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SEMILINEAR PARABOLIC SYSTEMS
Herbert AMANN

Abstract: We describe a general local existence and regu-
larity result for semilinear parabolic systems of even order.
In particular we obtain classical solutions without compatibi-
1lity conditions for the nonlinearity. Moreover, we describe a
simple method for obtaining global existence by means of a ge-
neralization of the Gagliardo-Nirenberg inequality to fractio-
nal orders of the derivatives.

Key words: Local and global existence, regularity, para-
bolic systems, time-dependent boundary conditions.

Classification: 35K60, 35B65

In these lectures we review some recent results of the au-
thor concerning local and global existence and regularity for
semilinear parabolic systems of arbitrary even order. It is one
of the main features of our approach to prove first of all a
very general existence and regularity theorem, which guaran-
tees the existence of classical solutions on a maximal time in-
terval. In possession of this general theorem one can then tre-
at the quesﬁon of global existence separately by establishing
appropriate a priori bounds in some week norm without worrying
any more about existence questions.
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This paper was presented on the International Spring Schosl on
Evolution Equations, Dob¥ichovice by Prasme, May 21-25, 1984
(invited paper).



1. Regular Parabolioc Systems. Throughout this paper £, m,
n and ¥ are fixed positive integers and k is an integer satisfy-
ing 0Okk<k + 1 £ £ & 2m, T 1s & fixed positive real number, and
O 1s a bounded domain in R® of class c2=*£ . Moreover I de-
notes a (necessarily finite) set of nonempty open and closed
subsets " of 3Q. which are pairwise disjoint and whose union
equals 9L..

We denote by A(t) for each t ¢[0,T] a linear differential
operator of order 2m acting on N-vector-valued functions u:
+ ) — c¥ of the form

Altws= (-1 = a (-, 0%,
lecl £ 2m

where

it > 8 (-, 1)) e ¢27(10,71,64( 7, £( D))

for all e B® with locl & 2m (where 2~ means that the functi-
ons have (locally) Lipschitz continuous first derivatives). Mo-
reover:

B(t)s= {B(E) I Tel)
denotes for each t &€ [0,T] a asystem of boundary operators on
3. , where

Bra(®im (DU ,eeny BP(E)

and

®(t)us = © (e, t)D%
BrL(t)u: la,\:‘.‘m?pb%f‘( »£)D%u

)

with Oél@ n < 2m and

L

2m+f-m_, "
(e bE L (e,01ec® (00,0 (M, @, €))

for ov € B2 with [ ém
We let

@ 16 4k, eand Me T" .



a(x,t, ¢ );-‘&‘§2m a (x,t) §°° eL(ehH

and
aq,\(x,t.g »T)im al(x,t,€) + 01#1'2‘ Iy e S( c®

for (x,%,€) e 0x[0,7]J=<R®, > € [-&,], and © & IR, where
Iy denotes the identity in £(€¥). Similarly,

b?ﬁ,’ (x,§ )= wg;mpp bc(:’p(x) £

tor |o«l & mS"»"' v 14 énN,and Ne " , ana b(x,§ ) denotes
the (mNxN)-matrix with rows bg (x,§) for allxel ,Mel
and ?e B™,

Por 1<p<oo and 8 e RY we 1et ¥v2:a I;(_Q., c') and, irf

P
2mngsé2m + £,

mN  g-1/p-m
ARG R S

Then (A(t), B(t), 0, ), 04t4T, is said to be & regular

parabolic initial boundary value problem (IBVP) of (olass ¢t and)
order 2m provided the following additionsl oconditions (R),(C) and

(S) are satisfied:
(R) There exists a number oc € (#/2,5r) such that

det s#(x.t,g ,®)%0
and the polynomial of one complex variable
X > det ag (x.t,g +d»(x), )

has precigely mN roots 9\.’5(49‘,:.1:, §rv)s 14 J4nN, with posi-

tive imsginary parts for each

™) (c&.x,t,?,fr)s[-oc,oc]x 30.x[0,7)= B2x R
with (¢ \ v (x)) = 0 end (§,)=*(0,0),

where » 1is the outer normal on 35l and (. | - ) the euclidean



inner product.
(C) Por each (+*,x,t,§ ,1t) satisfying (1) the rows of
the matrix-valued function of one complex variable

A > BLx, £, € + A (x))8 (x,8, § + A (x), 7)

are linearly independent modulo ;f‘t: (- &;(13 x4, € »v)) (as
polynomials in A ), where &4-(x,t,7,7T) is the matrix whose
elements are the cofactors of the elements of the transposed
matrix of &, (x,t,m,7)e If ¥ = 1 we put G (x,t,m,1)i= 1.
(S) Por each t g[0,T] there exists a number A € € such

that the linear operator
(A +A), B W2 —> 1, < w2m-1/2

is surjective.

