Commentationes Mathematicae Universitatis Carolinae

Herbert Amann
 Semilinear parabolic systems

Commentationes Mathematicae Universitatis Carolinae, Vol. 26 (1985), No. 1, 3--21
Persistent URL: http://dml.cz/dmlcz/106345

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1985

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE

26.1 (1985)

SEMILINEAR PARABOLIC SYSTEMS Herbert AMANN

Abstract

We describe a general local existence and regularity result for semilinear parabolic systems of even order. In particular we obtain classical solutions without compatibility conditions for the nonlinearity. Moreover, we describe a simple method for obtaining global existence by means of a generalization of the Gagliardo-Nirenberg inequality to fractional orders of the derivatives.

Key words: Local and global existence, regularity, parabolic systems, time-dependent boundary conditions.

Classification: 35K60, 35B65

In these lectures we review some recent results of the author concerning local and global exiatence and regularity for semilinear parabolic systems of arbitrary even order. It is one of the main features of our approach to prove first of all a very general existence and regularity theorem, which guarantees the existence of classical solutions on a maximal time interval. In possession of this general theorem one can then treat the question of global existence separately by establishing appropriate a priori bounds in some weak norm without worrying any more about existence questions.

This paper was presented on the International Spring School on Evolution Equations, Dobrichovice by Praene, May 21-25, 1984 (invited paper).

1. Regular Parabolio Systems. Throughout this paper l, m, n and I are fixed positive integers and k is an integer satisfying $0 \leqslant k \leqq k+1 \leq \ell \leq 2 m$, T is a fixed positive real number, and Ω is a bounded domain in \mathbb{R}^{n} of class $c^{2 m+l}$. Moreover Γ denotes a (necessarily finite) set of nonempty open and closed subsets Γ of $\partial \Omega$ which are pairwise disjoint and whose union equal: $\partial \Omega$.

We denote by $\mathcal{A}(t)$ for each $t \in[0, T]$ a linear differential operator of order 2m acting on N-vector-valued funotions u: $: \Omega \rightarrow c^{N}$ of the form

$$
\mathcal{A}(t) u_{i}=(-1)^{m} \sum_{|\alpha| \leqslant 2 m} a_{\alpha}(0, t) D^{\alpha} u,
$$

where

$$
\left[t \mapsto a_{\alpha}(\cdot, t)\right] \in c^{2-}\left([0, T], c^{\ell}\left(\bar{\Omega}, \mathscr{L}\left(\mathbb{C}^{N}\right)\right)\right)
$$

for all $\alpha \in \mathbb{N}^{\mathbf{n}}$ with $|\alpha| \div 2 m$ (where C^{2-} means that the functions have (locally) Lipschitz continuous first derivatives). Moreover:

$$
B(t):=\left\{\beta_{\Gamma}(t) \mid \Gamma \in \Gamma\right)
$$

denotes for each $t \in[0, T]$ a system of boundary operators on $\partial \Omega$, where

$$
B_{\Gamma}(t):=\left(B_{\Gamma}^{1}(t), \ldots, B_{\Gamma}^{m N}(t)\right)
$$

and

$$
B_{\Gamma}^{\rho}(t) u:=\sum_{|\alpha| \leq m_{\rho, \Gamma}} b_{\alpha, \Gamma}^{\rho}(\cdot, t) D^{\alpha} u
$$

with $0 \leqslant m m_{\rho_{1} r}<2 m$ and
$\left[t \mapsto b_{\alpha, \Gamma}^{P}(\cdot, t)\right] \in c^{2-}\left([0, T], c^{2 m+\ell-m_{\rho}, \Gamma}\left(\Gamma, \mathscr{L}\left(c^{\mathbb{N}}, \mathbb{C}\right)\right)\right)$
for $\alpha \in \mathbb{M}^{n}$ with $|\alpha| \leq m_{\rho, \Gamma}, 1 \leq \rho \leq m N$, and $\Gamma \in \Gamma$.
We let

$$
a(x, t, \xi):=\sum_{|\alpha|=2 m} a_{\alpha}(x, t) \xi^{\alpha} \in \mathscr{L}\left(\mathbb{C}^{1 I}\right)
$$

and

$$
a_{\vartheta}(x, t, \xi, \tau):=a(x, t, \xi)+e^{1 \vartheta} \tau^{2 m} I_{N} \in \mathscr{L}\left(\mathbb{c}^{I}\right)
$$

for $(x, t, \xi) \in \Omega \times[0, T] \times \mathbb{R}^{n}, \vartheta \in[-\pi, \pi]$, and $\tau \in \mathbb{R}^{n}$, where $I_{\text {I }}$ denotes the identity in $\mathscr{L}\left(\mathbb{C}^{\mathrm{H}}\right)$. Similarly,

$$
b{ }_{\Gamma}^{\varrho}(x, \xi):=| | \sum_{|\alpha|=m_{\rho, \Gamma}} b_{\alpha, \Gamma}^{\rho}(x) \xi^{\alpha}
$$

for $|\alpha| \leqslant m_{\rho, \Gamma}, 1 \leq \rho \leqslant m \pi$, and $\Gamma \in \Gamma$, and $b(x, \xi)$ denotea the $(m i N X)$-matrix with rows $b \rho(x, \xi)$ for all $x \in \Gamma, \Gamma \in \Gamma$ and $\xi \in \mathbb{R}^{n}$.

