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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE 

26.1 (1985) 

SEMIUNEAR PARABOLIC SYSTEMS 
Herbert AMANN 

Abstract: We describe a general local existence and regu-
larity result for semilinear parabolic systems of even order. 
In particular we obtain classical solutions without compatibi
lity conditions for the nonlinear!ty. Moreover, we describe a 
simple method for obtaining global existence by means of a ge
neralization of the Gagliardo-Hirenberg inequality to fractio
nal orders of the derivatives. 

Key words: Local and global existence, regularity, para-
bolic systems, time-dependent boundary conditions* 

Classification: 35K60, 35B65 

In these lectures we review some recent results of the au

thor concerning local and global existence and regularity for 

semilinear parabolic systems of arbitrary even order. It is one 

of the main features of our approach to prove first of all a 

very general existence and regularity theorem, which guaran

tees the existence of classical solutions on a maximal time in

terval. In possession of this general theorem one can then tre

at the question of global existence separately by establishing 

appropriate a priori bounds in some weak norm without worrying 

any more about existence questions. 

This paper was presented on the International Spring School on 
Evolution Equations, Dobfichovice by Pra-ame, May 21-25> 1984 
(invited paper). 
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1. Regular Parabolio Systems, Throughout this paper &, mf 

n and 9 are fixed positive integers and k is an integer satisfy

ing 0*k.£k • 1 s£ JL * 2mf T is a fixed positive real number, and 

H If a hounded domain in JRn of class c2"1*^ # Moreover V de

notes a (necessarily finite) set of nonempty open and closed 

subsets T of dIL which are pairwise disjoint and whose union 

equals d£L. 

We denote by A(t) for each t e [0 f T . l a linear differential 

operator of order 2m acting on K-vector-valued functions us 

t XL -* C H of the form 

JUt)ui- (-1)" 51 a .(- ft)D°u f 

where 

It v~* a^^t)} e C2"(EOffi fC^(S f rf( <D
H))) 

for a l l oc, € Wn with loci s 2m (where C means that the functi

ons have (locally) Lipschitz continuous first derivatives). Mo

reover: 

£ ( t ) i - * £ p ( t ) i P e D 

denotes for each t € [0fT] a system of boundary operators on 

3 XL f where 

Sp(t)s« (»Jt(t),...ta|fl(t)) 
and 

^ ( t ) m - , t51 b£ p( . ft)D*u 
í* telá^p ^ 

with O i l „ < 2m and 

Q 0 2m+£-mj0fn w 

tt*-* b ^ p ( % t ) j 6 C 2 - ( C 0 f f l f C f ( P f t f « r f c > ) ) 

for oo € Bln with loci &m p t U p iniH, and P e T . 

We le t 
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a(X' t'f ) i-^f-«na* (X' t )^e'a: (<C) 

and 
a ^( 3 C t t t? • *>«- a ( x f t f f ) + t 1 ^ 2 1 * I j j g ^ C 1 1 ) 

for ( x f t f f ) eSxCO f T]x |Rn
f <>> € r-JT f &}, and tr 6 IRf where 

Ig denotes the identity in ££( <0H). Similarly, 

for l o c l a i p , 1 £ g> e! mH9 and T 6 P » and b(xf £ ) denotes 

the (mH;xff)-matrix with row© bf (x f f ) for a l l x e P f p € t» 

and £ e lRa. 

For 1< p < oo and 0 e(R* we le t f*s- W*(ilf <D*) andf if 

2m £ s £ 2m + £ , 

^ 1 / P ' - r Y r $ C1/P"^n<^.cH). 
Then (ji(t)f ft(t)filf P ) , OAt** f is said to be a regular 

parabolic initial boundary value problem (IBVP) of (class Cr and) 

ord0r 2m provided the following additional conditions (R),(C) and 

(S) are satisfied: 

(R) There exists a number oC € (#/2far) such that 

d0t a^(x ft f£ f*)*0 

and the polynomial of one complex variable 

.X w-*det a^(x,tf| + Av(x), <tf) 

has precisely mS roots X t ( ^ f x , t f 9 t Tr) f 1*J£ml f with posi

tive imaginary parts for each 

( 4 f x f t f ^ f <c) s C-ocf oc3 x 3X1* tOfT3x R n * 1R 

with (^ \ v (x)) - 0 and (^ f t ) * ( 0 f 0 ) f 

where v i s the outer normal on 311 and ( • 1 • ) the euclidean 

- 5 -



inner product. 

