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GRAPHS AND ASSOCIATIVE TRIPLES
IN QUASITRIVIAL GROUPOIDS
T. KEPKA, J. KRATOCHVIL

Abstract: Several equalities and inequalities concern-
ing the numbers of occurrences of three-element subgraphs in
directed graphs are used to find the lower bound for the num-
ber of associative triples in finite quasitrivial groupoids.
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Por a positive integer n, let 03(n) denote the maximal
number of 3-cycles in an n-element tournament. It is well
known that Ca(n) = (n® - n)/24 for n 0dd and 03(n) =
= (n° - 4n)/24 for n even (see [11 and [3]1). On the other hand,
tournaments are in a-close connection with commutative quasi-
trivial groupoids and Ahe equivalent result is the lower
bound for the number of assooiative triples (see [2)). Namely,
if G is an n-element commtative quasi trivial groupoid them G
contains at least (3n° + n)/4 (resp. (3n° + 4n)/4) associative
triples of elements, provided n is 0dd (resp. even). The aim
of this short note is to show that the same is true for non-
commutative quasitrivial groupoids (see Theorem 1 (1ii),(iv)),
however, in this case, the equivalent combinatorial structure
is that of directed graphs. Several equalities and inequali-
ties concerning the numbers of occurrences of three-element

subgraphs in a directed graph are found and the main result is
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then derived.

1. Quasitrivial groupoids and graphs. Throughout this note,
a graph is a directed graph without loops and multiple edges,

i.e. a finite non-empty set together with an antireflexlve bi-
nary relation (possible empty).

Let K be a graph. Then V = V(K) will designate the set of
vertices, E = E(K) that of edges and v(K) = card V. Further,
for any 8¢V, let f(a) = £(K,a) = card {beV; (a,b)c E, (b,a) ¢
¢E}, g(a) = card §veV; (a,b)4E, (b,a) € B}, h(a) = card {be V;
(a,b)eE, (b,a)eE} and k(a) = card {beV; (a,b)$E, (b,a)d Ef.
Now, we put w(1) = w(K,1) = wfév(r(a)a - £(a))/2, w(2) =
= T (a(a)? - g(a))/2, w(3) = E (h(a)? - n(a))/2, w(4) =
= = (k(8)? - k(a))/2, w(5) = = 2(a)g(a), w(6) = = £(a)h(a),
w(7) = =t (a)k(a), w(8) = Z g(a)n(a), w(9) = = g(a)k(a),
w(10) = Z n(a)k(a).

We shall say that a graph K is commutative (resp. anticom-
mutative) if h(a) = k(a) = 0 (resp. £(a) = g(a) = 0) for every
a €V, Thus commutative graphs are nothing else than tournaments
and anticommutative graphs are in fact the simple undirected
graphs,

Consider the following three-element graphs L(1),...,L(16)
where V(L(1)) =41,2,3Y for each 1441416 and E(L(1)) =
= £(1,2),(1,3),(2,3)%, E(L(2)) = §(1,2),(1,3),(2,3),(3,2)},
B(L(3)) =1(1,2),(1,3)}, E(L(4)) = {(1,2),(2,1),(1,3),(2,3)},
E(L(5)) = 4(1,3),(2,3)}, E(L(6)) = {(1,2),€2,1),(1,3),(3,1),
(2,3),(3,2)3, E(L(7)) = 4, E(L(8)) = {(1,2),(2,3),(3,1)%,
E(L(9)) = {(1,2),(2,3)}, E(L(10)) = {(1,2),(2,3),(1,3),(3,1)},
E(L(11)) = £(1,2),(2,3).(3,2)}, E(L(12)) = i(1,2),(1,3),(3,1)},
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B(L(13)) = {(1,2),(2,1),(2,3),(3,2)}, E(L(14)) = $(1,3),(3,1)%,
E(L(15)) = {(1,2),(2,1),(2,3),(3,2),(3,1)%, E(L(16)) = £(1,3)}.
These graphs are palir-wise non-isomorphic and every three-ele-
ment. graph is isomorphic to one of them., Now, for a graph K and
141416, we denote by q(1) = q(K,i) the number of induced sub-
graphs of K isomorphic to L(i). Obviously, if v(K)Z 3 then K is
commutative (resp. enticommuative) 1iff q(2) me..m q{(7) =.q(9) =
m,.em q(16) = O (resp. q(1) =e.e= q(5) = q(8) =v.e= q(12) =

= q(15) = q(16) = 0).

