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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

25(3) 1984 

HARD IMPLICIT FUNCTION THEOREM AND SMALL PERIODIC 
SOLUTIONS TO PARTIAL DIFFERENTIAL EQUATIONS 

Pavel KREJC. 

Dedicated to the memory of Svatopluk FUCIK 

Abstract. In the first part we investigate the existence 
of small solutions of the equation F(u) • h in a system of 
Banach spaces via "modified Newton's method". The abstract 
result is used in the second part for proving the existence 
of periodic solutions of partial differential equations of the 
second order. 

AMS classification; 47 H 17, 35 G 30, 35 B 10 

Key words: Modified Newton's method, Nash's iteration 
scheme, smoothing operators, classical periodic solutions, 
second order equations 

Introduction 

Recently many new existence results have been obtained in 
the theory of partial differential equations by means of the 
Nash's iteration procedure which is a modification of the 
classical Newton's method. From a more general point of view it 
was developed e.g. by Schwartz ["15]t Moser [8], [9], Ptak [13], 
Craven and Nashed [3], Shatah [16], Altman [1], issuing from the 
original Nash's paper [10]. These results are applied in the 
theory of PDE's for proving the existence of small solutions in 
the cases when one has some apriori estimates, but with a "lost 
of derivatives". This situation:occurs frequently in the theory 
of nonlinear hyperbolic equations. The existence proofs are based 
either on the use of Moser's theorem (Rabinowitz [14], Craig [2], 
Petzeltova t12])» or on a direct application of the Nash's scheme 
(Hormander [5], Klainerman [6], Shibata [17],[18])„ All these 
results are obtained under the assumption that the data (i.e. 
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right-hand side, initial conditions, if any, etc.) are 

sufficiently small and sufficiently smooth* 

In the present paper we want to emphasize that in fact, 

this theory can be put in a rather elementary framework. In the 

first part we derive sufficient conditions for the solvability 

of the abstract equation P(u) ~ h in a system of Banach spaces 

{xp* j. Our aim is to minimize the requirements on the smallness 

and T>smoothnessn of the data. In the second part we apply the 

abstract theorem for proving the existence of classical periodic 

solutions to the equation 

(^(u.^Uf^u-^u.^Ut^^u) - h(t,x) 

with zero Dirichlet boundary conditions on [o,l], where <D and 

h are given functions. 

Throughout the paper, we denote all constants whose values 

depend essentially only on quantities a,b,... by c ^ 
8>, U , . . • 

Especially, c-r denotes any constant depending essentially 

only on L. 

I. Operator equation 

1• Statement of the main theorem 

(1.1) Assumptions. 

(N) Let 2sSq^r4 be given real numbers and let N„,N ,N., 

°° q" q 

N+,N_,N ,N be nonnegative integers such that 

N+ ^ max$No,Nj 

N^ * N 4 * Nq N £ maxfrr+N +N +N.-2N j N +N ; N +N -N ? c + o q q — o o* + *»-» —-• 
and put 

M * 2N+1+N+N -N -N -N. . *° - o q q 

(X) Let J x p , L , p»2,q,q,oo , L=0,1,2, . . . } be a system of 
Banach spaces endowed with norms I • L T and l e t the 

p,it 

following relations hold (the symbol <?• denotes the 

continuous embedding): 

xp,L+1 ^ xp,L - r e a c h p a n d e a c h L i s 0 



X P , L ^ X P , L for p g p , L&O 

X 2 , L + N p O X P ' L for p=q,q,«o f LfcO . 

Let X 2 , N - he a closed subspace of X 2 , N - and for LfcN. 
o 

put
 X

2.L - X
0
.

H
- Л X

2
'

L 

(S) Let r>1 he a given real number and let i
s

n
}
n
-»o ^

e a 

sequence of "smoothing operators" such that for each Lfc.0, 

KSO, u«sX
p , K
 there is S

n
u e X

p , L
 and there exist con­

stants c
L
 such that 

(51) IS u L
 T
 £ cT r

(L"K)n lui v t L*K, nfcO 
n ptJj Jb ptK.

 w 

(52) l(I-Sn)^lpfL -̂  cL r
(L"K)n lulpfK , L^K^M+N., n&0. 