(C) for each ( i \ x f t f £ ftr) satisfying (1) the rows of 

the matrix-valuad function of on« complex variable 

% H-> b(x ft f I + AV (x))a^ (x f t f J + Av> (x) f x) 

ar« linearly indwp*nd«nt modulo .TT̂  {% - A.T(# f x f t f P f t ) ) (a* 

polynomials in A ) f where a^-(x, t , T[, r ) i s the matrix whose 

•laments are the cofactors of the •laments of the transposed 

matrix of a^(x ft fTj t t ) . If H • 1 we put a^(x f t f ^ f T ) : • 1. 

(S) For each t g£OfTJ ther« exists a number % € <D such 

that th« linear operator 

(A + Jl(t)f3o(t))iw|1,l-^L2x Wl*-^2 

is surjsctiv*. 

In the remainder of this section wo give some important ex

amples of regular parabolic IBVPs. for this purpose we recall 

that (A(t)fil)f 0 £ t £ f f is said to be a strongly parabolic sys

tem if 

R«(a(xftf£ ) <£ I ?i )^0 

for a l l (x f t f J f ^ ) c S x C O f t l x « n x CM with f ^ 0 and ^4=0 

(where now ( • I • ) denotes the "•uolidcan** innar product in C , 

which i s linear in the f irst and antilinear in the second variable). 

0 » 1 ) Examples: (a) Suppose that V * 1 (the cas« of "on* 

•quation"), that (A(t) fXL) f 0 £ t * T f i s strongly parabolic and 

that 33 (t) i s a system of m boundary operators covering .A(t) 

(that i s , satisfying the complementing conditions; e.g. [113) in 

the usual sense. Jhen ( .A(t) f Ji(t) f & f D f O^teiT, ifi_a_rjgliJar 

2arabolio IBVP of jordgr 2m. 

(b) Suppose that (~&(t) f i l) f 0 6 t 4 T f i s a strongly parabo

l i c system. Moreover, suppose that for each P e T and t£lO,TJ 



there are given m vector fields (3a p(*ft) on P such that 

£t h-» ̂ fP(-ft)36C
2-([OfT3,C

2,B+^1(rf »
n)) 

and ( (33 p (x ft) l v ( x ) ) > 0 for 3 - 1f . . . ,m f x e P and t e[OfTj. 

Then define (Nx N)-matrix-valued boundary operators $>* p (t) 

3i4 n ( t )ui» z iJrj I- + lower order terms, 

where ks» k p i s a fixed Integer on P with O^k £ mf 1 £ i£m, 

P s P , and t e C O f « . Finally let £ p ( t ) * « (;§., p ( t ) f . . . 

• • • t $ m p ( t ) ) . Then (J l ( t ) f # ( t ) f £ L , P ) f 0*>t*Tf ia_a_rej5jjlar 

parabolic IBVP of^order 2m. Observe that this example covers 

in particular the case of Dlriohlet boundary conditions, where 

Pj P (* f t ) " * for j - 1 f . . . fm f t € tOfTj and P - 3 i l . 