For $1<p<\infty$ and $\in \in \mathbb{R}^{+}$we let $\nabla_{p^{2}}^{s}=W_{p}^{s}\left(\Omega, C^{H}\right)$ and, if $2 m \leq 5 \leq 2 m+\ell$,
$w_{p}^{g-1 / p_{z}=} \prod_{\Gamma} \prod_{\rho=1}^{m N} \prod_{p}^{s-1 / p-m_{\rho}, \Gamma}\left(\Gamma, c^{N}\right)$.
Then $(A(t), B(t), \Omega, r), 0 \leqslant t \in T$, is said to be regular parabolic initial boundary value problem (IBVP) of (olass ch and) order 2 m provided the following additional conditions (R), (C) and (S) are satisfied:
(R) There exists a number $\alpha \in(\pi / 2, \pi)$ much that

$$
\operatorname{det} a_{\vartheta}(x, t, \xi, \tau) \neq 0
$$

and the polynomial of one complex variable

$$
\lambda \mapsto \operatorname{det} a_{\lambda}(x, t, \xi+\lambda \nu(x), \tau)
$$

has precisely mis roots $\lambda_{j}^{+}(v, x, t, \xi, \tau), 1 \in j \leqslant m \pi$, with positive imaginary parts for each
$(\vartheta, x, t, \xi, \tau) \in[-\alpha, \alpha] \times \partial \Omega \times[0, T] \times \mathbb{R}^{n} \times \mathbb{R}$ with $(\xi \mid \nu(x))=0$ and $(\xi, \tau) \neq(0,0)$,
where ν is the outer normal on $\partial \Omega$ and (. |.) the euclidean
inner product.
(C) For each ($\mathcal{v}, x, t, \xi, \tau)$ satisfying (1) the rows of the matrix-valued function of one complex variable

$$
\lambda \mapsto b(x, t, \xi+\lambda \nu(x)) \tilde{a}_{\nu}\left(x, t, \xi+\lambda_{\nu}(x), \tau\right)
$$

are linearly independent modulo $\prod_{j=1}^{m N}\left(\lambda-\lambda_{j}^{+}(\vartheta, x, t, \xi, \tau)\right.$) (as poljnomials in λ), where $\tilde{a}_{\mathcal{V}}(x, t, \eta, \tau)$ is the matrix whose elements are the cofactora of the elements of the transposed matrix of $a_{v}(x, t, \eta, \tau)$. If $H=1$ we put $\tilde{a}_{\vartheta}(x, t, \eta, \tau):=1$.
(S) For each $t \in[0, T]$ there exists a number $\lambda \in \mathbb{C}$ suoh that the Iinear operator

$$
(\lambda+A(t), B(t)): w_{2}^{2 m} \rightarrow I_{2} \times W_{2}^{2 m-1 / 2}
$$

1* surjective.

In the remainder of this section we give some important examplea of regular parabolic IBVPa. For this purpose we recell that $(A(t), \Omega), 0 \leqslant t \leqslant T$, is said to be a strongly parabolic gystem if

$$
\operatorname{Re}(a(x, t, \xi) \eta \mid \eta)>0
$$

for all $(x, t, \xi, \eta) \in \bar{\Omega} \times[0, T] \times \mathbb{R}^{n} \times \mathbb{C}^{H}$ with $\xi \neq 0$ and $\eta \neq 0$ (where now (•|•) denotes the "euclidean" inner product in $\mathbb{C}^{\mathbb{N}}$, which is linear in the first and antilinear in the second variable).
(1.1) Examplegs (a) Suppose that $N=1$ (the case of "one equation"), that $(A(t), \Omega), 0 \leqslant t \leqslant T$, is strongly parabolic and that $B(t)$ is a system of m boundary operators covering $A(t)$ (that is, satisfying the complementing conditions; e.g. [11]) in the usual sense. Then $(A(t), \beta(t), \Omega, \Gamma), 0 \leq t \leq T$, is_a_regular parabolic IBVP of_order 2m.
(b) Suppose that $(\mathcal{A}(t), \Omega), 0 \leqq t \leq T$, is a mitrongly parabolic system. Moreover, suppose that for each $\Gamma \in \Gamma$ and $t \in[0, T]$
there are given m vector fielde $\beta_{j, ~} \Gamma(\cdot, t)$ on Γ such that

$$
\left[t \mapsto \beta_{j, \Gamma}(\cdot, t)\right] \in C^{2-}\left([0, \Psi], c^{2 m+l-1}\left(\Gamma, \mathbb{R}^{n}\right)\right)
$$

and $\left(\beta_{j, \Gamma}(x, t) \mid \nu(x)\right)>0$ for $j=1, \ldots, m, x \in \Gamma$ and $t \in[0, T]$. Then define $(\mathbb{N} \times \mathbb{N})$-matrix-valued boundary operators $\hat{\mathbb{B}}_{\mathrm{j}, \Gamma}(t)$ by

$$
\hat{ß}_{j, \Gamma}(t) u:=\frac{\partial^{k+j-1} u}{\partial \beta_{j, \Gamma}(\cdot, t)^{k+j-1}}+\text { lower order terms }
$$

where $k:=k_{\Gamma}$ is a fixed integer on Γ with $0 \leqslant k_{\Gamma} \leqslant m, 1 \leqq j \leqslant m$, $\Gamma \in \mathbb{\Gamma}$, and $t \in[0, T]$. Finaily let $\mathcal{B}_{\Gamma}(t):=\left(\hat{\beta}_{1}, \Gamma(t), \ldots\right.$ $\left.\ldots, \hat{\beta}_{m, \Gamma}(t)\right)$. Then $(A(t), B(t), \Omega, \Gamma), 0 \leqslant t \leqslant T$, in_a_regular $^{\prime}$ parabolic IBVP of order 2m. Observe that this example oovers in particular the case of Diriohlet boundary conditions, where $\beta_{j, \Gamma}(\cdot, t)=\nu$ for $j=1, \ldots, m, t \in[0, T]$ and $\Gamma=\partial \Omega$.
(c) Second_order_strongly parabolic systems: We suppose that $m=1$ and use the summation convention, where j, k run from 1 to n. Then we write $\mathcal{A}(t)$ in the form

$$
A(t) u=-a_{j k}(\cdot, t) D_{j} D_{k} u+a_{j}(\cdot, t) D_{j} u+a_{0}(\cdot, t) u
$$

and consider a boundary operator of the form

$$
B(t) u=\delta^{a_{j k}}(\cdot, t) \nu^{J_{D_{k}} u}+\left(I_{N}-\delta\right) u+\delta b(\cdot, t)
$$

