right)\left(\left(I-S_{n}\right) u_{n}, w_{n}\right) d \sigma
\end{aligned}
$$

$$
\text { Using (1.1)(F1), (X) and (N) we obtain for } 0 \leqq L \leqq M-\mathbb{N}_{+}-\mathbb{N}_{\infty}+\mathbb{N}_{-}
$$

$$
\left|f_{n+1}\right|_{2, L} \leqq c_{L} \sum_{|\lambda|=L+N_{+}-N_{0}}\left(1+\left|u_{n}\right|_{2, \lambda_{1}+N_{0}+N_{\infty}}+\left|w_{n}\right|_{2, \lambda_{1}+N_{0}+N_{\infty}}\right) \cdot
$$

$$
\text { - }\left|w_{n}\right|_{2, \lambda_{2}+N_{0}+N_{q}}\left|w_{n}\right|_{2, \lambda_{3}+N_{0}+N_{\dot{q}}}
$$

$$
\left|g_{n+1}\right|_{2, L} \leqq c_{L} \sum_{|\lambda|=L+N_{+}-N_{0}}\left(1+\left|u_{n}\right|_{2, \lambda_{1}+N_{0}+N_{\infty}}\right)\left|w_{n}\right|_{2, \lambda_{2}+N_{o}+N_{q}} \cdot
$$

$$
\text { - } \mid\left(I-S_{n}\right) u_{n} l_{2, \lambda_{3}+N_{o}+N_{\dot{q}}}
$$

Therefore, we estimate both $\left|f_{n+1}\right|_{2, L}$ and $\left|g_{n+1}\right|_{2, L}$ (and hence $\left.\left|e_{n+1}\right|_{2, L}\right)$ from above by

The assertions (x) and (xi) are similar to (i) - (iv).
We use the fact that the estimate

$$
\left|e_{k}\right|_{2, L} \leqq c_{L} \varepsilon^{2} r^{\left(-2 \gamma+L+N_{+}+N_{o}+N_{q}+N_{q}-2 N_{-}\right) k}
$$

holds for each $k=0,1, \ldots n+1$ and that one has

$$
\begin{aligned}
& c_{L} \varepsilon^{2} \sum_{|\lambda|=L+\mathbb{N}_{+}-N_{0}}\left(1+r^{\left(-\gamma+\lambda_{1}+N_{0}+N_{\infty}-N_{-}\right)(n+1)}\right) . \quad . r^{\left(-2 \gamma+\lambda_{2}+\lambda_{3}+2 N_{0}+N_{q}+N_{\dot{q}}-2 N_{-}\right)(n+1)} \\
& \leqq c_{\mathrm{L}} \varepsilon^{2} \mathrm{r}^{\left(-2 \gamma+\mathrm{I}+\mathrm{N}_{+}+\mathrm{N}_{0}+\mathrm{N}_{\mathrm{q}}+\mathrm{N}_{\dot{q}}-2 \mathrm{~N}_{-}\right)(\mathrm{n}+1)} \\
& \text { which is (vii). (viii) } 1:-1
\end{aligned}
$$

$\mathrm{M}-\mathrm{N}_{+}-\mathrm{N}_{\infty}+\mathrm{N}_{-}=2 \mathrm{~N}-\mathrm{N}_{+}-\mathrm{N}_{0}-\mathrm{N}_{\mathrm{q}}-\mathrm{N}_{\mathrm{q}}+2 \mathrm{~N}_{-}+1$.
The proof of (xii) and (xiii) is analogous to (v) and (vi) and we don't reproduce it here. For proving the last assertion (xiv) we observe that

$$
\left|s_{n+1} e_{n+1}\right|_{2, L} \leq c_{L} r^{L(n+1)}\left|e_{n+1}\right|_{2,0}
$$

holds for arbitrary $L \geqq 0$. Further, for $L \frac{6}{6} K-N_{+}-N_{\infty}+N_{-}$we have $\left|\left(S_{n+1}-S_{n}\right) \sum_{k=0}^{n} e_{k}\right|_{2, L} \leqq\left|\left(I-S_{n}\right) \sum_{k=0}^{n} e_{k}\right|_{2, L}+\left|\left(I-S_{n+1}\right) \sum_{k=0}^{n} e_{k}\right|_{2, I}$, so that we can use (xii) and (xiii), for $L>M-N_{+}-N_{\infty}+N_{-}$we obtain

$$
\begin{aligned}
\left|\left(S_{n+1}-S_{n}\right) \sum_{k=0}^{n} e_{k}\right|_{2, L} \leqq\left|S_{n+1} \sum_{k=0}^{n} e_{k}\right|_{2, L}+\left|S_{n} \sum_{k=0}^{n} e_{k}\right|_{2, L} \leqq \\
\leqq c_{I} r\left(L-M+N_{+}+N_{\infty}-N_{-}\right)(n+1)\left|\sum_{k=0}^{n} e_{k}\right|_{2, M-N_{+}-N_{\infty}+N_{-}}
\end{aligned}
$$

and using (xi) the proof is complete.