(F) Let £ > 0 be a given number and let F: BT (P) -*-X
4~,L, 

o li 

where DL(P) » {ueX*°
,L+N+ t Ittl̂ j- < $Q } , be a continuous 

mapping for OSL-SM, P(0) » 0, which is twice Pr^chet 
differentiable for 0 * L ̂  M-K+-IU+K_ and such that 
(P1) for each veB L(P), un ,u2e X^

L + N+, 0 * L #M-tf+-Vi-H_ 
there is 

I X I - M ^ o .u. 
lu2'i.V»o , 

(F2) there exists some b_> 0 such that for every v fe 

«*-> K +V-- , Ul +H < 5. and for every h«X 2. M 

O — r\ 

there exists a unique solution u€X 2 , M + KL to the 

equation P1(v) u • h , such that 

lul2,L+N„ ^ CL (lh(2tL
 + lvl«,L+No+H_ !hl2>()) 

holds for each L, 0£L^.M. 
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(1.2) THEOREM. Let (1.1) hold . Then there exists some <-̂ 0̂ 

rmch that for each h feX * , Ihlp M ̂  N *nere exists at least 

one solution u€X2f - to the equation F(u) -= h. 

(1.3) Remarks. 

U ) Since there is X2,N+N- Q X~,N+ , the value of F(u) 
in the theorem is well defined. 

(ii) In the applications, the number N characterizes the 
"order" of the equation, N+-N_ is the number of "lost 
derivatives", N is the highest order occurring in the 
"argument of the nonlinear!ty". 

2. Iteration scheme 

The iteration process is almost the same as in [5], [6] or 
ft 7] • »/e are to solve the following sequence of linear equations 

(2.1) F>(0) U Q = h 

(2.2), F'(S0u0) wQ -- hQ 

(2;2)n pl(Snun} wn * hn 

• n-1 
where un == uQ + | ~ wk 

ho - Soeo ' eo = ~ P(uo> + P ' ( 0 ) uo 
n-1 

hn " Snen + ( V Sn-1) f = ek 
en " fn + *n 
fn = - F(un) +P(ull-1) ̂ F'(un-1) wn-1 

*n a <p'<Sn-1uh-1> " F ' ( V l ) } wn-1 • 

We check easily that one has 

(2.3) P(un+1) - h - en+1 - (l-3 n)gle k 
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Pirst, let h€X2»M be arbitrary. Following (1.1)(F2) we 

find the unique solution uQ€X
2,M+N- of (2.1). There is 

(2'4) tuoL,L+l^ A cLl n l2,L' 0 3 L £ M . 

Por the solvability of (2.2) we require 

(2-5) 'SouoL,N0 < 5o 

luoL,N0 < 5o 

lSouoL,N +N < &• . ' o -

These conditions are satisfied if h is taken sufficiently 

small, say .kip M ^ 1 " 0 n *ne °*ner nan<i there is 

(2.6) |h0l2>L = |S0eol2>L £ cL^|P*('Uo)(uo.uo)|2t0 d«r £ 

* °L W^-N0
(1 + ,"«»l-.V»o),U«>,«.V>o,,,«>l4'V"o ' 

BO that the unique solution w o e I ^ '
M - of (2.2)0 satisfies 

KU.L+N, & CL (l-oU.I + KU.O KU.o) • °-L*M-

Let 6 > 0 be for the present arbitrarily chosen. Prom 
(2.4) and (2.6) it follows that one can find some S€ , 0< S£ £ £ 
such that if 

(2.7) |h!2>M < S£ , 

then there is 

(2-8)o K.2,L+N„ 0 6 . 0*L«l. 