where $\delta^{\prime}=$ diag $\left(\sigma_{1}, \ldots, \delta_{N}\right)$ is a diagonal matrix such that $\sigma_{j} \in C(\partial \Omega,\{0,1\})$. Thus each σ_{j} equals oither 0 or 1 and is constant on each component of $\partial \Omega$. If $\alpha_{j}=0$ then the j-th equation of $\beta(t) u=0$ is simply the Diriahlet condition $u^{j}=0$ on the corresponding part Γ of $\partial \Omega$. of course, $u=\left(u^{1}, \ldots\right.$ $\left.\ldots, u^{\text {II }}\right)$ and $\nu=\left(\nu^{1}, \ldots, \nu^{n}\right)$. Observe that the function $\delta^{\prime}(\cdot)$ defines implicitly a boundary decomposition Γ. Then $(A(t), B(t), \Omega, \Gamma), 0<t \leqslant T$, 1s_a_rgsular_parabolic_seognd or= der lBVP provided $(A(t), \Omega), 0 \leqslant t \leqslant T$, is_a_trongly parabo

11으 gystem.

(d) Block-triangular_seoond order parabolio gystamg: we suppose again that $m=1$ and that we can write $\mathcal{A}(t)$ and $B(t)$ as upper triangular block-matrix differential operators:

$$
\mathcal{A}(t)=\left[A \rho^{\sigma}(t)\right]_{1 \leqslant \rho, \sigma \leqslant r^{\prime}} B(t)=\left[\Re^{\sigma}(t)\right]_{1 \leqslant \varrho, \sigma \leqslant r^{4}}
$$

where $\mathcal{A}^{\rho \sigma}=\beta^{\rho \sigma}=0$ for $\rho>\sigma$ and where $\left(\mathcal{A}^{\rho \rho}(t), \beta^{\rho \rho}(t)\right.$, $\Omega, \Gamma), 0 \leqq t \leqq T$, is for each $\rho=1, \ldots, r$ a second order regular parabolic IBVP acting on $\mathbb{F}_{\rho}-$ vector-valued functions with $H_{\rho} \in \mathbb{I}^{*}$
 gular parabolio second_order IBVP. Observe that a blook-triangular parabolic system need not be strongly parabolic. FinalIy it is clear how this example can be generalized to blook-triangular parabolic systems of order 2 m .

The proof that the above examples define regular parabolic IBVPs is not quite trivial and will be given in [4].
2. Existence and Regularity. Throughout the remainder of this paper we presuppose that $(\mathcal{A}(t), \mathcal{B}(t), \Omega, \Gamma), 0 \leqq t \leq T$, in a regular parabolic IBVP of order 2 m . We put $\mathrm{M}_{\mathrm{t}}=H_{|\alpha|} \sum_{\sum_{k}} 1$, where $\alpha \in \mathbb{N}^{\mathbf{n}}$, and we auppose that

$$
\begin{equation*}
I \in \mathrm{C}^{2-}\left([0, T] \times \bar{\Omega} \times \mathbb{C}^{\mathrm{M}}, \mathbb{C}^{\mathbb{N}}\right) . \tag{1}
\end{equation*}
$$

This means that f is continuously real differentiable with respect to all variables and that these derivatives are locally Lipschitz continuous.

For $1<\mathrm{p}<\infty$ and $0 \leq 5 \leq 2 \mathrm{~m}$ we let

$$
\nabla_{p, B(t)}^{s}=\left\{u \in \pi_{p}^{s} \mid B_{\Gamma}^{P}(t) u=0 \text { for } m_{\rho, \Gamma}<-1 / p\right\}
$$

Thus $w_{p, B(}^{s}(t)$ is for each $t \in[0, T]$ a olosed linear subspace of
 $\backslash 1 \leqslant \rho \leqslant \mathrm{~m} \pi, \Gamma \in \nabla\}$.

After these preparations we can formulate our banic exien tence.,_uniqueness,_oontinuity and regularity
(2.1) Theorem: Suppose that $n<p<\infty$, that $0 \Leftrightarrow:<$ $<\min \{1, m / 2\}$, that $\max \{2 s, m+k+n / p\}<\sigma<2 m$ 표 th $\sigma \leqslant \ell$, and that $s, \sigma \neq \mathbb{F}+1 / p$. Then the IBVP

$$
\begin{aligned}
& \frac{\partial u}{\partial t}+\mathcal{A}(t) u=f\left(t, x, u, D u, \ldots, D^{k} u\right) \text { in } \Omega \times\left(t_{0}, 7 J\right. \\
& { }^{(P)}\left(t_{0}, u_{0}\right) \\
& B(t) u=0 \\
& u\left(\cdot, t_{0}\right)=u_{0} \\
& \text { on } \partial Q \times\left(t_{0}, T\right] \\
& \text { nn } \Omega
\end{aligned}
$$

$$
u\left(\cdot, t_{0}, u_{0}\right) \in c^{1}\left(j, \Pi_{p}^{s}\right) \cap c\left(j, \pi_{p}^{2 m+s}\right) \cap c^{(\sigma-\rho) / 2 m_{1}}\left(J, \Pi_{p}^{\circ}\right)
$$

for every $\rho \in[0, \sigma]$, where $J:=J\left(t_{0}, u_{0}\right)$ is_the_maximanintarral of_existence_and $\dot{J}:=J \backslash\left\{t_{0}\right\}$. Moreover, $J\left(t_{0}, u_{0}\right)$ is_richt open_in $\left[t_{0}, T\right]$,

$$
D_{p, B\left(t_{0}\right)^{i}=\left\{(t, v) \in\left[t_{0}, T\right] \times \Pi_{p, B\left(t_{0}\right)}^{\sigma} \mid t \in J(t, v)\right\}}
$$

is_open in $\left.\left[t_{0}, T\right] \times \boldsymbol{m}_{p, B\left(t_{0}\right)}^{\sigma}\right)$, and

$$
\begin{equation*}
u\left(\cdot, t_{0}, \cdot\right) \in C^{0,1-\left(D_{p,}^{\sigma} B\left(t_{0}\right), \Pi_{p}^{\sigma}\right)} \tag{2}
\end{equation*}
$$

$\left[\right.$ that_ig, $(t, v) \mapsto u\left(t, t_{0}, v\right)$ is_continuous in t and locally Lipschitz continuous_in V on $D_{\left.p, B\left(t_{0}\right)\right] .}^{6}$

Corollayy 1: Suppose in addition that $s>n / p$. Then $u\left(\cdot, t_{0}, u_{0}\right)$ is_the_unique olasgical solution oin $(P)\left(t_{0}, u_{0}\right)$ and $u\left(\cdot, t_{0}, u_{0}\right) \in C^{1}\left(\dot{j} . c^{\mu}\left(\bar{\Omega}, \mathbb{C}^{\underline{I}}\right)\right) \cap c\left(f, c^{2 m+\mu}\left(\bar{\Omega}, c^{\bar{I}}\right)\right)$, where $\mu:=s-n / p$.