In the remainder of this section we give some important ex-
smples of regular parabolic IBVPs. Por this purpose we recall
that (A(t),5), 06t 4T, is said to be a strongly parabolic sys-
iem it

Re(a(x,t,§) 179 ) >0

for all (x,%,§ ,1) ¢ T < [0,21 > B®x c¥ with € 0and 740
(where now (- [ « ) denotes the "euclidean™ inner product in c‘,
which is linear in the first and antilinear in the second variable).

(1.1) Examples: (a) Suppose that X = 1 (the case of "one
equation"), that (A(t),0), 04t £T, 1s strongly parabolic and
that B3(t) is a system of m boundary operators covering A (t)
(that is, satisfying the ocomplementing conditions; e.g. [11]) in
the usual sense, Then (A(t), B($),0,I), 0£t£T, is_a_regular
parabolic IBVP of_ order 2m.

(b) Suppose that (A(t),0), 04t £T, is a strongly parabo-
lic system. Moreover, suppose that for each "e W and t€10,7)
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thers are given m vector fields (34 p (.,t) on I such that

[t > By (-, )1€027([0,21,62™4-1 (1, @)

and ( pJ’P(x,t) |v(x))>0 tor j = 15¢e,,my, x€ ™ and ¢t €[0,2].
N
Then define (Nx N)-matrix-valued boundary operators :133. r (t)

by

ak+d-1 u
t)i+ =T + lower order terms,

A
5 (tus=
d'r 3 a{sj'r'(.,

where ki= k. 1s a fixed integer on [' with Ok, &m, 1£J4n,
Mel , and te[0,7]. Pinally let B (t):= (:ﬁ,'r, (£)yeee
vees By p (9). Then (A(D),B(1),02,T), 04t4T, 1a 8 regular
parabolic IBVP of order 2m. Observe that this example covers
in particular the case of Dirichlet boundary conditions, where
pj.rr(‘.t) = for j = 1,...,m, t&[0,2] and "= 342 .

(¢) Segond order strongly parsbolic systems: We suppose

that m = 1 and use the summation convention, where j, k run from

1 to n. Then we write A(t) in the form

Alt)u = -ay (+,£)D;Du + ay(-,t)Dyu + 8 (-, t)u
and consider a boundary operator of the form

B(t)u = d"a;,k(..t) ijku + (Ig - d)u +db(e,t)

where Ji= diag ( d%,..., dy) is a dlegonal matrix such that
d‘de c(a ,£0,13). Thus each da equals either O or 1 and is
constant on each component of 3.Q . If d"j = 0 then the j-th
equation of NB(t)u = 0 is simply the Dirichlet condition ul = 0
on the corresponding part ° of 3 . Of course, u = (u1,...
ceesu®) and v = (»',..0,2 D). Observe that the function o(-)
defines implicitly & boundary decomposition M . Then

(A (%), B($),0,P), 0&t&T, is_a regular parabolic second or-

der 1BVP provided (A(t),{.), 0£t6T, isg a strongly parabo=
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1ic gystem.
suppose again that m = 1 and that we can write A(t) and B(%)
as upper triangular block-matrix differemtial operators:

A = TAST (D] gppn B = [B97 (00 o

where AP = BFE a0 for @ > 6 and where (APF(t), B%(v),
Q,l"), 0§t4T, is for each @ = 1,...,r & second order regular
parabolic IBVP acting on ll@ ~vector-valued functions with ¥_e€ ¥¥

P
and Ny +...+ N, = N. Then (A(%),B(%),0,T), 04t£T, is 8 _re-

angular parabolic system need not be strongly parabolic., Pinal-
ly it is clear how this example can be generalized to blook-tri-
angular parabolic systems of order 2m. a

The proof that the above examples define regular parabolis
IBVPs is not quite trivial end will be given in [41,

2. Existence and Regularity. Throughout the remainder of
this paper we presuppose that (A(t),R3(t),Q,T), 04t4£71, is
a regular parabolic IBVP of order 2m. We put M:= ll«.\zg N 1, whe-
re « € W%, and we suppose that

1) £ c27([0,71 x4 = cX, ¢¥).