Let K be a graph and b = (pyyeeespyg)€ 216, 7 being the
ring of integers. Put q(K,p) = PRy pya(i).

A groupoid is a non-empty set with & binary operation (u-
sually denoted multiplicatively). A groupoid G is said to be
commutative (resp. anticommuative) if xy = yx (resp. xy%yx) for
all x,ye G such that x$y. A groupoid G is said to be quasitri-
vial if xye {x,y} for all x,y€G,

For a groupoid G, let A(G) = {(x,y,2)3X,y,2¢€G, X.y2 =
= xy.z% and a(G) = card A(G). If G is quasitrivial then clear-
1y (x,x,¥),(x,¥,x),(y,x,x) € A(G) for all x,y €G.

Let C be a class of groupoids and n a positive integer such
that C contains at least one groupoid with n elements. We defi-
ne a(C,n) = min a(G), GeC, card G = n and b(C,n) = max a(H),
He¢ C, H non-associative, cerd H = n; b(C,n) = n’ if there exists
no such Hg Ce.

Let G be a finite quasitrivial groupoid. Define a graph
L = L(G) as follows: V(L) = G and (a,b)e E(L) iff a+b and ab =
= 8, Conversely, let K be a graph. Define a quasitrivial grou-
poid H = H(K) as follows: The underlying set of H is the set V(K)
and for a,be V(K) we have ab = a if (a,b)e E(K) and ab = b in
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the opposite case. Then G —> L(G) and K —> H(K) are bijective

correspondences between finite quasitrivial groupoids and
graphs preserving underlying sets and injective homomorphisms.
They induce by restriction bijective correspondences beiween
finite commutative (resp. anticommutative) quasitrivial group-
oids and commutative (resp. anticommuative) grephs.

Por 141416, let P, = 27-a(H(L(1))) and P = (Py). It is
easy to verify that P = (0,...,0,6,3,3,2,2,2,2,1,1).
For a graph K, let q(K) = q(K,P). Notice that this number is
even provided K is commutative (resp. anticommutative)., The

following proposition is obvious:

Proposition 1. Let G be a finite quasitrivial groupoid
and n = card G, Then a(G) = n3 - q(L(G)).

2. Several equalities and inequalities. In this section,
let K be a graph, n = v(K) and p = (pi)e Z16. We have the fol-
lowing ten obvious equalities:

w(1) = q(1) + q(2) + q(3),

w(2) = q(1) + q(4) + q(5),

w(3) = 3q(6) + q(13) + q(15),

w(4) = 3a(7) + q(14) + q(16),

w(5) = q(1) + 3q(8) + q(9) + q(10).

w(6) = 2q(4) + q(10) + q(12) + q(15).

w(7) = 2q(5) + q(9) + q(11) + q(16),

w(8) = 2q(2) + q(10) + q(11) + q(15),

w(9) = 2q(3) + q(9) + q(12) + q(16),

w(10) = q(11) + q(12) + 2q(13) + 2q(14).

From this we get the following equality:
M 2w(1) - 2w(2) + w(6) + w(7) - w(8) - w(9) = O.
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Moreover, it is easy to see that:
q(1) = w(1) - w(8)/2 - w(9)/2 + q(9)/2 + q(10)/2 + q(11)/2
+ q(12)/2 + q(15)/2 + q(16)/2,

a(2) = w(8)/2 - q(10)/2 - q(11)/2 - q(15)/2,

q(3) = w(9)/2 - q(9)/2 - q(12)/2 = q(16)/2,

q(4) = w(6)/2 - q(10)/2 + q(12)/2 - q(15)/2,

q(5) = w(7)/2 = q(9)/2 - q(11)/2 - q(16)/2,

q(6) = w(3)/3 - q(13)/3 - q(15)/3,

q(7) = w(4)/3 - w(10)/6 + q(11)/6 + q(12)/6 + q(13)/3 - q(16)/.