(c) Second_order_sJb.ronglj JBarabolic systems: We suppose 

that m » 1 and use the summation convention, where j , k run from 

1 to n. Then we write Jl(t) in the form 

j%(t)u • -ajfj(
#t*)I>;|Bku + a;j(«ft)DjU 4- a 0 ( . f t )u 

and consider a boundary operator of the form 

fi(t)u - oTa3k(^ft) V ^ u + (Ijy -cf)u +^b(.ft) 

where cf: • diag ( cf1 , . . . , of^) Is a diagonal matrix such that 

d j 6 C ( 3 i ! f {0 9 1 | ) . Thus eaoh <T* equals either 0 or 1 and i s 

constant on each component of 3-0- . I f cT. • o then the j-th 

equation of &(t)u • 0 i s simply the Dlriohlet condition û  • 0 

on the corresponding part P of dSl . Of course, u • (u f . . . 

. . . f u ) and -pm ( v f . . . f v n ) « Observe that the function ct(*) 

defines implicitly a boundary decomposition F • Then 

( A ( t ) f &(t) f IL f P) f 0 4 t * T f ia.a^rejgularjarabolio^se^ or^ 

der IBVP provided (>l(t) f lL) f 0 .*t£T f is_a_stronfi.l:x jgarabOi 
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l i e oyjtem. 

(d) Blo^ok-trianjgular^oeoond order j>arabolio eystenau We 

suppose again that m « 1 and that we can write JUt) and $ ( t ) 

as upper triangular block-matrix d i f ferent ia l operators: 

Ji(t) - t ^ U t n u ^ r , -B(t) - [ ^ ( t ) ] ^ ^ , 

where A?6* - &f* - 0 for p > € and where ( ,A?*(t) f S ^ ( t ) f 

H f D f 0^ t £T f i s for each <p • 1 f . . • f r a second order regular 

parabolic IBVP acting on H@-vector-valued functions with 1^ 6 1 * 

and H-, + . . . + Hr - H. Then ( A ( t ) f $ ( t ) f i l f D f O ^ t ^ T , i0 ja jr# -

BP&PS. 2*£*k°i*-2. l*00Sd—0£ASr IBVP • Observe that a bio ok - t r i 

angular parabolic system need not be strongly parabol ic Final

ly i t i s c lear how t h i s example can be generalised to b lock- t r i 

angular parabolic systems of order 2m. Q 

The proof that the above examples define regular parabolic 

IBVPs i s not quite t r i v i a l and w i l l be given i n £4-U 

2. Existence and Regularity. Throughout the remainder of 

th i s paper we presuppose that ( J l ( t ) f J5(t)f_Q. f P ) t 0^tarT f i s 

a regular parabolic IBVP of order 2m. We put Ms * 1 Z „ 1 f whe-

re ot e Wn
f and we suppose that 

(1) f €C 2 "([0 f T 3 x 5 . x C* f <0H). 

This means that f la continuously real dif f erentiable with r e 

spect to a l l variable a and that these derivatives are l ooa l l y 

Lipschitz continuous. 

For 1 < p < op and 0 £ m & 2m we l e t 

W p # ( t ) < - * u 6 Wp l»$<*>* » 0 for m? f p < 0 - 1 /p} . 

Thus W® <$Lf^\ i s for each t € EOfTl a closed l inear snbopace of 



W» and f p f ^ t ) - tp for 0 ^ 1 ^ + 1/pf where l ^ t . minimal 

T K f i r f . P t s P i . 

After these preparations we can formulate our hasio ezJLŝ  

i^°St.J^£u^J8Jf«°5aJ|iS^i'*3[ .S0^ Z^ff^^JEiJy 

(2«1) Theorem; Suppose that a < p < oo f that Oats < 

< mia «t1fm/2}t that max«£2sf* + k • a / p | < 6 ' < 2m f i jh 6 & £ % 

SM .$**§* s f ^ 4 P + 1/p. Then^the IBVT 

| | 4- A(t )u • f(t fx fu fDu f... fD
lctt) ia H x ( t o f f 3 

CP)(t
0»u

0
) &(*)u - ° a* aa^(toft3 

u(* ftQ) - u0 &a JL 

»<• • V V € °1 <*•»?>« oci.ij-**) n c ^ - ^ - a , * ; ) 
for ererx j> s COfcTH f where Js« J(tofttQ) is_thejiaxi .»l^lAtw-