This means that £ 1s continuously real differentiable with re-
spect to all variables and that these derivatives are loocally
Lipschitz continuous.

For 1<p<co dnd 0£8%2m we let -

';,ﬁ%(t)‘- {ue '; lfb?.(t)u =0 form , <8 - 1/,}.

P

Thus ';,3('&) is for each t&€[0,T] a closed linear subspace of



'; and ';.‘.P.Kt) = w; for ognfﬁm-u- 1/p, where 8, 1= l:ln{lso",l
‘l1§?§ mﬂ.f‘e FE-

After these preparations we can formulate our basic e:

(2.1) Theorem: Suppose that n<p< oo , that Oés <
< min {1,m/2%, that max{2s,8 + k + n/pi<6'< 2m with 6 & £,
and that 8,6 ¢ N + 1/p. Then the IBVP

%‘é + A(t)u = f(t,x,u,Du....,Dku) in .0.><(t°,!3

® (s, ,u) B(t)u = 0 on 80x(t,,?)

u(e,t,) = u on O

o

u(s .)€ 01 (3,05 n c(§,028) ¢ (=2 gy

for every ¢ [0,61 , where J:= J(t ,u)) is_the maximal inter-

val of existence and J:= J\{toh Moreover, J(to,uo) is

open in [t ,T1,

&
556;,’3(1;0)3' {(¢,v) e [‘t°,'!] > 'p,a(to) Lted(t,v)}

€
is_open in lto’n"'p,ﬁ(to)’ and
0yl=, 6 6
2) BCeatore) € COTT(D L pe )My
(that_ig, (%,v)+r—> u(t,t,,v) is_continuous in t and locally

_________________ and

o'“o)
ue 8, )€ ¢ (F.c“(@, €N o3, 2™, M),

where W := 8 ~ n/p.



In the important autonomous case the uniqueness, the open.
ness of mg B and the continuity assertion (1) imply that
u(+,0,+) defines & (local) semiflow on the Banach space wf.g .
More precisely we have the following

g € 0®1"(9F 5,¥7) end gugh thet bounded semiorbits ere Tes
latively_compegt.

(2.2) Remarks: (a) The solution u(-,to,uo) of (P)(to'“o)
is independent of pe (n,c0) and of s for t>%,. Thus, in parti-
cular, the maximal interval of existence J(to.uo) does neither
depend on p nor on s.

(v) u(-,t; ,u ) is & global solution of (P)(to’uo), that is,

J(to,uo) = [to,!], provided P(greph u(-,to.uo)) is bounded in
I.p for some pe (n,00), where P(t,u)(x):= £(t,x,u(x),Du(z),...
.o e DEu(x)).

(¢) Let the assumptions of Theorem (2.1) be satisfied and
suppose in addition that

r
'rp,'ﬁ(t) - 'p,’B(O) Y+ e (0,71 ’
where O0<r<6 and r¢ [N + 1/p. Moreover, let the following

compatibility conditions be satisfied: F(%,v) e;w; Jy0) for ell

veig":g(t) and t &00,7), and u ¢ w%“"ﬁ(to) wih At )u €

xr
5'p’®(°)c Then .
u(eyty,u,) € 61 (I(8,,u0) ,WE) N CCICE, u,) W)

for every @ &/(0,r) with @ ¢ W+ 1 p, that is, we obtain
"regularity up to t = ¥ ".
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(d) It is not necessary that f be defined on all of CY,
In fact, C' in (1) can be replaced by an arbitrary nonempty
open subsget of c¥, Moreover P need not be a local operator.

(e) Theorem (2.1) remains true if Q. is an unbounded do-
main which is uniformly regular of class 2m + £ in the sense
of Browder [5], provided one imposes additional mild regulari-
ty conditions upon the coefficients of A ,J3 and f "near infi-
nity".

(£) It should be noted that the integer £ measures the
continuity properties of the data. If one is willing to put
£ = 2m (which one has to do if k = 2m = 1) then one can choose

6 arbitrariiy close to 2m which implies that the continuity
assertion (2) is rather strong.