Put 

(2.9) ^ • N + j . 

Our next goal is to choose 6 in (2.8) in such a way that 

the inequalities 

<2-8>* KI2,L+N_ * «r (-T + 1 ) k 

hold for arbitrary integers ks?0 and O^L^M. The constant 
r>1 is introduced in (1.1)(S). 
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For this purpose we proceed by induction over k. We make 
the following assumption: 

(2*10) For some £ > 0 and n & O there exists the sequence 

*wk*k«0 C X ^ M + N - of solutions of {(2.2)k, k»0,1, ... ,n I , 

respectively, satisfying (2.8)v, k-=0,1, ... ,n. 

3- Estimates 

(3.1) Proposition. Let (2.10) hold . Then there is 

(i) lun+ll2,L+H ^ °L £ • 0 S L = N 
( i i ) l«.a+l'2,L+H_ -5 c L £ r ( - r + L ) ( n + 1 ) , H < L ^ M 

( i i i ) KU.L+H * ° L £ ' ° - L ^ N 

( i v )
 K ' 2 . J > H I ^ c _ £ r ( - r + L ) ( » + 1 ) , N<L_1M 

( v ) l ( I - S n + 1 ) u n + l ' 2 .L + N_-i cLe rHf+ L ) ( » + 1 ) , O ^ M 

(vi) HlSn)%\2f^N_ -fi o L e r ( - r + L ) ( ^ D f 0-5L6M 

(Tii) I f n + 1 1 2 f l 6 oL£2r (-2r+ L + N
+

+ Ko+ Nq+V2 N-> U + 1 > ,0«Ltt-H+-H_+H. 

(v i i i ) Jg^ . 1 2 f L ^ o L e 2 r ( - 2 r + L + W V V 2 N - > ( n + 1 > ,0«M11-H+-H_+H_ 

(lx) |en+11 2 j L 6 c L e 2 r ( - 2 r + L + V V V V 2 N - > ( n + 1 > .0*L*-H+-H_+H_ 

(X) 

(x i ) 

3 - I 2 
E Z e j ___ cт £* , 0£L<M-N -Nж+N 
ЫÜ K j 2 , L ^ + 

ГІвJ ś o Є 2 r ( n + 1 ) / 3 
lk=-0 *I2,M-N -N^+N. 

(xii) | ( I -S n ) Z Z e J é CLe2r(-2y+L+N++No+Nq+N.-2Nj(n+1)j 

k*° 2 » L O ž L á M-N -ISL+N 

(x i i i ) I (I-Sn + 1) X_= . J á c L e 2 r ( - 2 r + L + H
+

+ H o + V N q- 2 N -> ( n + 1 > . 
I n + ' u - O ^ ? T, •" 

K U d*h 0 á L -§ M-N^-N^+N. 

( x i v ) i h n + 1 i 2 > L - c L £ ^ 0 * L . 
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£_r.2 . .2_£- Using (2.10), (2.4) and (2.6) we obtain 

In the case L£N there is Y~ r(""^+L)k^ J2" r
(-y + L ) k 

__ , £ cT, 
•-0 k-0 L 

for L>N we have £ Z r(~*+L)k . rT-L p(-y+I)(xi+1) ^ ( T - D k 
k*0 k«0 

£ cL r
(-^ + L ) (n+D f and (i) . (iv) follow easily. 

For proving the inequalities (v) and (vi) we use (1.1)(S) and 
(ii), (iv). There is 
l(I-S Jul ^ c r