4. Proof of the main theorem.

Up to now we have shown that for an arbitrarily chosen $\varepsilon>0$ we can find some $\delta_{\varepsilon}>0$ such that if $|h|_{2, M}<\delta_{\varepsilon}$, the equations (2.1) and (2.2) have solutions $u_{0}, w_{0} \in X_{0}^{2, M+N}$ respectively, satisfying $\left|u_{0}\right|_{2, L+l^{\prime}} \leqq c_{L} \varepsilon$, $\left|w_{0}\right|_{2, L+N_{-}} \leqq \varepsilon$, $0 \leqq L \leqq$ Ii. Murther, assuming (2.10) we have derived the estimates (s.1).

By (1.1)(F2) the sufficient conditions for the solvability of $(2.2)_{n+1}$ are
(4.1) $\quad\left|s_{n+1} u_{n+1}\right|_{\infty, N_{0}+N_{-}}<\delta_{-}$

$$
\begin{array}{ll}
\left|u_{n}\right|_{\infty, N_{0}} & <\bar{\delta}_{0} \\
\left|s_{n} u_{n}\right|_{\infty, N_{0}} & <\delta_{0} \\
\left|u_{n+1}\right|_{\infty, N_{0}}<\delta_{0}
\end{array}
$$

Since there is $\mathrm{N}_{\mathrm{N}}+\mathrm{N}_{-} \geqq \mathrm{U}_{\mathrm{O}}+\mathrm{N}_{\infty}+\mathrm{N}_{\mathrm{C}}$, we see that by (3.1) (i), (iii) the conditions (1.1) are fulfilled provided ε is taken sufficiently small.

Following (1.1) (F2) the solution $w_{n+1} \in X_{0}^{2, M+N}{ }_{-}$of (2.2) ${ }_{n+1}$ satisfies the inequality $(0 \leqq I \leq M)$:

$$
\begin{gathered}
\left|w_{n+1}\right|_{2, L+N_{-}} \leqq c_{L}\left(\left|h_{n+1}\right|_{2, L}+\left.\left|s_{n+1} u_{n+1}\right|_{\infty, L+N_{0}+N_{-}}\left|h_{n+1}\right|_{2,0}\right|^{\prime}\right. \\
\leqq c_{L}\left(\left|h_{n+1}\right|_{2, L}+\left.\left.r^{L(n+1)}\right|_{u_{n+1}}\right|_{2, i N+N-}\left|h_{n+1}\right|_{2,0}\right)
\end{gathered}
$$

Using (3.1)(i),(xiv) we find the estimate

$$
\left|w_{n+1}\right|_{2, L+N N_{-}} \leqq c_{L} \varepsilon^{2} r\left(-2 \gamma+L+N_{+}+N_{o}+N_{q}+N_{\dot{q}}-2 N_{-}\right)(n+1), 0 \leqq L \leqq M
$$

On the other hand, by (1.1)(1) and (2.9) there is
$-\gamma+\mathrm{N}_{+}+\mathrm{N}_{\mathrm{o}}+\mathrm{N}_{\mathrm{q}}+\mathrm{N}_{\mathrm{q}}-2 \mathrm{~N}_{-} \leqq-\frac{1}{3}<0$, hence $(4,2)\left|w_{n+1}\right|_{2, L+N_{-}} \leqq c_{L} \varepsilon^{2} r^{(-\gamma+L)(n+1)}, 0 \leqq L \leqq M$.
The constant c_{L} in (4.2) is independent of n. Thus the choice (4.3) $\varepsilon<\left(\max \left\{c_{L}, \cup \leqq L \leqq L\right\}\right)^{-1}$ yields (2. $)_{n+1}$.

By induction over n we conclude that we can construct the infinite sequence $\left\{:_{n}\right\}_{n=0}^{\infty} \subset x_{o}^{2, N+I}$ - of solutions of $\left\{(2.2)_{n}\right\}_{n=0}^{\infty}$ provided $\delta_{\varepsilon}=\delta_{\mathrm{NJ}}$ is taken suficiently small (so that (2.5), $(2.8)_{o}$, (4.1), (4.3) are fulfilled) and each w_{n} satisfies the correspondinf; inequality $(2.8)_{n}$. Since the series
$\sum_{n=0}^{\infty}\left|w_{r:}\right|_{2, i+I_{-}} \leqq \varepsilon \sum_{n=C}^{\infty} r^{-n / 3}$ is convergent, we see that $\left\{u_{n}\right\}_{n=0}^{\infty}$ is a fundamental sequence in $x_{0}^{2,1 N+1}$ - and hence it admits a limit $u \in X_{0}^{2, N+N}$. Especially, $u_{n} \rightarrow u$ in $X^{\infty, i_{i}}+$. By continuity of F, $F\left(u_{n}\right) \longrightarrow F(u)$ in $X^{\infty, 0}$. On the other hand, by (2.3) and (3.1) (ix), (xii) there is