In the important autonomous case the uniqueness, the openness of $D_{Z, \beta}^{\sigma}$ and the continuity assertion (1) imply that $\mathfrak{u}(\cdot, 0, \cdot)$ defines a (local) semiflow on the Banach space $\Pi_{p, B}^{\sigma}$. More precisely we have the following

Corollaxy 2: Let the hypotheses_of Theorem (2.1) be_satisa fied_and_agsume in_addition thet A, B and f are independent of t. Then $\varphi:=u(0,0,0)$ is_a_semiflow on $\nabla_{p, B}^{\sigma}$ guch_that $\varphi \in C^{0,1-}\left(\mathscr{D}_{\mathrm{p}, B^{\sigma}}^{\sigma} \nabla_{\mathrm{p}}^{\sigma}\right)$ gad guch that bounded semiorbits are re= latively_compact.
(2.2) Remarkg: (a) The solution $u\left(\cdot, t_{0}, u_{0}\right)$ of $(P)\left(t_{0}, u_{0}\right)$ is independent of $p \in(n, \infty)$ and of s for $t>t_{0}$. Thus, in particular, the maximal interval of existence $J\left(t_{0}, u_{0}\right)$ does neither depend on p nor on 8.
(b) $u\left(\cdot, t_{0}, u_{0}\right)$ is a global solution of $(P)\left(t_{0}, u_{0}\right)$, that is, $J\left(t_{0}, u_{0}\right)=\left[t_{0}, T\right]$, provided $F\left(g r a p h u\left(\cdot, t_{0}, u_{0}\right)\right)$ is bounded in I_{p} for कome $p \in(n, \infty)$, where $P(t, u)(x):=f(t, x, u(x), D u(x), \ldots$ $\left.\ldots, D^{k} u(x)\right)$.
(c) Let the assumptions of Theorem (2.1) be satisfied and suppoae in addition that

$$
\left.w_{p, B C}^{r} t\right)=w_{p, B(0)}^{r} \quad \forall t \in[0, T]
$$

where $0<r<\sigma$ and $r \notin \| N+1 / p$. Moreover, let the following compatibility conditions be satisfied: $F(t, v) \in W_{p, B(0)}^{r}$ for all $\nabla \in W_{p, B(t)}^{2 m}$ and $t \in[0, T]$, and $u_{0} \in W_{p, B\left(t_{0}\right)}^{2 m} w$ th $\mathcal{A}\left(t_{0}\right) u_{0} \in$ $\varepsilon \boldsymbol{T}_{\mathrm{p}, \mathrm{B}}^{\mathbf{r}}(0)$ - Then

$$
u\left(\cdot, t_{0}, u_{0}\right) \in C^{1}\left(J\left(t_{0}, u_{0}\right), w_{p}^{\rho}\right) \cap C\left(J\left(t_{0}, u_{0}\right), w_{p}^{2 m+\rho_{0}}\right)
$$

for every $\rho \in /(0, r)$ with $\rho \notin \mathbb{Q}+1 \mathrm{p}$, that is, we obtain "ragularity up to $t=t_{0}$ ".
(d) It is not necessary that f be defined on all of \mathbb{C}^{M}. In fact, \mathbb{C}^{M} in (1) can be replaced by an arbitrary nonempty open subset of \mathbb{C}^{M}. Moreover F need not be a local operator.
(e) Theorem (2.1) remains true if Ω is an unbounded domain which is uniformly regular of class $2 m+\ell$ in the semse of Browder [5], provided one imposes additional mild regularity conditions upon the coefficients of \mathcal{A}, β and f "near infinity".
(f) It should be noted that the integer ℓ measures the continuity properties of the data. If one is willing to put $\ell=2 m$ (which one has to do if $k=2 m-1$) then one can choose 6 arbitrariiy close to 2 m which implies that the continuity assertion (2) is rather atrong.
(g) The regularity assumption (1) can be weakened. In particular it suffices to assume that f satiafies oniy an appropriate Hölder condition with respect to $x \in \Omega$.

The proofs of Theorem (2.1), its corollaries and the assertions contained in Remarks (2.2) are given in [3]. The main ideas are the following: Problem ${ }^{(P)}\left(t_{0}, u_{0}\right)$ is considered as an abstract evolution equation of the form

$$
\begin{align*}
\dot{u}+A(t) u & =P(t, u), \quad t_{0}<t \leq T \tag{3}\\
u\left(t_{0}\right) & =u_{0}
\end{align*}
$$

in L_{p}, where $A(t)$ is the I_{p}-realization of $(\mathcal{A}(t), \mathcal{B}(t))$. Then It is show that ${ }^{(P)}\left(t_{0}, u_{0}\right)$ is equivalent to (3) and (3) is oquivalent to an integral-evolution equation of the form

$$
\begin{equation*}
u(t)=U\left(t, t_{0}\right) u_{0}+\int_{t_{0}}^{t} U(t, \tau) P(\tau, u(\tau)) d \tau, t_{0} \leqq t \leqslant r \tag{4}
\end{equation*}
$$

Here U is a parabolic evolution operator for $\{A(t) \mid 0 \leqslant t \leqslant T\}$ in
I_{p} whone existonce is graranteed by general results of Yagi [17] and Kato and Tanabe [8]. The main difficulties atom from the facts that the domain of $A(t)$ is not constant (in general) and that I is an "unbounded nonlinear operator", that is, it is onIJ densely defined in I_{p}.