(L-M)n |u | £ c s r
(-2f+L)(n+1) 1 KJ- ̂ n ^ n ^ L +N, - CL r 'Va.M+N. ** CL r 

which yields (vi) ((v) is analogous). 
Next, we express 

fn+1 " -/(1-')f'(V"n)(VVdr 

Using (1 .1 ) (P1) , (X) and (N) we obta in for 0 # LS M-H + -V H _ 

,f-*1 '2.- * °L l w t - i 0
( 1 + '"- '- .VV*. + |ffn '2 'VVB» }* 

' l»nl2,VVHq l W n l 2 ' W H 4 
, ^ + 1 , 2 ' - * ^ & s s + - i r 0

( 1 + K«2,VH0+^> K U . V V q 

• l<1-Sn)utal2,VVI,ft 

Therefore, we estimate both Ifn+-|l2 L
 and 1^+1^2 L < a n d 

hence Ien+il2 L^
 from above ^ 

. L r 2 > d + P ( - r + v v ^ - ) ( a f 1 ) ) . 
|X|»L+N+-N0 ^ r ( - 2 y + V ^ 3 + 2 N

0
+ N q + N q " 2 H - ) ( n + 1 ) ^ 

6 cL £2
 r

( - 2 r + L + W V N 4 -2N-)(n+1) 

which i s ( v i i ) . CV-M-O '-»_\ 

The a s s e r t i o n s (x) and (x i ) a re s i m i l a r to ( i ) - ( i v ) . 
\7e use the fac t t ha t the est imate 

| e I ^ c c2 J-2JT+L+N +N +N +N. -2N ) k 
1 e k ! 2 ,L ~ CL £ r + o q q 

ho lds fo r each k=0,1 , . . . n+1 and tha t one has 
- 525 -



M-N -N+N = 2N-N -N -N -N. +2N +1 . + ° ° - + o q q 
The proof of (xii) and (xiii) is analogous to (v) and (vi) 

and we don't reproduce it here. For proving the last assertion 
(xiv) we observe that 

l 3 n + 1 e n + l l 2 , L * c L r L < * + 1 > U n + 1 l 2 , 0 

ho lds fo r a r b i t r a r y Lj£0. Fur ther , fo r L £ M-N^-N^+N^ we have 

Jn+1 O 2Z eJ é |d-s ) 2ZI 
n k«0 ^ l г . L » n k-0 

( s ^ г O 2Z ej ú (i-s ) ZZ e j + 
'2 ,L 

n 
(I-S n + 1 ) I Z e k 

11+1 k»0 *«2,L 

so that we can use (xii) and (xiii), for L >M-N -N„+N we obtain 
+ TO — 

K+1-V^e4,L- I^S^.L + K&^UL * 
£ cT r(L-M+H++Nw>-Nj(n+1) I ^ I 

h «k=-0 ^^M-N^N^+N^ 

and using (xi) the proof is complete. 

4. Proof of the main theorem. 

Up to now we have shown that for an arbitrarily chosen 
£ > 0 we can find some <5fe > 0 such that if I h 12 ̂  < St , the 

equations (2.1) and (2.2)Q have solutions uQ, wQ e x^,M+N-

respectively, satisfying I^0(2 L+1. ^ CL ̂  • 'wo'2 L+N = * • 

O^L»Ivi. Further, assuming (2.10) we have derived the estimates 

0.1). 

By (1.1)(F2) the sufficient conditions for the solvability 
of (2.2)n+1 are 

( 4 < 1 ) ^n+^n+^oo.N+M, 

|un'oo,H0 < S. 

'VsJoo.l^ < £ 
lun+l'oo,No < K 

Since there is II + H_ g£. tT + 11^ + 1I_ , we see that by (3.1) 
(i), (iii) the conditions (K1) are fulfilled provided € is 
taken sufficiently small. 
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Following (1.1)(F2) the solution w .e X2'M+N_ of < 2 m 2 ) 
o n+1 

satisfies the inequality (0£LS»M): 