$$
\left.\begin{array}{l}
\qquad F\left(u_{n+1}\right)-\left.h\right|_{\infty, 0} \leqq c\left(\left|e_{n+1}\right|_{2, N_{\infty}}+\left|\left(I-S_{n}\right) \sum_{k=0}^{n} e_{k}\right|_{2, N_{\infty}}\right) \leqq \\
\\
\leqq c \varepsilon^{2}-2(n+1) / 3
\end{array}\right\}
$$

II. A nonlinear equation of the second order

5. Existence theorem.

As an application of the above theory we consider the problem of the existence of time-periodic solutions of the equation

$$
\begin{equation*}
\phi\left(u, \partial_{t} u, \partial_{x} u, \partial_{t}^{2} u, \partial_{x}^{2} u, \partial_{x} \partial_{t} u\right)=h(t, x) \tag{5.1}
\end{equation*}
$$

with period $\left.\omega>0, t \in R^{1}, x \in \Omega=\right] 0,1[$, satisfying boundary conditions $u(t, 0)=u(t, 1)=0$.

The spaces in which the equation (5.1) is to be solved are chosen in a natural way: we put for $L \geqq 0$ and $1 \leqq p<\infty$ $X^{p, L}=W_{\omega}^{p, L}(\Omega), X^{\infty, L}=C_{\omega}^{L}(\bar{\Omega})$ and for $L \geq 1 \quad X_{0}^{2, L}=$ $=\left\{u \in \mathbb{W}_{\omega}^{2, L}(\Omega), u(t, 0)=u(t, 1)=0\right\}$, where $W_{\omega}^{p, L}(\Omega)$ denotes the Sobolev space of all real functions $u(t, x), t \in R^{1}, x \in \Omega$, ω-periodic with respect to t and having all derivatives up to the order L in $L_{p}(] 0, w[x \Omega)$, with norm

$$
|u|_{p, L}=\sum_{K=0}^{L} \sum_{J=0}^{K}\left(\int_{\omega} \int_{\Omega}\left|\partial_{t}^{J} \partial_{x}^{K-J} u\right|^{p} d x d t\right)^{1 / p}
$$

(the symbol \int_{ω} denotes the integration with respect to t over any interval $] t_{0}, t_{0}+w[$.
Similarly, $C_{\omega}^{L}(\bar{\Omega})$ denotes the space of all continuously differentiable functions on $R^{1} \times \bar{\Omega}$ up to the order L and ω-periodic with respect to t, endowed with the norm

$$
|u|_{\infty, L}=\sum_{K=0}^{L} \sum_{J=0}^{K} \sup \left\{\left|\partial_{t}^{J} \partial_{x}^{K-J} u(t, x)\right|, t \in R^{1}, x \in \Omega\right\} .
$$

The existence theorem is stated as follows (the symbol denotes the derivative of ϕ with respect to the i-th variable at the point $(0,0,0,0,0,0))$.
(5.2) THEOREM. Let $\omega>0, \delta_{0}>0, N \geqq 4$ be given, N integer. Put $M=2 N$. Let ϕ be a mapping of class c^{M+2} in its domain of definition $D(\phi)=\left[-\delta_{0}, \delta_{0}\right]^{6}$ such that

$$
\begin{equation*}
\phi(0)=0 \tag{i}
\end{equation*}
$$

(ii)

$$
\partial_{2} \phi(0)>0, \partial_{5} \phi(0)<0, \partial_{3} \phi(0)=0 .
$$

Then there exist positive constants $\delta_{1}>0, \delta_{N}>0$ such that if $\partial_{1} \phi(0)>-\delta_{1}$, then for every $h \in \mathbb{X}^{2, M},|\mathrm{~h}|_{2, \mathrm{M}}<\delta_{\mathrm{N}}$ there exists at least one solution $u \in X_{0}^{2, N+1}$ to the equation (5.1).

The proof consists in verifying that for the operator (5.3) $F(u) \equiv \phi(\Lambda u)=\phi\left(u, \partial_{t} u, \partial_{x} u, \partial_{t}^{2} u, \partial_{x}^{2} u, \partial_{x} \partial_{t} u\right)$
the conditions (1.1) are fulfilled.
Putting $N_{+}=N_{o}=2, N_{-}=1, q=\dot{q}=4, N_{q}=N_{\dot{q}}=1$, $N_{\infty}=2$ we check immediately that (1.1)(N) and (X) hold.