If the domain of $A(t)$ were independent of t, the equation (4) could be treated by the method of fractional powers (e.g. $[17,14])$. However, in our mituation this method turns out to be not appropriate. In fact there seems to be no general results in the literature for $(P)\left(t_{0}, u_{0}\right)$ guarenteeing existence and regularity for time-dependent boundary conditions (not even for a single equation, i.e. for $I=1$). In our approach we atudy (4) direotly in the Sobolev-Slobodeckii space \boldsymbol{m}_{p}^{6} using the iact that it oan be characterized as an appropriate interpolation apace. (More gemerally, we consider abstract equations of the form (4) in general interpolation apaces.) In order to obtain the stated regularity results we ahow that U restricts to an evolution operator on W_{p}^{s} which is, however, not strongly continuous for $t=t_{0}$. But we can establish the following fundamental regularity properties:

$$
U\left(\cdot, t_{0}\right) \in C\left(\left(t_{0}, T\right], \mathscr{L}_{g}\left(w_{p}^{s}, \Pi_{p}^{2 m+\infty}\right)\right)
$$

and

$$
\left(t \longmapsto \int_{t_{0}}^{t} U(t, \tau) g(\tau) d \tau\right) \in C\left(\left(t_{0}, T\right], w_{p}^{2 m+s}\right)
$$

for very $g \in C^{\nu}\left(\left[t_{0}, T\right], W_{p}^{8}\right)$ with $s / 2 m<\nu<1$, where $\mathscr{L}_{g}(X, Y)$ denotes the space of all continuous linear operators from \bar{X} into Y ondowed with the strong topology (that is, the topology of pointwise convergence).
A. already mentioned Theorem (2.1) seems to be the only
existence and regularity result for semilinear parabolic equations which applies to general time-dependent boundary conditians and does not presuppose any structural condition for the nonlinearity P whatsoever, in particular no compatibility conditions. In the case of Dirichlet boundary conditions for a single equa tion ($\mathrm{N}=1$) von Wahl [15] has proved the existence of a classical solution without compatibility conditions for f. However, his result applies only to a restricted olass of parabolic operators. Recently Da Prato and his students developed an abstract method to prove existence and regularity results for parabolic evolution operators without compatibility conditions for the nonlinearity (for the case that $D(A(t)$) is constant). Their main idea is to drop the assumption that $D(A(t))$ be dense in the underlying Banach apace X. However they always assume that the resolvent astisfies an estimate of the form

$$
\left\|(\lambda+A(t))^{-1}\right\|_{\mathscr{L}(X)}=O\left(\left(1+|\lambda|^{-1}\right) \text { for } \operatorname{Re} \lambda \geqq \lambda_{0}\right.
$$

This restricts to applicability of their method considerably (for example to the case that X equals $C(\bar{\Omega})$ or an appropriate subspace of $C^{\mu}(\bar{\Omega})$). If we let $X=w_{p}^{s}$, as in our situation, it can only be shown that

$$
\left\|(\lambda+A(t))^{-1}\right\|_{\mathscr{L}(X)}=O\left((1+|\lambda|)^{-1+8 / 2 \mathrm{~m}}\right) \text { for Re } \lambda \leq \lambda_{0^{\circ}}
$$

Thus their method does not apply to the spaces w_{p}^{s}. Moreover for many questions concerning problem $(P)\left(t_{0}, u_{0}\right)$ the apmces $\boldsymbol{w}_{p}^{\boldsymbol{B}}$ are a natural setting as will be seen in the next section. For more detailed references to the literature we refer to [3].
3. Global Existence. The basis for our global existence results is the following lemma, where $\|\cdot\|_{B, p}$ denotes the norm
$\ln \boldsymbol{\nabla}_{\mathrm{p}}^{8}$
(3.1) Lemma : Suppose that $1 \leqslant \mathrm{p}_{0}<\infty, 1<\mathrm{p}<\infty$ and $0 \leq \varepsilon_{0}, \sigma_{0}<2 m+\ell$, gnd that $s_{0}=0$ if $p_{0}=1$. Iet $s_{0}<s \leq 2 m+\ell$ and guppose that

$$
p_{0}\left(s_{0}-\sigma_{0}\right) \leqq n
$$

Finally let $0<\alpha<\gamma$ and

$$
1 \leqslant \gamma<\alpha+p_{0} \frac{\alpha\left(s-\sigma_{0}\right)+(1-\alpha) n / p}{n+\left(\sigma_{0}-s_{0}\right) p_{0}}
$$

Then_there_existg a constant c guah_that

$$
\|u\|_{\sigma_{0}, p \gamma}^{\gamma} \leqslant c\|u\|_{s, p}^{\infty}\|u\|_{s_{0}, p_{0}}^{\gamma-\alpha} \quad \forall u \in W_{p_{0}}^{s_{0}} \cap w_{p}^{s}
$$

provided

$$
\frac{1}{p} \leqq \frac{\gamma-\alpha}{p_{0}}+\frac{\alpha}{p}
$$

The proof of this Lemma, whioh can be considered as an extenaion of the Gagliardo-Nirenberg inequality, follows from the Interpolation apace characterizations of the Sobolev-Slobodeckii apaces and from Sobolev-type imbedding theorems.