2*3:, °A-e^J*.SQ£®-.aB^ «**• J \ - t t }• Moreover, J(t ,« ) i«J-4S^ 

SPSftJft CtoffJ f 

a ^ V 1 " * * * ' * ' * " 0 ' " * w?fS(t0) I *««*.•>! 

is.»°£ea 1^ ^ V ^ ^ p ^ t )» -W4 

(2) u í * . * o ' - ) a C ° ' Í S p . 3 ( V V 

Ci^t-ifif (tfv)i—y u(t f t 0 § v) ifl^oontiauous ia t and locallx 

Li£schitz ^ntinuous^ia T £a 2L 3$(<fc )3 • 

Corollary 1s Supj>£se ia^addltioa that s> a/p« Then 

u(« f t 0 ,u 0 ) is_the_uni£ue classi^al jolutioajof Wr^ u % £&& 

u(*,tofu0)€ c 1 ( i . c ^ ( 5 f # ) ) n c(ifc
2BH^(5Lf e*))f 

where ,ii: • s ~ n/p. 



In the important autonomous case the uniqueness, the open

ness of &%ft and *--* continuity assert ion (1) imply that 

u ( » f 0 f O defines a ( loca l ) semiflow on the Banach space * 5 $ • 

More precisely we have the following 

Corollary 2: Let the hy£Otheses„j>f Theorem (2.1) be^satig-

I.i.£0LftS0LftJ%a.£ 4ft.fti*i^40-.l H-S.,* & t -B ***<* * JF® AP£*£e£4Sn£ 

&f t . Then 9 :* u(» f 0 f ») is^a^semiflow on Ŵ  ^ l^b«*b&i 

Cp € C 0 , 1 " O p 3»wp> && ,f*£k_that bounded jemiorbits_ are re-, 

l^ativel^comjpact. 

(2»2) Remarks* (a) The solut ion u ( - f t o f u 0 ) of (-?)(.t u j 

i s independent of p € ( n , o o ) and of s for t > t 0 » Thus, in part i 

cular, the maximal interval of existence J ( t 0 , u 0 ) does neither 

depend on p nor on s» 

(b) u (» f t Q f u 0 ) i s a global so lut ion of ( P ) , t u ^, that i s , 

J ( t Q f u 0 ) m t t fTJ f provided f (graph u ( « f t o f u 0 ) ) i s bounded in 

L for some p c ( n f o o ) f where F ( t f u ) ( x ) : * f ( t , x f u(x) f B u ( x ) , , . . 

. . . , D k u ( x ) ) . 

(c) Let the assumptions of Theorem (2 .1) be s a t i s f i e d and 

suppose i n addition that 

^ ^ t ) • Wpf1K0) V t 6 C0fTl , 

where 0< r < 6* and re) Of + 1/p. Moreover, l e t the following 

SPWP&UPQitX conditions be s a t i s f i e d : F( t f v) CW* £,Q\ *or a l l 
T€lp1

f
la(t) and * 6 t 0»*3. ftnd uo€ l5&(t f t) ^ ^ A ( t o ) u o £ 

Ifitoy e ť <&ín\* Then 

»<• .VV * °1 (J( W >*Pn C ( J ( W •15iHf>> 
for every <pe/(O fr) with (p # tt? + 1 p f that i s f we obtain 

"regularity up to t » t 0 » . 
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(d) It is not necessary that f be defined on all of € • 

In fact, C in (1) can be replaced by an arbitrary nonempty 

open subset of € • Moreover P need not be a local operator. 

(e) Theorem (2.1) remains true if D. is an unbounded do

main which is uniformly regular of class 2m + Z in the sense 

of Browder 153, provided one imposes additional mild regulari

ty conditions upon the coefficients of A f J3 and f "near infi

nity". 