Next, we state without proof two lemmas. The first one is an easy consequence of the Nirenberg inequality (cf. [11]), the proof of the second one can be found in [9] or [17].
(5.4) Lemma. Let $0 \leqq J \leqq K \leqq I \leqq L, 1 \leqq p, q \leqq \infty$. Then there exist constants $c_{p, I}, c_{p, q, I}$ such that for every $u \in \mathbb{I}^{p, I}, v \in \mathbb{X}^{q, I-J}$ there is
(i) $|u|_{p, K} \leqq c_{p, I}|u|_{p, I}^{(K-J) /(I-J)}|u|_{p, J}^{(I-K)(I-J)}$
(ii) $|u|_{p, K}|v|_{q, L-K} \leqq c_{p, q, I}\left(|u|_{p, J}|v|_{q, L-J}+|u|_{p, I}|v|_{q, I-I}\right)$.
(5.5) Lemma. Let $\delta_{0}>0,0 \leqq L \leqq M+2$. There exists a constant $c_{\delta, I}$ independent of ϕ such that for each $v \in X^{\infty, L+2}$,
$|v|_{\infty, 2}<\delta_{0}$ there is $\phi(\Lambda v) \in X^{\infty, L}$ and
$|\phi(\mid v)|_{\infty, L} \leqq c_{\delta_{b}, I}\left(1+|v|_{\infty, L+2}\right) \quad| | \mid \phi \|_{L}$, where

$$
\|\phi\|_{I}=\sup \left\{\left|\partial_{i_{1}} \ldots \partial_{i_{K}} \phi\left(s_{1}, \ldots, s_{6}\right)\right|,\left|s_{i}\right|<\delta_{0}, 0 \leqq K \leqq L\right.
$$

We introduce the smoothing operators $\left\{S_{n}\right\}$ following [5], [6], [17]. First we define the continuous linear prolongation operators $P_{p, L}: W_{\omega}^{p, L}(\Omega) \longrightarrow W_{\omega}^{p, L}\left(R^{1}\right), 1 \leqq p \leqq \infty, 0 \leqq L \leqq M+1$ by the Hestenes formula (cf. [4]). Then we find a C^{∞}-function φ
"Eth support in $]-1,1[$ such that (see [17])
(t.6) (i) $\int_{-\infty}^{\infty} \varphi(s) d s=1$
(ii)

$$
\int_{-\infty}^{\infty} \mathrm{s}^{k} \varphi(s) \mathrm{ds}=0, k=1,2, \ldots, \mathrm{M} .
$$

finally, for $u \in X^{p, L}$ and $n \geq 0$ we put
\therefore. 7$)\left(S_{n} u\right)(t, x)=\int_{R^{2}} r^{2 n} \varphi\left(r^{n}(t-s)\right) \varphi\left(r^{n}(x-y)\right) P_{p, L} u(s, y) d y d s$, where $r>1$ is an arbitrary fixed real number. We can directly eck using (5.6) and (5.4) that the sequence $\left\{S_{n}\right\}_{n=0}^{\infty}$ \because tisfies (1.1)(S).

Since the verification of (1.1)(F1) follows from a straight\therefore ir ward computation employing (5.4) and (5.5), for proving the Theorem (5.2) it remains to show that (1.1)(F2) holds.
\therefore Linear equations.
Let us consider the linear equation
(\quad.1) $a_{1} u+a_{2} \partial_{t} u+a_{3} \partial_{x} u+a_{4} \partial_{t}^{2} u+a_{5} \partial_{x}^{2} u+a_{6} \partial_{x} \partial_{t} u=n$
and assume
(1.2) For $i=1, \ldots, 6$ there is $a_{i} \in X^{\infty, M+1}$ and
$\left|a_{i}\right|_{\infty, 1} \leqq A_{i}$
$\left|\partial_{t} a_{i}\right|_{\infty, 0} \leqq \tau_{i}$
$\left|\partial_{x} a_{i}\right|_{\infty, 0} \leqq \xi_{i}$
$\inf \left\{a_{2}(t, x), t \in R^{1}, x \in \Omega\right\} \geqq m_{2}>0$
$\inf \left\{-a_{5}(t, x), t \in R^{1}, x \in \Omega\right\} \geqq m_{5}>0$
$a_{1}(t, x) \geqq-1 /\left(8 v^{2}\right) \min \left\{\lambda m_{2}, m_{5}\right\}$, where v is the constant such that for every $u \in \mathbb{X}_{0}^{2,1}$ there is

$$
\begin{aligned}
& \int_{w} \int_{\Omega}|u|^{2} d x d t \leqslant v^{2} \int_{\omega} \int_{\Omega}\left(\left|\partial_{t} u\right|^{2}+\left|\partial_{x} u\right|^{2}\right) d x d t \text {, and } \\
& \lambda=\frac{2 A_{4}}{m_{2}}+\frac{A_{6}^{2}}{m_{2} m_{5}}
\end{aligned}
$$