q(8) = -w(1)/3 + w(5)/3 + w(8)/6 + w(9)/6 - q(9)/2 - q(10)/2

- q(11)/6 - q(12)/6 - q(15)/6 - q(16)/6,
q(14) = w(10)/2 - q(11)/2 = q(12)/2 = (13"
and consequently
a(K,p) = w(1)(py=Pg/3) + w(3)pg/3 + w(4)ps/3 + w(5)pg/3

+ w(6)p4/2 + w(?)p5/2 + w(8)(~p, /2+p,/2+pg/6)
+ w(9) (~py/2+p3/24pg/6) + W(10)(=pq/6+pq,4/2)
+ a(9)(py/2-p3/2-pg/2-pg/2+pg) + q(10)(py/2-p,/2

(2) ~P4/2-pg/2+p1) + a(11)(py/2-py/2-pg/2+py/6~pg/6
+P11-P14/2) + 9(12) (py/2~p3/2-p,/2+pq/6-pg/6
*+P12-P147/2) + a(13)(=pg/3+pq/3+D13=Pq,) +
+ a(15)P, /2-p,/2-p, /2-pg/3-pg/6+p15) +
+ q(16)(p1/2-p3/2-95/2-P7/3-P3/6+P15)_

Now, using (1) and (2), we have the following result:

Proposition 2. (1) q(K) = ~2w(1) + 2w(5) + w(8) + w(9) +
+ w(10),
(11) a(K) = -w(1) = w(2) + 2w(5) + w(6)/2 + w(7)/2 +
+ w(8)/2 + w(9)/2 + w(10).
(111) q(K) = <2w(1) + 2w(5), provided K is commutative.
(iv) q(K) = w(10), provided K is anticommutative,
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Proposition 3. (1) q(K)4(n® - n)/4.

(11) q(I&)e:--.(n3 - 4n)/4, provided n is even.

Proof. PFor eny a€V, let r(a) = (£(a)+g(a))2/2-22(a)g(a),
s(a) = (h(a)+k(a))?/2-2h(a)k(a) and t(a) = £(a)+g(a)+(£(a) +
+g(a)+h(a))2/2-(£(a)-g(a))2-r(a)-s(a). Then t(a)/2 =2f(a)g(a)+
*h(a)k(a)+t(a)h(a) /2+2(a)k(a) /2+g(a)h(a) /2+g(a)k(a) /2-(2(a)2-
~2(a))/2-(g(a)?-g(a)) /2, and hence, by Proposition 2(ii), q(K)=
= w%\l t(a)/2. On the other hand, for any aeV, we have f(a)+
+g(a) 4 n-1, f(a)+g(a)+h(a)+k(a) = n-1, 0< (£(a)-g(a))?, 0<r(a),
0<s(a) and t(a)« (n°~1)/2. Consequently, q(K)é(n3-n)/4. In
the rest of the proof, suppose that n is even. If f£(a)+g(a) is
even then h(a)+k(a) is odd, h(a)#%k(a) and 1/2 £s(a). Moreover,
2(a)+g(a) € n-2, and therefore t(a) & (n®-4) /2. It f(a)+g(a) is
odd then 1/2 £r(e), 14 (£(a)-g(a))? and again t(a) & (n%-4)/2.

Proposition 4, Assume that K is antlcommutative.
(1) q(K)£ (2® - 20 + n)/4.

(11) q(K)&(n - 2n% + n - 4)/4, provided n is odd and
n = 4m + 3 for some mé 2.

(111) q(K) & (03 - 2n%)/4, provided n is even.

Proof. Ry Proposition 2(iv), q(K) = = h(a)k(a). Moreo-

ver, q(K) is even and the rest is easy.

Proposition 5. Assume that q(K) 0.

(1) 1<£q(K).

(11) 6&q(K), provided K is commutative,

(i1i) 2n - 4<£q(X), provided K is enticommutative.
Proof. Easy.