!wn+l'2,I+H_^°L OVl'a.L + ISn+1
un+lL,L+Ho+N_

 ,hn+ll2,J-

«- C L ( l V l ' 2 , L ^
L ( n + 1 ) k + l l 2 , H + K _ K + 1 l 2 . o ) • 

Using (3.1) (i), (xiv) we find the estimate 

K+ll2,L+N_^
 CL t M ^ V W * ---J <-»•>, 0t_lf_H , 

On the other hand, by (1.1)(1.) and (2.9) there is 

-y+N++N0+K +N. -2N_ ̂  -3 < 0 , hence 

<*-2> l"n+ll2,L+«_ * o ^ V ^ ' ^ ' . O . L ^ , 

The constant c-r in (4.2) is independent of n. Thus the choice 

(4.3) £ < (max JcL, o ^L^Ll])"
1 

yields (2.C) n + r 

By induction over n v/e conclude that we can construct the 

infinite sequence I^J^LQ
 c •£2,L+1'- of solutions of £(2.2)rJ^o 

provided &t - o\x is taken sufficiently small (so that (2.5)t 
(2.8) , (4.1), (4.3) are fulfilled) and each v/n satisfies 

the corresponding inequality (2.8) . Since the series 
<?Q. oo / , ^ 

X Z I V T J S_= £ Z Z r~ i s convergent, v/e see tha t {u } r 

n=0 r* 2,1;+!^ n=C n n ~° 
is a fundamental sequence in X f '- and hence it admits a limit 
u e X 2,H + N_ > K s p e c i G l l y , % _ u l n x ~ . K + > ^ o o n t i n u l t y _ f p> 

o,0 

(ix), (xii) there is 
F(u)—*F(u) in X*°f . On the other hand, by (2.3) and (3.1) 

•'<-_•.> " ьl.,0 é c (1-n.м'г.ч,, + |
(I
~V f=Ы

2
,
н
„, ) 

£2r-2(n+1)/Зf SF C 

hence F(u) = h, which was to be proved 
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II. A nonlinear equation of the second order 

5. Existence theorem. 

As an application of the above theory we consider the 

problem of the existence of time-periodic solutions of the 

equation 

(5.1) <f> (u, c\u, bxu, <^u, O^u, bxdtu) * h(t,x) 

with period O)>0, tcR , x € -Q = ]0,1[, satisfying boundary 
conditions u(t,0) « u(t,1) = 0. 

The spaces in which the equation (5.1) is to be solved are 
chosen in a natural way: we put for L £ 0 and 1 & p < ©© 

XP,L u wP.L(n)f X~,L m ^ j j j a n d f Q r Lfc1 X2,L = 

« f u e W ^ ^ A ) , u(t,0) - u(t,1) - 0 } , where W^JL(J1) denotes 
the Sobolev space of all real functions u(t,x), t«R , x e Jfl , 
(A>-periodic with respect to t and having all derivatives up to 
the order L in L (J0,io[x.fl), with norm 

lulpL = 1= X=(/M<£-JufS dxdt )VP 
p,ij K=0 J=0 V % Jst t X ' 

(the symbol / denotes the integration with respect to t over 
any interval Jt ,tQ+UJ[ ). 

Similarly, C^(il) denotes the space of all continuously differ-
entiable functions on R x il up to the order L and co-periodic 
with respect to t, endowed with the norm 

'oo,L 
T K 

u l т = I Z EZ sup [ U í ^ " J u ( t , x ) | , t * R 1 , x ć Л } 
°°,ІJ K=0 J=0 u x x 

The existence theorem is stated as follows (the symbol ^)jj>(0) 
denotes the derivative of <p with respect to the i-th variable 

at the point (0,0,0,0,0,0)). 

(5.2) THEOREM. Let to >0, SQ>0, N £4 be given, K integer. 

Put M -» 2N. Let <f> be a mapping of class <s* in its domain 
76 of definition D((f>) -* C-d^.<50I such that 

(i) (f)(0) . 0 
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( i i ) \<JKo) > o , d5<fxo) < o , b3<fxo) - o. 
Then there exist positive constants S^ >0, 5JJ>° B\xdh that if 

d..̂ >(0) >-d1, then for every h€X 2 , M, |hl2 M < S^ there exists 

at least one solution u€X2* to the equation (5.1). 