$A_{3} \leqq 1 /(4 \lambda) \min \left\{m_{5}, \lambda m_{2}\right\}$
and the numbers τ_{i}, ξ_{i} satisfy the inequalities

$$
\begin{aligned}
& \lambda\left(\tau_{4}+\xi_{6}+\xi_{5}+v^{2} \tau_{1}\right)+v^{2}\left(\tau_{2}+\xi_{3}\right)+v\left(3 \tau_{4}+\xi_{5}+\tau_{6}\right) \leqq \frac{\lambda}{4} m_{2} \\
& \lambda\left(\tau_{5}+\xi_{5}+v^{2} \tau_{1}\right)+v^{2}\left(\tau_{2}+\xi_{3}\right)+v\left(\tau_{4}+3 \xi_{5}+3 \tau_{6}\right) \leqq \frac{1}{4} m_{5} \\
& (2 M+1) \tau_{5}+\xi_{5}+M \tau_{6} \leqq \frac{1}{4 \lambda} m_{5} \\
& (2 M-1) \tau_{4}+\xi_{6}+\xi_{5}+M \tau_{6} \leqq \frac{1}{4} m_{2}
\end{aligned}
$$

(6.3) THEOREM. Let us assume (6.2). Then for each $h \in X^{2, M}$ there exists a unique solution $u \in X_{0}^{2, M+1}$ of (6.1) and the inequality
(6.4) $|u|_{2, L+1} \leqq c_{L},\left\{A_{i}, m_{i}, r_{i}, \xi_{i}\right\}\left(|h|_{2, I}+|h|_{2,0} \sum_{i=1}^{6}\left|a_{i}\right|_{\infty, L+1}\right.$ i
holds for every $L, 0 \leqslant L \leqslant M$.
P_r_o_oㅇ. We use the classical Galerkin-type procedure. Let $h \in X^{2}, M$ be given. For $m \geq 1$ we put

$$
\begin{aligned}
& y_{H}(t, x)=\sum_{k=-m}^{m} \sum_{j=1}^{m} u_{k j} w_{k j}(t, x), \quad t \in R^{1}, x \in \Omega \text {, where } \\
& w_{k j}(t, x)=e^{i \frac{2 \pi k_{k}}{\omega} t} \sin j \pi x, i \text { is the imaginary unit, } u_{k j}=\vec{u}_{-k j}{ }^{*} \\
& \text { The constant vector } U_{m}=\left\{u_{k j}, j=1, \ldots, m, k=-m, \ldots, m\right\} \\
& \text { is required to satisfy the system (} \bar{w}_{k j} \text { denotes the complex } \\
& \text { conjugate of } \left.w_{k j}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cdot \bar{w}_{k j} d x d t=\int_{\omega} \int_{\Omega} h \bar{w}_{k j} d x d t \text {, } \\
& \mathrm{k}=-\mathrm{m}, \ldots, \mathrm{~m}, \mathrm{j}=1, \ldots, \mathrm{~m} \text {, }
\end{aligned}
$$

which is a linear algebraic equation of the form
(6.6) $\quad A_{m} U_{m}=H_{m}$,
where A_{m} is a square matrix of the type $(3 m+1) \times(3 m+1)$.
Let us multiply the (k, j)-th equation in (6.5) successively
by $\bar{u}_{k j}$ and by $-i \lambda \frac{2 k_{k}}{\omega} \bar{u}_{k j}$ and in both cases sum over $k=-m, \ldots, m$ and $j=1, \ldots, m$. Summing the two relations we obtain after integration by parts
$\int_{0} \int_{\Omega}\left(\lambda a_{2}\left|\partial_{t} y\right|^{2}-\left.a_{5}\left|\partial_{2}\right|\right|^{2}+a_{1}|y|^{2}\right) d x d t=$
$=\int_{v} \int_{\Omega}\left\{\left(\frac{\lambda}{2} \partial_{t} a_{4}+\frac{\lambda}{2} \partial_{2} a_{6}+a_{4}\right)\left|\partial_{t} y\right|^{2}-\frac{\lambda}{2} \partial_{t} a_{5}\left|\partial_{2} \|^{n}\right|^{2}+\right.$
$+\frac{1}{2}\left(\lambda \partial_{t} a_{1}+\partial_{t} a_{2}+\partial_{x} a_{3}\right)|y|^{2}+\left(-\lambda a_{3}+\lambda \partial_{x} a_{5}+a_{6}\right) \partial_{x H} \partial_{t y}+$