(f) It should be noted that the integer £ measures the 

continuity properties of the data. If one is willing to put 

Z * 2m (which one has to do if k - 2m - 1) then one can choose 

6" arbitrarily close to 2m which implies that the continuity 

assertion (2) is rather strong. 

(g) The regularity assumption (1) can be weakened. In par

ticular it suffices to assume that f satisfies only an appropri

ate Holder condition with respect to x & IX . d 

The proofs of Theorem (2.1), its corollaries and the asser

tions contained in Remarks (2.2) are given in T3.7. The main ide

as are the following: Problem (?)/+ ,, \ is considered as an ab-
lW 

stract evolution equation of the form 
u + A(t)u - F ( t f u ) f t A < t ^ T f 

(3) o 
u ( t 0 ) - UQ 

in L f where A(t) i s the L - rea l i za t ion of (J i ( t ) f & ( t ) ) . Then 

i t i s shown that ( ? ) / t u \ ifl equivalent to (3) and (3) i s e~ 
v o9 oJ 

quivalent to an integral-evolut ion equation of the form 

(4) u ( t ) » U ( t f t 0 ) u 0 +J^ U ( t f f ) f ( t f u ( ' c r ) ) d r f t 0 ^ t . # T . 

Here U i s a parabolic evolution operator for -f A(t) I 0 4% d%} i n 
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L_ whose existence is guaranteed by general results of Yagi [173 

sad Kate and Tanabe £8]* The main difficulties stem from the 

faets that the domain of A(t) is not constant (in general) and 

that I is an "unbounded nonlinear operator", that is, it is on

ly densely defined in L_. 

If the domain of A(t) were independent of t9 the eouatlon 

(4) oould he treated by the method of fractional powers (e.g. 

[17, H 3 ) . However, in our situation this method turns out to 

be not appropriate* In f act there seems to be no general results 

in the literature for (-?)/.*. u \ guaranteeing existence and re-
o*o ™* """ 

gularity for time-dependent boundary oonditions (not even for 

a single equation, i.e. for 5 - 1 ) . in our approach we study 

(4) directly in the Sobolev-Slobodeckii space W^ using the fact 

that it oan be characterised as an appropriate interpolation 

space. (More generally, we oonsider abstract equations of the 

form (4) in general Interpolation spaces. ) In order to obtain 

the stated regularity results we show that U restricts to an e-

volution operator on W* which is, however, not strongly continu

ous for t * t • But we can establish the following fundamental 

regularity properties: 

U(-9t0)eC((to9T39 ^(W^wJ 8* 8)) 

and 

(**->// U(tf'C)g(r)dx)6C((t0fTa,!^
ai+S) 

for every g e C 9 (CtofTlfW®) with s/2m -c >̂ < 19 where ^fl(X9Y) 

denotes the space of a l l continuous linear operators from X into 

Y endowed with the strong topology (that i s , the topology of 

pointwise convergence). 

As already mentioned Theorem (2.1) seems to be the only 
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existence and regularity result for semilinear parabolic equati

ons which applies to general time-dependent boundary conditions 

and does not presuppose any structural condition for the nonli

near ity f whatsoever, in particular no compatibility conditions. 

In the case of Dirichlet boundary conditions for a single equa

tion (H » 1) von Wahl Li51 has proved the existence of a classi

cal solution without compatibility conditions for f. However, 

his result applies only to a restricted olass of parabollo ope

rators. Recently Da Prato and his students developed an abstract 

method to prove existence and regularity results for parabolic 

evolution operators without compatibility conditions for the non-

linearity (for the case that D(A(t)) Is constant). Their main 1-

dea is to drop the assumption that D(A(t)) be dense in the under

lying Banach space X. However they always assume that the resol

vent satisfies an estimate of the form 

KA+ A(t))"M\x(x) - 0((1 + Ul"
1) for Re Jl £ AQ. 