(g) The regularity assumption (1) can be weskened. In par-
ticular it suffices to assume that £ satisfies only an appropri-
ate Holder condition with respect to x & {1. ]

The proofs of Theorem (2.1), its corollaries and the asser-
tions contained in Remarks (2.2) ere given in [3]. The main ide-
as are the following: Problem (P)(t Ju) is considered as an ab-

0?0

stract evolution equation of the form

i A(B)u = B(b,0), b <t4T,
(3) e e o

u(to) =u,

in L., where A(t) is the Lp-rouization of (A(t),7(t)). Then
1t 1s shown that (P)(, , ) is equivalent to (3) and (3) is e~
oo

quivelent to an integral-evolution equation of the form
t
(4) u(t) = U(t,t0u, + [ UCk, ©)X(w u(w))aT, t 444

Here U is a parsbolic ewolution operator for {A(t) | 0 6t £TF in

- 11 =



L’ whose existence is gusranteed by general results of Yagi [17]

and Kate and Tanabe [8]. The main diffioculties stem from the

fasts that the domain of A(t) is not constant (in general) amnd

that ¥ is an "unbounded nonlineer operator®, that is, it is on-

ly densely defined in I'P'
If the domain of A(t) were independent of t, the eqation

(4) oould be treated by the method of fractional powers (e.g.

[17, 14]1). However, in our situation this method turns out to

be not appropriate. In fact there seems to be no general results

in the literature for (P) (to’“o) guaranteeing existence and re-

gularity for time-dependent boundary oconditions (not even for

a single equation, i.e. for N = 1), In our approach we study

(4) directly in the Sobolev-Slobodeckii space WS

P
that it can be characterized as an appropriate interpolation

using the fact

space. (More gemerally, we consider abstract equations of the
form (4) in general interpolation spaces.) In order to obtain

the stated regularity results we show that U restricts to an e-

s
P
ous for t = to. But we can establish the following fundamental

regularity properties:
UCepty) e O((4y,2], £ (W8, W2TE))

volution operator on W_ which is, however, not strongly continu-

and
(6 > [F ues, wIeCeIa) 6 0l(ty,21,272)
o

for every geC” ([to,ﬂ!],';) with s/2m <» <1, where & (X,Y)
denotes the space of all continuous linear operators from X into
Y endowed with the strong topology (that is, the topology of

pointwise convergence).

As slready mentioned Theorem (2.1) seems to be the only

-12 =



existence and regularity result for semilinear parabolic equati-
ons which applies to general time-dependent boundary conditiens
and does not presuppose any structural condition for the nonli-
nearity f whatsoever, in particular no compatibility oonditions.
In the case of Dirichlet boundary ooﬁditiona for a single equa~
tion (N = 1) von Wahl [15] has proved the existence of & clessi-
cal solution without compatibility conditions for f. However,

his result applies only to a restricted class of parabolic ope-
rators. Recently Da Prato and his students developed an abstract
method to prove existence and regularity results for parabolic
evolution operators without compatibility conditions for the non-
linearity (for the case that D(A(t)) is constant). Their main 1i-
dea is to drop the assumption that D(A(t)) be dense in the under-
lying Banach space X. However they always assume that the resol-

vent satisfies an estimate of the form
WA+ AGED ™ g gy = 0(C1 + 1217 for ReAZ A,

This restricts to applicability of their method considerably
(for example to the case that X equals C({) or an sppropriate
subspace of C*(Q2)). If we let X = ';, as in our situation, it
can only be shown that

A+ A M ggy = 0C(1 + 121)71#8/28) £or R Az 4.

Thus their method does not apply to the spaces l;. Moreover for

many questions concerning problem (P) the spmces w2 are
(t,,u,) P

a natural setting as will be seen in the next section. For more

detailed references to the literature we refer to [31.

3. Global Existence. The basis for our global existence

results is the following lemma, where I -l p denotes the norm
?
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8
in lp.

(3.1) Lemma : Suppose that 14p < @ , 1<p < cc and
04s,, 6,<2m +£ , gnd that s = O if p, = 1. Let B,<8<2m +£
and suppose that

- £
Pols, - 6 ) <n.

Pipally let O < o <7 and
o = o‘o) + (1 «x)n/p

n+ (6, - 8,)p,

169 <o + Po

Qr L ¥ \50 B
““"6’0,])3-‘°“u“ 8,p Iluuso.po Vuszonlp

provided

Lo, &
7T, 'p

The proof of this Lemma, which can be considered as an ex~-
tension of the Gagliardo-Nirenberg inequality, follows from the
interpolation space characterizations of the Sobolev-Slobodeoc-
kii spaces and from Sobolev-type imbedding theorems.

It is now easy to prove the following general global exis-

tence theorem, where we let t+(t°,u.°):- sup J(to.uo).