Estimating

(6.7) $\left|\int_{0} \int_{\Omega} a_{6} \partial_{x n} \partial_{t h} d x d t\right| \leq A_{6}\left(\frac{\mu}{2}\left|\partial_{x} y\right|_{2,0}^{2}+\frac{1}{2 \mu}\left|\partial_{t h} y\right|_{2,0}^{2}\right)$ with $\mu=m_{5} / \Lambda_{6}$ and using (6.2) we obtain
(6.8) $\left|\partial_{t} y\right|_{2,0}+\left|\partial_{i} y\right|_{2,0} \leq c{ }_{\left\{A_{i}, m_{i}, \tau_{i}, \xi_{i}\right\}}\left\|H_{m}\right\| \leqq$ $\leqslant c_{\left\{A_{i}, m_{i}, \tau_{i}, \xi_{i}\right\}}|h|_{2,0}$,
where $\|\cdot\|$ is a norm in $R^{3 m+1}$.
From (6.8) it follows that the matrix A_{m} in (6.6) is nonsingular, hence there exists a unique solution U_{m} of (6.6). Moreover, by (6.8) the sequence $\left\{y_{n}\right\}_{m=1}^{\infty}$ is bounded in $X_{0}^{2,1}$. Consequently, there exists a subsequence of $\{y\}$ which converges weakly in $X_{0}^{2,1}$ to some $u \in X_{0}^{2,1}$. Taking the limit in (6.5) we see that
(6.9) $\int_{w} \int_{\Omega}\left\{a_{1} u v+a_{2} \partial_{t} u \cdot v+a_{3} \partial_{x} u \cdot v-\partial_{t} u \cdot \partial_{t}\left(a_{4} v\right)-\partial_{x} u \cdot \partial_{x}\left(a_{5} v\right)-\right.$ $\left.-\partial_{x} u \cdot \partial_{t}\left(a_{6} v\right)\right\} d x d t=\int_{\omega} \int_{\Omega} h \cdot v d x d t$
holds for every $v=\bar{W}_{k j}$ and hence for every $v \in X_{0}^{2,1}$. Remark that (6.9) can be considered as the definition of the weak solution of (6.1).

The passage to the weak limit in (6.8) gives

$$
\begin{equation*}
|u|_{2,1} \leqq c\left\{A_{i}, m_{i}, \tau_{i}, \xi_{i}\right\} \quad|h|_{2,0} \tag{6.10}
\end{equation*}
$$

In order to obtain further estimates we multiply the (k, j)-th
equation in (6.5) consecutively by $\left(i \frac{2 \pi k}{\omega}\right)^{2 L} \bar{u}_{k j}$ and $\lambda\left(i \frac{2 \pi k}{\omega}\right)^{2 \mathrm{~L}+1} \bar{u}_{\mathrm{kj}}$, L being an arbitrary integer $1 \leqslant \mathrm{~L} \leq \mathrm{M}$. Summing again over k and j and integrating by parts we obtain respectively
and
(6.12)

$$
\lambda \int_{W} \int_{\Omega}\left\{\left(a_{2}+\left(L-\frac{1}{2}\right) \partial_{t} a_{4}-\frac{1}{2} \partial_{x} a_{6}\right)\left|\partial_{t}^{I+1}\right|^{2}+\right.
$$

$$
\left.+\left(L+\frac{1}{2}\right) \partial_{t} a_{5}\left|\partial_{t}^{L} \partial_{x} y\right|^{2}+\left(a_{3}-\partial_{x} a_{5}+L \partial_{t} a_{6}\right) \partial_{t}^{I} \partial_{x h} \cdot \partial_{t}^{I+1}{ }_{n}\right\} d x d t=
$$

$$
=\lambda \int_{\omega} \int_{\Omega}\left\{\sum_{K=2}^{L}\binom{L}{K}\left(-\partial_{t}^{K} a_{4} \cdot \partial_{t}^{L-K+2_{H}}-\partial_{t}^{K} a_{6} \cdot \partial_{t}^{L-K+1} \partial_{2 n}\right) \partial_{t}^{I+1} \frac{n}{H}+\right.
$$

$$
+\sum_{K=1}^{L}\left(\frac{L}{K}\right)\left(\partial_{t}^{K} \partial_{x} a_{5} \cdot \partial_{t}^{I-K} \partial_{x h}-\partial_{t}^{K} a_{2} \cdot \partial_{t}^{I-K+1} \partial_{x} h-\partial_{t}^{K} a_{3} \cdot \partial_{t}^{L-K} \partial_{x} n\right) \partial_{t}^{I+1} n-
$$