It is now easy to prove the following general global existence theorem, where we let $t^{+}\left(t_{0}, u_{0}\right):=$ ap $J\left(t_{0}, u_{0}\right)$.
(3.2) Theorens Suppose that $0 \leqslant m_{0}<2 m$ and $1 \leqslant p_{0}<\infty$, and that $m_{0}=0$ if $p_{0}=1$. Iet $x \in Z$ gatigiy $x<m_{0}-n / p_{0}$ 庳 $x+1$ and Exppose that_there_exgt_a_continuous function g (depending only_on (t, x) if $x<0$) and constants c and $\gamma_{j}, j=x+1, \ldots$..., k guch_that

$$
\left|I\left(t, x, u, D u, \ldots, D^{k} u\right)\right| \leqslant g\left(t, x, u, \ldots, D^{\alpha} u\right)+o \sum_{j=}^{\ell_{j}} \sum_{x+1}\left|D^{j_{u}}\right|^{\gamma_{j}}
$$

and

$$
\begin{equation*}
1 \leq \gamma_{j}<1+p_{0} \frac{2 m-1}{n+\left(j-s_{0}\right) p_{0}}, j=x+1, \ldots, k_{0} \tag{1}
\end{equation*}
$$

Finally guppose that for some $\left(t_{0}, u_{0}\right) \in[0, T) \times \nabla_{p,}^{\sigma} B\left(t_{0}\right)$ and $t_{1} \in\left(t_{0}, t^{+}\left(t_{0}, u_{0}\right)\right)$,
(2)

$$
t_{1} \leqslant t<\sup _{t \neq}\left(t_{0}, u_{0}\right)\left\|u\left(t, t_{0}, u_{0}\right)\right\|_{s_{0}, p_{0}}<\infty .
$$

Then $t^{+}\left(t_{0}, u_{0}\right)=T$.
Proop: (a) Let $s \in[\sigma, 2 m$) be arbitrary and suppose we can show that
(3)

$$
\sup _{t_{1} \leqslant t<t^{+}}\|u(t)\|_{B, q}<\infty,
$$

where $t^{+}:=t^{+}\left(t_{0}, u_{0}\right)$ and $u(t) s=u\left(t, t_{0}, u_{0}\right)$. Then $W_{p}^{B} \hookrightarrow W_{p}^{\sigma}$ implies

$$
\operatorname{mup}_{t_{1} \leqslant t<t^{+}}\|u(t)\|_{\sigma, p}<\infty .
$$

Thus it is easily seen that

$$
\sup _{t_{1} \triangleq t_{<t^{+}}}\|P(t, u(t))\|_{0, p}<\infty .
$$

Since, by a continuity and compactness argument, F is bounded in I_{p} on $\left\{(t, u(t)) \mid t_{0} \leq t \leq t_{1}\right\}$, it follows that F is bounded in I_{p} on graph(u). Hence the assertion follows from Remark (2.2.b) provided we can show that (3) is true.
(b) It follows from (1) that we cen find numbers $\alpha \in(0,1)$, and $s \in(k+n / p, 2 m) \backslash(w+1 / p)$ such that

$$
\gamma_{j}<\alpha+p_{0} \frac{\alpha(-1)+(1-\alpha) n / p}{n+\left(j-s_{0}\right) p_{0}}, j=x+1, \ldots, k .
$$

By the results of Section 2 we can assume that $p \geq p_{0}$. Hence $1 / \mathrm{p} \in\left(\left(\gamma_{j}-\propto\right) / p_{0}\right)+(\alpha / p)$ and we obtain from Lemma (3.1)

$$
\|\left|D_{u}^{j_{u}}\right|^{\gamma_{j}\left\|_{0, p}=\right\| D_{u}\left\|_{0, p \gamma_{j}}^{\gamma_{j}} \in\right\| u \|_{j, p \gamma_{j}}^{\gamma_{j}} \leqslant} \leqslant
$$

$$
\Leftrightarrow c\|u\|_{s, p}^{\alpha}\|u\|_{0_{0}, p_{0}}^{\gamma_{j}-\alpha}
$$

for $j=x+1, \ldots, k$. Thus
(4) $\|P(t, u(t))\|_{0, p} \leqslant\left\|g\left(t, \cdots, u(t), \ldots, D^{x} u(t)\right)\right\|_{0, p}+$

$$
+o\left(\sum_{j=0,1}^{R_{0}}\|u(t)\|_{s_{0}, p_{0}}^{\gamma_{j}-\alpha}\right)\|u(t)\|_{s, p}^{\alpha}
$$

for $t_{1} \leqslant t<t^{+}$(since $u(t) \in W_{p}^{B}$ for $t_{1} \leqslant t<t^{+}$by Theorem (2.1)). since $x<s_{0}-n / p_{0} \& s_{0}-n / p$ the a priori eatimate (2) and the imbedding $w_{p}^{8} \leftrightarrow C^{\infty}$ (for $\left.x \in D\right)$ imply

$$
\begin{equation*}
\sup _{t_{1} \xi t<t^{+}}\left\|g\left(t, \cdot, u(t), \ldots, D^{x} u(t)\right)\right\|_{0, p}<\infty \tag{5}
\end{equation*}
$$

Now it follows from the results of Section 2 that the inte-cral-evolution equation (2.4) is well defined in \boldsymbol{w}_{p}^{8} for t_{1} 公 $t<t^{+}$. Thus
(6) $\|u(t)\|_{g, p} \leqq\left\|U\left(t, t_{1}\right) u\left(t_{1}\right)\right\|_{s, p}+$

$$
+\int_{t_{1}}^{t}\|U(t, \tau)\| \mathscr{L}\left(L_{p}, w_{p}^{s}\right)\|P(\tau, u(\tau))\|_{0, p} d \tau
$$

for $t_{1} \leqslant t<t^{+}$(where we have used the unique wolvability). Inserting (4), (2) and (5) in (6) we see that

$$
\|u(t)\|_{g, p} \leq c\left(1+\max _{t_{1} \leq \tau\left\{t_{2}\right.}\|u(\tau)\|_{B, p}^{\infty}\right)
$$

for $t_{1} \leqslant t \leqslant t_{2}<t^{+}$, where c is independent of t_{2} (dne to the entimate $\|U(t, \tau)\|_{\mathscr{L}\left(I_{p}, \nabla_{p}^{B}\right)}=O\left((t-\tau)^{-\infty / 2 m}\right)$ for $\left.0 \leq \tau<t \leq T\right)$.
This implies (3), whence the assertion.
(3.3) Remaric: Suppose that \mathcal{A}, \mathcal{B} and 1 are independent of t and that the spectrum of A (in I_{2}, for example) is contained in the open right hall-plane. Then, given the assumptions of Theore (3.2), it followe that $t^{+}\left(t_{0}, u_{0}\right)=\infty$ and that

$$
\sup _{t_{1} \leqslant t<\infty}\left\|_{u}\left(t, t_{0}, u_{0}\right)\right\|_{2 m, p}<\infty .
$$