The proof consists in verifying that for the operator 

(5.3) F(u) s <£(Au) » [̂>(u, dtu, dxu, ̂ u , cJxu, ̂ u ) 

the conditions (1.1) are fulfilled. 

Putting N+ * NQ m 2, N_ - 1, q - q - 4, Nq « N. - 1, 
Noo = 2 we check immediately that (1.0(H) and (X) hold. 

Next, we state without proof two lemmas. The first one is 
an easy consequence of the Nirenberg inequality (cf. [n]), the 
proof of the second one can he found in [9] or £17]. 

(5.4) Lemma. Let 0#j£K£l-£L, 1£p,q£oo. Then there exist 

constants c T, c T such that for every ueX-** , vel^' p,I' pfq,L 
there is 

CD lu,p>K « opfl | a l & » / < « > l u l ^ X X - J ) 

<"> iulp,K Mq.L-- ^ cp,q,L 0U,p, J'V "q.L-J + l-lp,X Wq.L-l)' 

(5»5) Lemma. Let (5 > 0 , O^L^M+2. There exists a constant 

cj- L independent of <p such that for each v€X°°* , 
lvloo,2 < §o t h e r e i s

 <^<AY)€XCO'L and 

!J|0|ilL . s u p f l d i . . . \ <p(a^$ . . . , s 6 ) | f{s i l«y o , O^KSiL, 
1 K 1*1^6 }. 

We introduce the smoothing operators {s ] following [*5]» 
[6 J, [ 1 7 ] . First we define the continuous linear prolongation 

operators Pp>L; wPj
L(il) ~~>wPjL(R1), 1*pg«o, 0£L<§M+1 by 

the Hestenes formula (cf. T4]). Then we find a C°°-function <p 
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vith support in ]-1»l[ such that (see [17]) 

(«;.6) (i) f f(s) ds * 1 

(ii) -/^
k<f(s) ds . 0, k « 1,2, ... ,M. 

finally, for ufiXp' and nfeO we put 

( .7) (Snu)(t,x) . f2 r2n<p(rn(t~s)) y>(rn(x-y)) ?Pfj*(**v) ^yds, 

where r>1 is an arbitrary fixed real number. We can directly 

. eck using (5.6) and (5.4) that the sequence ts
n$nmo 

- tisfies (1.1)(S). 

Since the verification of (1.1)(F1) follows from a straight-
fcrward computation employing (5.4) and (5.5), for proving the 
Theorem (5.2) it remains to show that (1.1)(F2) holds. 

-. * Linear equations. 

Let us consider the linear equation 

i /.1) a..u + a2 S^u + a^ Bxu + a. ̂ ?u + a. ̂ xu + a6 dxdtu = h 

and assume 

</..2) For i=1, . . . ,6 there i s a i <-X °° ,M+1 and 

K ! o o , 1 * A i 

l V J c o . 0 6 X± 

l ^ a i l o o , 0 » f i 

inf [ a 2 ( t , x ) , t e R 1 , x€ fl} > m 2>° 

inf{-a 5 ( t ,x ) , t € R 1 , x e . f l } £ m-.>0 

a..(t,x) ^ -1/(8u2) miniAm2, nv} , where t> is the 
2 1 constant such that for every u €X~* there is o 

/ / lul2 dx dt £ tf2//( io\uf2 + Vd ui2) dx dt , and 
w'JL o C.4L ^ x 

2 A 4 A 6 
^ = ^ + n^m., • 
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Â  ^ 1/(4A) m i n f m ^ A m g } 

and the numbers T±f f± s a t i s f y the i n e q u a l i t i e s 

*<*4 + h + h + ^V + *2 ( t2 + *3> + ^ ( 3 r 4 + *5 + T 6 ) * I *2 

A(r5 + f5 + ^ r - ) + t>2(r2 + f3) + * < T 4 + 3 | 5 + 3r6) ^\^ 

(2M + 1) r 5 + f5 + M r 6 3 J j nij 

(2M - D r 4 + f6 + f5 + M r 6 * J i-g 

(6.3) THEOREM. Let us assume ( 6 . 2 ) . Then fo r each h e X 2 , M 

there ex i s 
inequa l i ty 
there e x i s t s a unique so l u t ion u e X 2 , M + 1 of (6 .1) and the 

6.4) | u l 2 f L + 1 á o L f Í A i > m i f t i j f i . ( l h l 2 > L + fHl2 ,o g ^ l » i L , i + 

holds for every L, OtSL«M. 