$$
-\sum_{K=1}^{L}\binom{L+1}{K+1} \partial_{t}^{K+1} a_{5} \cdot \partial_{t}^{L-K} \partial_{z h} \cdot \partial_{t}^{L} \partial_{\frac{y}{m}}-\sum_{K=0}^{L}\binom{L}{K} \partial_{t}^{K} a_{1} \cdot \partial_{t}^{L-K} K_{H} \partial_{t}^{L+1}{ }_{H}^{L}+
$$

$$
\left.+\partial_{t}^{L_{h}} \partial_{t}^{L+1} \frac{y}{n}\right\} d x d t
$$

Now, adding (6.11) to (6.12) and using (6.2) and an estimate analogous to (6.7) with the same μ we derive the inequality

By induction over L using (6.10) and (5.4)(ii) we obtain

$$
\begin{aligned}
& \left|\partial_{t}^{L+1} u\right|_{2,0}^{2}+\left|\partial_{t}^{I} \partial_{x i n}\right|_{2,0}^{2} \leqq c_{L},\left\{A_{i}, m_{i}, \tau_{i}, F_{i}\right\}\left(\left|\partial_{t}^{I+1}{ }_{n}\right|_{2,0}+\right. \\
& \left.+\mid \partial_{t}^{L} \partial_{x i n} \|_{2,0}\right)\left\{|h|_{2, I}+\sum_{K=1}^{I}\left(\sum_{i=1}^{6}\left|a_{i}\right|_{\infty, K+1}\right)\left(\mid \partial_{t}^{L-K+1} \|_{2,0}+\right.\right. \\
& \left.\left.+1 \partial_{t}^{L-K} \partial_{\mathrm{x}} \mathrm{l} l_{2,0}\right)\right\} \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\partial_{t}^{I_{n}} \cdot \partial_{t h}^{I}\right\} d x d t \text {, }
\end{aligned}
$$

$$
\begin{align*}
& \left|\partial_{t}^{L+1} H\right|_{2,0}+\left|\partial_{t}^{L} \partial_{x H}\right|_{2,0} \leqq \tag{6.13}\\
& \quad \Leftrightarrow c_{L},\left\{A_{i}, m_{i}, r_{i}, \xi_{i}\right\}\left(|h|_{2, L}+|h|_{2,0} \sum_{i=1}^{6}\left|a_{i}\right|_{\infty, L+1}\right) .
\end{align*}
$$

Hence, the weakly convergent subsequence $\{y\}$ of $\{y\}$ can be chosen in such a way that $\partial_{t h}^{L_{H}}$ converges weakly to $\partial_{t}^{L_{u}}$ in $X_{0}^{2,1}$ and $\left|\partial_{t}^{L} u\right|_{2,1}$ is estimated from above by the right-hand side of (6.13) for all $L, 0 \leqq L \leqq M$.

From (6.9) we see that the distributional derivative $\partial_{x}^{2} u$ equals to some function from $X^{2,0}$, hence u is an element of $X_{0}^{2,2}$ and satisfies (6.1) a.e. in $R^{1} \times \Omega$. Differentiating formally the equation (6.1) up to the order $M-1$ we show by induction (using (6.13) and (5.4)(ii)) that u is an element of $X_{0}^{2, N+1}$ and satisfies (6.4) for $0 \leqq L \leqq M$. Thus, the theorem (6.3) is proved.
7. Completing of the proof of (5.2) and final remarks.

The theorem (6.3) yields sufficient means for verifying that the operator (5.3) satisfies (1.1)(F2). In fact, we have

$$
\begin{aligned}
F^{\prime}(v) u & =\partial_{1} \phi(\Lambda v) \cdot u+\partial_{2} \phi(\Lambda v) \cdot \partial_{t} u+\partial_{3} \phi(\Lambda v) \cdot \partial_{x} u+\partial_{4} \phi(\Lambda v) \cdot \partial_{t}^{2} u+ \\
& +\partial_{5} \phi(\Lambda v) \cdot \partial_{x}^{2} u+\partial_{6} \phi(\Lambda v) \cdot \partial_{x} \partial_{t} u \cdot
\end{aligned}
$$

If $\delta_{-}>0$ is taken sufficiently small, then for $|v|_{\infty, 3}<\delta_{-}$ the relations (6.2) hold e.g. for $m_{2}=\frac{1}{2} \partial_{2} \phi(0), m_{5}=-\frac{1}{2} \partial_{5} \phi(0)$, $A_{i}=\left|\partial_{i} \phi(0)\right|+\delta_{i}, \delta_{i}=1$ for $i \neq 1,3, \delta_{3}=\frac{1}{4 \lambda} \min \left\{\lambda m_{2}, m_{5}\right\}$, $\delta_{1}=\frac{1}{16 v^{2}} \min \left\{\lambda m_{2}, m_{5}\right\}$. Using (6.4) and (5.5) we obtain exactly (1.1)(F2). Thus, the proof of the theorem (5.2) is complete.