(3.2) Theorem: Suppose that O£s <2m and 14p < oo , and
Ihat s, = 0 if p, = 1. Let ¢ c2 patisty x <8, - n/p, & ae + 1

only_om (t,x) if 9% <0) and constants ¢ and 7y, J =€+ 1,...
eeek !l‘gh that

% v
lf(t,x.u,m....,nku)ls g(%,x,u,..-,0%%) + °j Z*,M Ipdul J
and

-14 =



(1) 1573<1+,°572%:_..3’3;,3.m 1,000 ke

Einslly supross that, for mome (t5,u,) €[0,1) =¥ o ) and
(]
t € (85,87 (%,,u ),

(2) flut,t,,u,) I 0 .

s
tet SRt 0 8o+P

Then t*(t ,u) = T,

Proof: (a) Let s € [6,2m) be arbitrary and suppose we can
show that

0
(3) :, ;32‘2 " la(s) ! 8,q < ’

where ttia t+(t°,u°) and u(t)s= u(t,to,uo). Then l; C» ': implies

t 0 .
t, :‘tlp«t* luCt) I 6p <

Thus it is easily seen that
s

‘61 :‘lt‘:t‘\'nr(t'u(t))“ 0,P < -

Since, by a contimmity and ocompactness argument, F is bounded in
Ly on {(t,u(t)) | ¢S ¢ 54,3, 1t follows that F is bounded in L,
on graph(u). Hence the assertion follows from Remark (2.2.b) pro-
vided we can 'sho' that (3) is true.

(b) It follows from (1) that we can find numbers o- €(0,1),
and s €(k + n/p,2m) \( N + 1/p) such that

y3< o« + pg W s J =+ 1,...,ke

By the results of Section 2 we can assume that pro. Hence
1/p i(('y.1 - )/po) + (¢ /p) and we obtain from Lemma (3,1)

T F UL L& ,
Hipdut T30, o = lpdul 3 7g%e halyd) £

LE |
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A=
. *® hed

g oflu lls.p flu 5.5
for j = 3¢+ 1,,..,k. Thus

RN IORNTS VN WP PICRRNO PP ag O D) B
sol, 2 Tun D)ty

for t,& t<t* (since u(t)e Wy for £,4t<t* by Theorem (2.1)).
8ince x <8, - n/p &8, - n/p the & priori estimate (2) and the

8
imbedding Ip°c;, C*(tor ace W) imply
2
(5) mp lg(t,e,u(¥)yeee,D" u(t)) |l < e -
tyst<tt ' ’ M2
Now it follows from the results of Section 2 that the inte-
gral-evolution equation (2.4) is well defined in w8 for + £t <tt,

P
Thus
(6) lu(e)lly o4 hUCt,tp)ultdl, o+

t
+ f*« uu(t.c)lix‘ s, 1PCxuiTN, o av
PP
for t, &4 t< t* (where we have used the unique solvability). Inser-

ting (4),(2) and (5) in (6) we see that

\lu(t)l\.'p 4c(1 +t max (% )ll":’p)

1‘?’*2
for t,& t&t, <t', where ¢ 1s independent of t, (due to the es-
timate N1U(t, ©)1 g = OC(t = )"8/2%) 2or 04 v <tam).
£(L,, WD)

This implies (3), whence the assertion, 0O

(3.3) Remarks Suppose that A, 53 and f are independent
of ¢ and that the spectrum of A (in L,, for example) is comtain-
ed in the open right half-plane. Then, given the assumptions of
Theorem (3.2), it follows that t*(t ,u ) = co and that



t1¢1;-?ao“u(t't°'u°)n2“vp <@ ,
Thus, if it is_known that the pogitive semiorbit 7+(“o)='

i — — - —— -

8
u(t,0,u)) | 06t <t¥(0,u))) is_bounded in lp: it _is bounded in

wg" (for >0). Purthermore it is reletively compact_in W2R,
which implies in particular that 7'(u ) has & nonempty limit
set in lgm. If, moreover, r(u)é';;:r; “?oT Bome s>n/p (which
1s no Testriction if min{m 114 @ & u¥, M6 I'}>0) then W

£
can be replaced by C2*( T, ¢¥) for-mme @ € (0,1). O

The above theorem generalizes (and simplifies) considerab-
1y numerous earlier results (e.g. [1, 9, 12, 13], cf. [4] for
more detailed references., It should also be noted that, due to
Remark 2.2.e, Theorem (3.2) is also true (modulo some regulari-
ty assumptions near infinity) i1f Q is unbounded).