This restricts to applicability of their method considerably 

(for example to the case that X equals £(£) or an appropriate 

sub space of C^ /(JQ.)). If we let X - W??, as in our situation, it 

can only be shown that 

au* A(t)r1 ii^(I) - o(o + m r1+»/2*) f0r Re &£ A0. 

Thus their method does not apply to the spaces wfj. Moreover for 

many questions concerning problem (P)/+ u \ the spmces W* are 
* o9 o * 

a natural setting as will be seen in the next section. For more 

detailed references to the literature we refer to [3J. 

3. Global Existence, The basis for our global existence 

results is the following lemma, where tl • tt denotes the norm 
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lnW». 

(3*1) I*amma : Su£po3e that 1 £p 0 < °° » 1 < p < co and 

°-t "0t #0< 2» + % t and that sQ «• 0 i f p0 « 1. Let sQ< a _s2m +£ 

&P& m£P£8_l Jha t 

Po ( »o- V ^ 

»-l-i-X ! • ! 0 < oC < -j- and 

o-(s- tf.) + (1 - ot)a/p 
1 6 r < o O + P f t  

n + C ^o " "o^o 

_h_n_t_er«_«xi_t_ a constant o _uoh_that 

grorided 

P P0
 p 

The proof of this Lemma, whioh can be considered as an ex-

tension of the Gagliardo-B'irenberg inequality, follows from the 

interpolation space charaoterizationfl of the Sobolev-Slobodeo-

ki i spaces and from Sobolev-type Imbedding theorems. 

I t i s now easy to prore the following general global exis

tence theorem, where we le t *+(t0»u0):« sup J ( t 0»u 0 ) . 

(3«2) Theorem: Sujjpose that O._s0<2m and 1£pQ^ oo f and 

jtfs&t sQ • 0 i f pQ - 1. £et H e 2 &*P-§*Z dc -< «0 - n/pQ £ ae + 1 

SPA -PIP!0,8! ^^^^l^^M^J^^^^SPSS^M function g (de£endin£ 

__J-__y«_pj| ( t fx) i,f ae -c 0) aaj§ _wnsta|its c «ad v*9 j • #e + 1 t . . . 

• . . . k gij£h_that 

anД 

l f ( t ,x f u f Du f . . . f D
k u)Ug(t f x f u f . . . f D

í \ i ) + o. 51 _ lD3ul3 
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2ш - -(1) ^ Г д < 1 , р о в ^ , . , j . эe+ 1 .,..,_• 

:W'._ 

t ^ í t ^ ^ í t ^ . u ) ) , 

? Í M 1 l x JS_2P&».» ±-»t_ for BOJM (*„»«_) eEO,í)xW5 ; a í t j and 

-< 00 
г 0 

< 2 ) Mt<n?(i0 lJ
U ( t' t0»V«80 fP0 

Then t + ( t o f u 0 ) • T# 

Proof: (a) Let a 6 Ctff2m) he arbitrary end suppose we can 

show that 

(3) sup _ lu(t) II _ „ < oo , 

where t + t - t + ( t o f u Q ) and u(t ) t- u ( t , t o f u Q ) . fhen w" c+ W^impliei 

Thus i t i s easily seen that 
/ 

sup llF(t fu(t))H A _ < *0 • 
•fc,6t<t+ °»P 

Since, by a continuity and compactness argument, F i s bounded in 

Lp on { ( t f u ( t ) ) l t 0 ^ t 6 t ^ f i t follows that F i s bounded in L 

on graph(u). Hence the assertion follows from Remark (2.2.b) pro-

Tided we can show that (3) i s true. 