Thus, if_it is_knom_that the pogitive_semiorbit $\gamma^{+}\left(u_{0}\right):=$ $\left.u\left(t, 0, u_{0}\right) \mid 0 \leq t<t^{+}\left(0, n_{0}\right)\right)$ is_bounded_in m_{0} it_is bounded in $\nabla_{p}^{2 m}($ for $t>0)$. Furthermore it_is relatively_ompact_in $w_{p}^{2 m}$, which implies in particalar that $\gamma^{+}\left(n_{0}\right)$ has a nonempty limit set in $W_{p}^{2 m}$. If, moreover, $F(u) \in W_{p, \mathcal{B}}^{p}$ for some $s>n / p$ (whioh is no restriction if $\min \left\{m_{\rho, \Gamma} \mid 1 \leq \rho \leq m N, \Gamma \in \Gamma\right\}>0$) then $\|_{p}^{2 m}$ can be replaced by $c^{2 m+\mu}\left(\bar{\Omega}, \mathbb{C}^{N}\right)$ for nome $\mu \in(0,1)$.

The above theorem generalizes (and simplifies) considerabIf numerous earlier reaults (e.g. [1, 9, 12, 13], cf. [4.] for more detailed references. It should also be noted that, due to Remark 2.2.e, Theorem (3.2) is also true (modulo some regularity assumptions near infinity) if Ω is unbounded).

The main content of Theorem (3.2) is the assertion that we obtain global existence if we can obtain an a priori bound in some weak norm (in the $W_{p_{0}}^{\mathbf{g}_{0}}$-norm) and if the nonlinearity satisfies an appropriate growth restriction. In the particularly important case that $k=0$ it follows that $u\left(\cdot, t_{0}, u_{0}\right)$ exists globally if

$$
\begin{equation*}
|f(t, x, \xi)| \leqslant c\left(1+|\xi|^{\gamma}\right) \quad \forall(t, x, \xi) \in[0, T] \times \bar{\Omega} \times \mathbb{C}^{\mathbb{N}} . \tag{7}
\end{equation*}
$$

where

$$
1 \leqq \gamma<1+\frac{2 m p_{0}}{n-s_{0} p_{0}}=\frac{n+\left(2 m-s_{0}\right) p_{0}}{n-s_{0} p_{0}}
$$

provided we know that

$$
\sup _{t_{1} \Leftrightarrow t<t^{+}}\left\|u\left(t, t_{0}, u_{0}\right)\right\| \otimes_{0}, p_{0}<\infty
$$

for some $t_{1} \in\left(t_{0}, t^{+}\right)$.

There is a quite general class of problems for which eve-
ry solution can be bounded a priori in the $\boldsymbol{m}_{\mathbf{2}}^{\mathbf{m}}$-norm. To deseribe this class we restrict ourselves to the real case and introduce the following splitting asgumption:
(SP) There are continuous functions g and h such that

$$
f\left(t, x, u, \ldots, D^{k} u\right)=g\left(t, x, u, \ldots, D^{k} u\right)+h(x, u)
$$

a constant c with

$$
\left|g\left(t, x, u, \ldots, D^{k} u\right)\right| \leqq c\left(1+\sum_{j=0}^{m}\left|D^{j} u\right|\right)
$$

and a function $H \in C^{0,1}\left(\bar{\Omega} \times \mathbb{R}^{H}, \mathbb{R}\right)$ such that $h=\nabla_{\xi} H$, where ∇_{ξ} denotes the gradient with reapect to $\xi \in \mathbb{R}^{\mathbf{n}}$.

In addition we consider the following definitnesg asgumpions
(D) $\left(t_{0}, u_{0}\right)$ For each $t_{1} \in\left(t_{0}, t^{+}\left(t_{0}, u_{0}\right)\right)$ there are constants $\lambda_{0}>0$ and $c, c_{0} \geqq 0$ such that

$$
\begin{aligned}
& \lambda_{0}\|u(t)\|_{m, 2}^{2}-c_{0}\left\|_{u}(t)\right\|_{0,2}^{2} \leq 2 \int_{t_{1}}^{t}(A(\tau) u(\tau) \| \dot{u}(\tau)) d \tau+ \\
&+c\left(1+\int_{t_{1}}^{t}\|u(\tau)\|_{m_{,}}^{2} d \tau\right)
\end{aligned}
$$

for $t_{1} \leqslant t<t^{+}$.
By taking the I_{2}-inner product of $\dot{u}(t)$ and the equation $\dot{u}+A(t) u=P(t, u)$ it is not difficult to deduce an a priori bound for $\|u(t)\|_{m, 2}$ on the basis of (SP) and (D) $\left(t_{0}, u_{0}\right)$ by means of Gronwall s inequality. Then Theoren (3.2) implies the following
(3.4) Theorem: Let $\left(t_{0}, u_{0}\right) \in[0, T) \times \nabla_{p, \beta\left(t_{0}\right)}^{\sigma}$ be_given_and guppose that (SP) and (D) $\left(t_{0}, u_{0}\right)$ are atiafied Moregrer anpar se_that

$$
\prod_{|\xi| \rightarrow \infty} \frac{H\left(X_{0} \xi\right)}{|\xi|^{2}}<\infty
$$

unifor relly with_reapect_to $x \in \bar{\Omega}$, and that

$$
|\mathrm{h}(\cdot, \xi)| \not c \mathrm{c}\left(1+|\xi|^{\gamma}\right) \quad \forall \xi \in \mathbb{R}^{\mathbb{I}} .
$$

where

$$
\begin{equation*}
1 \leq \gamma<1+\frac{4 m}{n-2 m}=\frac{n+2 m}{n-2 m} \tag{8}
\end{equation*}
$$