(7.1) Remarks.

[^0]of the Maxwell equations in nonlinear media in the Sobolev spaces $H^{p, L}$ of divergence-free vector functions in three dimensions. In general, the proof in more space dimensions requires further considerations concerning the prolongation of domains of definition outside Ω and the regularity of solutions of linear elliptic equations.
(ii) If the operator (5.3) is quasilinear of the type
$\partial_{t}\left(\phi_{1}\left(u, \partial_{t} u, \partial_{x} u\right)\right)+\partial_{x}\left(\phi_{2}\left(u, \partial_{t} u, \partial_{x} u\right)\right)+\phi_{3}\left(u, \partial_{t} u, \partial_{x} u\right)$,
we can "save" one derivative by putting $N_{0}=1$.
(iii) The method remains valid for a nonhomogeneous equation $\phi(t, x, \wedge u)=h$ provided we assume that the conditions (5.2) (i), (ii) hold uniformly with respect to $(t, x) \in R^{1} \times \bar{\Omega}$, and $\partial_{t} \phi$ is sufficiently small.

R_e_f_e_r_e_n_c_e_s

[1] M. ALTMAN: (A series of papers on nonlinear evolution equations) Nonlin. Anal., Theory, lieth.,Appl. 8(1984), No. 5, pp. $457-499$
[2] W. CRAIG: A bifurcation theory for periodic solutions of nonlinear dissipative hyperbolic equations. Ann. Scuola Norm. Sup. Pisa, ser. IV, vol. X(1983), pp. 125-168.
[3] B.D. CRAVEN, Ii.Z. NASHED: Generalized implicit function theorems when the derivative has no bounded inverse. Nonlin. Anal., Theory, Meth., Appl. 6(1982), pp. 375-387.
[4] Fi.R. HESTEIES: Extension of the range of a differentiable function. Duke Math. J. 8(1941), pp. 183-192.
[5] L. HORMANDER: The boundary problems of physical geodesy. Arch. Rat. Mech. Anal. 62(1976), pp. 1 - 52.
[6] S. KLAINERMAN: Global existence for nonlinear wave equations. Comm. Pure Appl. Miath. 33(1980), pp. 43 - 101.
[7] P. KREJČI: Periodic vibrations of the electromagnetic field in ferromagnetic media (in Czech). Candidate thesis, Ihathematical Institute of the Czechoslovak Academy of Sciences, Prague, 1984.
[8] J. MOSER: A new technique for the construction of solutions of nonlinear differential equations. Proc. Nat. Acad. Sci. 47(1961), pp. 1824 - 1831.
[9] J. MOSER: A rapidiy-convergent iteration method and nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa 20-3 (1966), pp. 265 - 315, 499-535.
[10] J. NASH: The embedding problem for Riemannian manifolds. Ann. of Math. 63(1956), pp. 20-63.
[11] I. NIRENBERG: On elliptic partial differential equations. Ann. Scuola Norm. Sup. Pisa, 13(1959), pp. 115-162.
[12] H. PETZELTOVA: Application of Moser's method to a certain type of evolution equations. Czech. Math. J. 33(1983), pp. 427 - 434.
[13] V. PTAK: A modification of Newton's method. Cas. Pěst. Mat. 101(1976), pp. $188-194$.
[14] P.H. RABINOWITZ: Periodic solutions of nonlinear hyperbolic partial differential equations II. Comm. Pure Appi. Math. 22(1969), pp. $15-39$.
[15] J.T. SCHWARTZ: On Nash's implicit functional theorem. Corm. Pure Appl. Math. 13(1960), pp. 509-530.
[16] J. SHATAH: Global existence of small solutions to nonlinear evolution equations. J. Diff. Eq. 46(1982), pp.409-425.
[17] Y. Shibata: On the global existence of classical solutions of mixed problem for some second order non-linear hyperbolic operators with dissipative term in the interior domain. Funkc. Ekv. 25(1982), pp. 303-345.
[18] Y. Shibata: On the global existence of classical solutions of second order fully nonlinear hyperbolic equations with first-order dissipation in the exterior domain. Tsukuba J. Math. 7(1983), pp. 1 - 68 .

Matematický ústav čsAV
Žitná 25
11567 Praha 1
(Oblatum 19.7. 1984)

[^0]: (i) Another application of this method can be found in [7], where one investigates the existence of periodic solutions - 534 -