\j$LJ2.J±JLm We u s e t 3 a e c l a s s i c a l Galerkin-type procedure. Let 

h 6 X ' be given. For m fc 1 we put 
m m i 

u ( t t x ) = > 5 u , . w . . ( t , x ) , t c R , x e i l , where 
m k—m j=1 * 3 * 3 

i ^ t w , . ( t , x ) » e w "* s i n jftx , i i s the imaginary u n i t , ufcjsu..,fcj* 

The constant vec to r U » {uki * J*1* ••• »m» k=-mf ••• ,m} 

i s required to s a t i s f y the system (w^. deno tes the complex 

conjugate of w^.,) 

( 6 - 5 ) / £ ( a 1 S + a 2 ^ i + a3U+a4^i + a 5 ^ M + a 6 ^ t a) • 
. w,,. dx dt » / / h w w dx dt , 

k=—m, . . . , m , t j s 1 t • • • , m , 

which i s a l i n e a r a lgebra ic equation of the form 

( 6 ' 6 > AmUm " \ > 

where Am is a square matrix of the type (3m+1 )x(3m+1). 

Let us multiply the (k,j)-th equation in (6.5) successively 
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by u. . and by -i A*gp "u\ . and in both cases sum over 
k*-mt ... ,m and j-1, ... ,m. Summing the two relations we 
obtain after integration by parts 

l k * * z 'ati'2 - •s'^H'2 + ai'fl'2) *- « " 
" -/J2(H*4 + Ra6 + V»\M' 2 " H's"-*!2 + 

+ 5CVV1 + V2 + V3 } 'H'2 + ( _ A a 3 + *Vs + a6 ) JxB 3t» + 

+ V43tH-fl + (Vs + V6}^HH + h(;vdtH + H> 3 to d* • 

Estimating 

(6.7) l/^ag Bji ^ dx dt U VztoH.o + 2 i la . i l .L0 > 

with £** » mc/A^ and using (6.2) we obtain 

- C f A l t m i . t i f f i }
 | h l 2 t 0 t 

where II II i s a norm i n R3nH*1. 

Prom (6.8) it follows that the matrix Affi in (6.6) is 
nonsingular, hence there exists a unique solution U of (6.6). 

Moreover, by (6.8) the sequence \n\ .- is bounded in X0* . 

Consequentlyi there exists a subsequence of {nj which converges 
weakly in X^*1 to some u€X^f1. Taking the limit in (6.5) we 
see that 

(6.9) J J {atuv 4- a^u-v + &^\nir " ̂ u-^Ca^v) - d^u-B^a^-v) -
ш JL 

- д
x
u-ôt(a6v) } dx dt » /-£b-v dx dt 

— 2 1 
holds for every v * wfe. and hence for every v«X*"' . Remark 

that (6.9) can be considered as the definition of the weak 
solution of (6.1). 

The passage to the weak limit in (6.8) gives 

(6.10) |u|2fl £ O ^ ^ y Ihl2j0 . 

In order to obtain further estimates we multiply the (ktj)-th 
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equation in (6.5) consecutively by (i *&*•) "uV. and 

A(i ^ ) 2 L + 1 u ^ , L being an arbitrary integer 1 #L3ll. 