Then $t^{+}\left(t_{0}, u_{0}\right)=T$.
It can be shown that ${ }^{(D)}\left(t_{0}, u_{0}\right)$ is satisfied for every $\left(t_{0}, u_{0}\right) \in[0, T) \times m_{p, B\left(t_{0}\right)}^{\sigma}$ if $(A(t), \Omega), 0 \leqq t \leqq T$, is a strongly parabolic system and $(B(t), \Gamma), 0 \leqslant t \leqslant T$, is the Dirichlet boundary operator (of. Example (1.1.b)). Thus Theorem (3.4) generalizes a result of Pecher and von Wahl [111, where it has been assumed that $\mathbb{N}=1, f\left(t, x, u, \ldots, D^{k} u\right)=f(u)$ and that $\int_{0}^{\xi} f(s) d s \in$ $\leqq 0 \xi^{2}$, that is, $H(\xi) \leqslant 0 \xi^{2}$ for $\xi \in \mathbb{R}$.

It can also be shown that (${ }^{(D)}\left(t_{0}, u_{0}\right)$ is satisfied for every $\left(t_{0}, u_{0}\right) \in \Pi_{p}^{\sigma}$ in the situation of Example (1.1.c) provided the matrices $a_{j k}$ are symmetric. Thus Theorem (3.4) generalizes considerably recent results of Cosner [6] and Alikakos [2]. These authors assumed the stronger ellipticity condition

$$
\sum_{n, s=1}^{N} \sum_{j_{1} k=1} \sum_{j=1}^{n} a_{j k}^{r s}(x) \quad \xi_{r}^{j} \xi_{k}^{k} \geqq c_{0} \sum_{n=1}^{N} \sum_{j=1}^{n}\left|\xi_{r}^{j}\right|^{2}
$$

for all $x \in \Omega$ and $\xi_{x}^{j} \in \mathbb{R}, 1 \leqq j \leqq n, 1 \leqq r \leqq N$, considered Dirichlet boundary conditions and the autonomous case, assumed that g is a linear differential operator and thet $(h(\cdot, \xi) \mid \xi)<0$ for $\xi \in \mathbb{R}^{\mathrm{II}} \backslash\{0\}$ and

$$
\overline{\lim }_{|\xi| \rightarrow \infty} \frac{\left(h\left(x_{0} \xi\right)\right)}{|\xi|^{2}} \leqslant-\beta
$$

uniformly in $x \in \Omega$, where β is a sufficiently large positive constant. Then Cosner proved global existence under the growth
restriction $1 \leq \boldsymbol{\gamma}<\mathrm{n} /(\mathrm{n}-2)$. Alikako: obtained global existence if γ atisfies (8) (with $m=1$) but he had to assume that the matrioes $a_{j k}(x), 1 \leqslant j, k \leqslant n$, commate for every $x \in \Omega$.

It is natural to ask whether the equality gign in (1) cen be permitted. Von Wahl [15, 16] has shown that this is the case if $N=1$ and B is the Diriahlet boundary operator, provided $P_{0}=2$ and f satisfies an appropriate monotonicity condition. By means of the continuity argument amployed in $[15,16]$ aimilar results can be obtained in our general setting.

Detailed proofs of the assertions of this section are given in 4 .

References

[1] AIIKAKOS, H.D.: L^{p} bounds of solutions of reaction-diffusion equations, Comm. in Partial Diff. Equat. 4(1979), 827-868.
[2] AIIKAKOS, N.D.: Quantitative maximum principles and strongly coupled gradient-like reaction-diffusion systems, Proc. Royal Soc. Edinburgh 94(1983), 265-286.
[3] AMANS, H.: Existonce and regularity for semilinear parabo1ic evolution equations. To appear.
[4] AMANN, H.: Global existence for semilinear parabolic systems. In preparation.
[5] BROWDFR, F.E.: On the spectral theory of elliptic operators, I. Math. Annalen 141(1961), 22-130.
[6] COSNER, CH.: Pointwise a priori bounds for strongly coupled semi-linear systems of parabolic partial differential equations, Indiana Univ. Math. J. 30(1981), 607-620.
[7] PRIEDMAN, A.: Partial Differential Equations, Holt, Rinehart and Winston, Hew Yoxk, 1969.
[8] KATO, T. and TANABE, H.: On the abstract evolution equation, Osaka Math. J. 14(1962), 107-133.
[9] KIELHOEPER, H.: Olobal solutions of semilinear evolution equations satisfying an energy inequality, J.Diff. Equat. 36(1980), 188-222.
[10] LIONS, J.L., MAGENES, E.: Non-Homogeneous Boundary Value Problems and Applications I, Springer Verlag; Berinn, 1972.
[11] PECHER, H., VOn WAHL, W.: Klassisohe Lösungen in Grossen semilinearer parabolischer Differentialgleichungen, Math. 2. 145(1975), 255-265.
[12] ROTHE, F.: Uniform bounds from bounded L_{p}-functionals in reaction-diffusion equations, J. Diff. Bquat. 45 (1982), 207-233.
[13] ROTHE, F.: A priori estimates, global existence and asymptotic behaviour for weakly coupled systems of reac-tion-diffusion equations, Habilitationssohrift, Univ. Tübingen, 1983.
[14] SOBOLEVSKII, P.E.: Equations of parabolic type in a Banaol apace, Amer. Math. Soc. Transl., Ser. 2, 49(1966), 1-62.
[15] von WAHL, W.: Lineare und senilineare parabolische Differentialgleichungen in Räumen hölderstetiger Punktionen, Abh. Math. Sea. Univ. Hamburg 43(1975), 234-262.
[16] von WARL, W.: Semilinear elliptic and parabolic equations of arbitrary order, Proc. Royal Soc. Edinburgh, Sect. A, 78(1978), 193-207.
[17] YAGI, A.: On the abstract linear evolution equations in Banach spaces, J. Math. Soc. Japan 28(1976), 290-303.

Mathematisches Institut der Universität Zürich, Rämistramse 74, CH-8001, Zürioh, Sohweis
(Oblatum 25.5. 1984)