3. Several examples
Example 1. Let G = G(+) be a finite abelian group of or-

der n end let M be a subset of G such that O ¢ M. Put
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m=card M and k = card {a€M; ~acM}. We define a graph J =
= J(G,M) as follows: V(J) = G and (a,b) @E(J) iff a - beM.
Then q(J) = n°m - nm® - nk and we have the following particu-
lar cases:

(1) n23 is odd, G = 2, = £0,1,000,n=13 (the additive
group of integers modulo n) end M = §1,2,...,(n=1)/2}. Then J
is commutative and q(J) = (n3 - n)/4. ‘

(11) nZz4 is even, G = Z, and M = {1,2,...,(n=2)/2}. Then
J 18 not commutative and q(J) = (n° - 4n)/4.

(111) nZ51isodd, n =4r+ 1, G =2 emd M = §$1,2,000,r,
n~r,n=r+l,...,0-2,0-1%, Then J is anticommutative and q(J) =
= (2 - 20% + n)/a.

(iv) nz6é iseven, n=4r+2, G =2 end M= $192,000,1,
n-r,n-r+l,...,n-2,n-1}, Then I is enticommutative and q(J) =
= (0 - 2n%)/4.

(v) nZ4 iseven, n=4r, G = 2, and M = 1425000, r,n=2,
n-r+l,...,0-2,n=~13, Then J is anticommutative and q(J) =
= (0 - 20%)/4.

Example 2. Let nZ4 be even and M = {1,2,,..,(n-2)/23%.
Define a graph I = I(n) as follows: V(I) = 2, and (a,b)&E(I)
iff either 8 = beM or a€Mu{0} and & = b = n/2., Then I is com=
mutative end q(I) = (o - 4n)/4.

Example 3. Let nZ7 be odd, n = 4r + 3 and M = §1,2,...,
ryn-r,n-r+l,...,n~2,n-1}. Define & graph R = R(n) as follows:
V(R) = Z, end (a,d)€ E(R) iff either a - beM or 2r + 2£€a €n-1
and & - b=2r + 1 or 1€a£2r + 1 and &8 = b = 2r + 2, Then R
1s ancticommtative and q(R) = (n’ - 2n° + n - 4)/2.

Exemple 4, Let nZ 3. Define a graph S = S(n) as follows:
V(s) =z, end (a,b) @ E(S) iff either 3<a and €2 or a = 0
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and b = 1, Then q(S) = 1.

Example 5. Let nZ 3, Define & graph T = T(n) as follows:
V(T) = Z, end (a,b)e E(T) 1ff either bca and 3<4a or a = 0,
b=1, ora=1,b=2o0oras=s2,b=0, Then T is commtative
and q(T) = 6.

Example 6., Let n 23, Define & graph Q = Q(n) as follows:
V(Q) = 2, and (a,b) € E(Q) iff either a = 0, b=l ora=1,b =
= O, Then Q 1s anticommutative and q(Q) = 2n - 4.

4., Summgry, In the following theorem, let A (resp. B, C)
denote the class of quasitrivial (commutative, anticommutative)

groupoids.

Theorem 1. (1) a(A,1) = a(B,1) = a(C,1) = b(A,1) =
b(B,1) = b(C,1) =1,
(11) a(A,2) = a(B,2) = a(C,2) = b(A,2) = b(B,2) = b(C,2) =

= 8,

(iii) ea(A,n) = a(B,n) = (3n3 + n)/4 for every odd nZ3.

(iv) a(A,n) = a(B,n) = (3n3 + 4n)/4 for every even nZ24,

(v) a(C,n) = (3n° + 2n° - n)/4 for every odd nZ 5,
n=4m+ 1,

(vi) a(C,n) = (3n3 +2n° - n + 4)/4 for every odd nZ3,
n = 4m + 3.

(vii) a(C,n) = (3n3 + 2n2)/4 for every even nZ4,

(viil) ©b(A,n) = n’ -1 for every nz3,

(ix) ©v(B,n) = n’ - 6 for every n2z3.

(x) b(C,n) = n’ - 2n + 4 for every nz3,

Proof. The result follows easily from Propositions 1,2,3,
4,5 and Examples 1,2,3,4,5,6.
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