Summing again over k and j and integrating by parts we obtain 
respectively 

(6.11) / X K ' ^ V 2 - a 5 i a t^a i 2 - a6a^.^+1a]dxdt 

+ ^(V)(-^xa5-^"K-1^xM + ̂ ^t^xM + ^ J V 

<*?\ + gft1Mv*rK+1M + *6-^yp-Hf,i + 

+ ^ ^ 3 ax dt , 

and 
(6'12) XVj^2 + (L"2)3ta4 " k ^ ' ^ V 2 + 

+ (L+^d^l^l
2
 + (a3 - dxa5 + L^a6)^^.^

1
fi}dx dt -

- ̂ &])aK+1a^rK^^xM - £©*fc-*?*l"*,l + 

+ tfr ̂ 1 M J «x « • 

Now, adding (6.11) to (6.12) and using (6.2) and an estimate 
analogous to (6.7) with the same Ac we derive the inequality 

'dt+ 1Ml|,o + ra&i.i.o = •t.|A1.^.vy«^1l'2io
 + 

+ l^xM<2,o> { l h l 2 , L
 + i (^lail«,K+1> ( iat-K+1M l2.o + 

+ ^t^xM^.o)]-
By induction over L using (6.10) and (5.4)(ii) we obtain 
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<6-13> I^Vz.o • ^ ' 2 , 0 * 

* " M A i - n v ^ J (lhl2,L + |hl2,0 g > i ' C.IH-1 ). 

Hence, the weakly convergent subsequence ?u} of {uj can he 

chosen in such a way that d.u converges weakly to d.u in 

X • and l̂ j-ulp i is estimated from above by the right-hand 

side of (6.13) for all L, O^L^M. 

From (6.9) we see that the distributional derivative ^ u 
2 0 equals to some function from X ' , hence u is an element of 

X2»2 and satisfies (6.1) a.e. in R 1Xil. Differentiating 
formally the equation (6.1) up to the order M-1 we show by 
induction (using (6.13) and (5.4)(ii)) that u is an element 

of x 2 , M + 1 and satisfies (6.4) for O^L^M. Thus, the theorem 
(6.3) is proved. 

7. Completing of the proof of (5.2) and final remarks. 

The theorem (6.3) yields sufficient means for verifying that 
the operator (5.3) satisfies (1.1)(P2). In fact, we have 

F'(V) u - ^-.^ A v ) ^ + d ^ A v J ^ u + dy|KAv)-"dxu + ̂ 4<£(Av)-7)
2u -> 

+ "d5£(Av).d2u + d6<#<Av)dx^tu . 

I f S > 0 i s taken s u f f i c i e n t l y small, then for !vl ^ ^ < £ 

the re lat ions (6.2) hold e .g . for m2 » | ^ ^ ° ) » -^ s " ^ r ^ ° ^ » 

A i - 1 3 ^ 0 ) 1 + S±9 S± = 1 for i # 1,3, ^3 - ^ min [Am^rn^ , 

A -a join f^nufm,-} . Using (6.4) and (5.5) we obtain exactly 
1 161T d ^ 

(1 .1) (F2) . Thus, the proof of the theorem (5.2) i s complete. 

(7 .1) Remarks. 

(i) Another application of this method can be found in [7] , 
where one investigates the existence of periodic solutions 
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of the Maxwell equations in nonlinear media in the Sobolev 

spaces H^' of divergence-free vector functions in three 

dimensions. In general, the proof in more space dimensions 

requires further considerations concerning the prolongation of 

domains of definition outside il. and the regularity of 

solutions of linear elliptic equations. 

(ii) If the operator (5.3) is quasilinear of the type 

<M^1(u» ^tu» ^x11^ + ^ r V u » ^tu» ^xu)^ + ^3^u» ^tu» \u* • 

we can "save" one derivative by putting N = 1. 

(iii) The method remains valid for a nonhomogeneous equation 

0(t,x,Au) = h provided we assume that the conditions (5.2) 

(i), (ii) hold uniformly with respect to (t,x) £ R x H , 

and d.<£ is sufficiently small. 
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