The main content of Theorem (3.2) is the assertion that we
obtain global exist'ence if we can obtain an a priori bound in
some weak norm (in the l::-norm) and if the nonlinearity satis-
fies an appropriate growth restriction. In the particularly im-
portent case that k = 0 it follows that “("to'“o) exists glo-
bally if

(M Itz g)lgc + 161\T)  Vitx,g)elo,m T =< CF,

where
2m n + (2m-8_ )p
1ey <1+ Po . Q_0

n-so po n-sopo

provided we know thet

sup 1.llu(t,to,uc') (1 o)

tistet

+
for some %, e (to,t ).

<
861D,

There is a quite general class of problems for which eve-
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ry solution can be bounded & priori in the ';-nom. To describe

this class we restrict ourselves to the real case and introduce

(SP) There are continuous functions g and h such that
t(t,x.u,...,Dku) = g(t,x,u,...,Dkn) + h(x,u),
a constant ¢ with
X mv
lg(t,x,uy00.,D070) | S0(1 + ‘I\-Z:o (pdul),

and a function HeC®*' (& x IR¥, R) such that h = V‘é H, where
Vg denotes the gradient with respect to gs ®r™,

(D)(to'“o) For each %, € (to’t+(to'“o)) there are constants

7L°> 0 and c, co_z,o such that
Aohu(e)lZ o-c lu(0)I2 ;42 J;: (ACx)ulx) iy )ac +

t 2
+e(1 + fh Hu(e)lg pav)
for t, &t <t
By taking the L,-inner product of (%) and the equation

2 + A(t)u = P(t,u) 1t is not difficult to deduce an a priori
bound for flu(t:)ﬁlm.2 on the basis of (SP) and (D)(to'“o) by means

of Gronwall’s inequality. Then Theorem (3.2) implies the follow-
ing

(3.4) Theorem: Let (% ,u;)e< [0,T)x ':&(t y be_given and
" "o
guppose that (SP) end (D), ,u) 97¢ satlafled, Noreover, mipper
o

Be_that )
Yy H(x
11 —(—l%z
lg\—l:ao I§1 <

- 18 =



uniformly with respect to x € &L , and that

InC-, g)l&cCl + 1§1%) VE « BY,
where
(8) 14<1+42 om,

Then t*(to,uo) -,
It can be shom that (D) (+.,u.) is satisfied for every
o' o
(to.uo)eto.r)xvgmto) 12 (A(t),Q), 04T, is a strongly

parabolic system and ( 5(t), '), 0%t £T, is the Dirichlet boun=-
dary operator (of. Example (1.1.b)). Thus Theorem (3.4) genera-
lizes a result of Pecher and von Wahl [11], where it has been
assumed that N = 1, £(%,X,u,...,0%u) = f(u) and that _[;Ef(s)da £
40 g2, that 1s, H(g )40 £Z tor § e IR

It can also be shown that (D)(to'uo) is satisfied for every
(to.uo)c'g in the situation of Example (1.1.c) provided the ma=-
trices ‘;!k are symmetric. Thus Theorem (3.4) generalizes consi-
derably recent results of Cosner (6] and Alikekos [2]. These

authors assumed the stronger ellipticity condition
N

N o 2
wa Ty gamq SH® ERfsze z, Z, 167l

n=4 3=1
for ell x € L =and gg €elR, 14J4n, 1ér4&N, considered Diri-
chlet boundary conditions and the autonomous case, assumed that
€ is a linear differential operator and thet (h(., g)l € )<o0
for Es IR‘\{O} and
m  Ee) )< .-p

1§l — o0 1§ 1
uniformly in x 6 0. , where (3 is a sufficiently large positive
constant. Then Comner proved global existence under the growth
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restriction 1 £ 4" < n/(n-2). Alikakos obtained global existence
it y eatisfies (8) (with m = 1) but he had to assume that the

matrices ajk(x). 14«J, kén, commute for every x ¢ . .

It is natural to ask whether the equality sign in (1) can
be permitted. Von Wahl [15, 16] has shown that this is the case
if N = 1 and ® is the Dirichlet boundary operator, provided
Py = 2 and £ satisfies an appropriate monotonicity condition.
By means of the continuity argument employed in [15, 16) simi-
lar results can be obtained in our general setting.

Detailed pz-oofn of the assertions of this section are givem
m ‘ L]
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