(b) I t follows from (1) that we can find numbers <** e ( o f 1 ) f 

and s e(k + n/pf2m) \ ( SV + 1/p) such that 

r i ^ o o + p A octs-J? + (1-*?n/p 3 , a e + n . . . ^ . 
Ti P * n + ( j ~ s 0 ) p f i o# j ro 

By the results of Seotion 2 we can assume that p£p 0- Hence 

V p * ( ( T . . - os )/p0) + (oc/p) and we obtain from Lemma (3.1) 

Ill>3utr3» - U D M * ^ acflulif3 .6 
l l p u l H o f p "* u ofpTrj ° 3tPTj * 
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for i • at+ 1 , . . . , * • fhtts 

(4) Br(t9tt(t)) » o 9 p * l lg< t , ,»u< t>»*"»D*u< t )> l 'o fp + 

+ o(. S 4lu(t)|^"?)|tt(t)l°_ 
#«0C*4 s o , p o 8 , p 

for t 1 ^ t < t + (since u(t)6 Wp for t-f.«t-*t+ hy Theorem (2.1)) . 

Since at* s • n/p0^sQ - n/p the a priori estimate (2) and the 

imbedding Wp°<s* C*(for ate W) imply 

(5) sup l l g ( t 9 . 9 u( t ) 9 . . . 9 .0%(t ) ) l l o < «? • 
t1mt<t* f P 

Vow i t follows from the results of Section 2 that the inte

gral-evolution equation (2*4) i s well defined in Wp for t . - i t < t + . 

Thus 

(6) ltt(t)il £ W t ^ u ^ ) ! ^ + 

• f* iWt.-cr)! | r ( t r 9 t t ( r ) ) L . dr 
J*>i *C^.w') 0 f P 

for t . j 6 t < t + (where we have used the unique solvability). Inser

ting (4)9(2) and (5) in (6) we see that 

l u ( t ) L J c ( 1 + max Htt(*) l* ) 
*»P M * * * * f p 

for t 1 ^ t 4 t 2 < t +
f where c i s independent of tg (due to the es-

timate llU(t9«;)ll . - 0((t - ?r*'2m) for 0 £ * < t £ T ) . 
*(Lp9W*) 

This implies (3), whence the assertion. O 

(3*3) Remark. Suppose that A9 t& and f are Independent 

of t and that the spectrum of A (in I^9 for example) i s contain

ed in the open right half-plane. Then, given the assumptions of 

theorem (3.2) , i t follows timt t+(to9ttQ) - oo and that 
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t»p BuCt, V-o>»2.,p < « t^t-tfoo 

Thus, i f _ i t isjknown^that the jopaittve^seBiiorbit T + ( O s * 
— _ _ « . . - . — -. .— — — — — -... — — — """fl"" v 

u(tfOfu0) i 0^t<t
+(O fu 0)) isj^unded_:ta W ° itJL& .bounded in 

fr01 (for t.>0). Furthermore it_is £eiaiije2y_comgact_in W~M
f 

which implies in particular that T ^ n ^ nas a nonempty limit 

set in W™. If, moreover, P(u) e W* ^ "for *iome s>n/p (whioh 

is no restriction if min -Cm n I 1 £ <p & mlt P e Pi > 0) then W?" 

can he replaced by C 2 a + ( U(S f <C
K) for some ^ 6 (0f1). Q 

The above theorem generalizes (and simplifies) considerab

ly numerous earlier results (e.g. C1 f 9f 12f 13.1> of. 143 for 

more detailed references. It should also be noted that, due to 

Remark 2.2.ef Theorem (3.2) is also true (modulo some regulari

ty assumptions near infinity) if il is unbounded). 

The main content of Theorem (3«2) is the assertion that we 

obtain global existence if we can obtain an a priori bound in 
s 

some weak norm (in the W -norm) and if the nonlinearity satis-
po 

fies an appropriate growth restriction. In the particularly im

portant case that k • 0 it follows that u(-ftQfu ) exists glo

bally if 

(7) l f ( t f x f £ ) l £ c ( 1 + i £ \ T ) V ( t f x f £ ) 6 L 0 f T a x 5 . x C H
t 

where 
2m prt n + (2m-srt)prt 1 ^ T *, 1 + 1SL. . 2Ll° 

provided we know that 

sup l lu(t f t fu )ll < co 
t ^ t - c t * ° ° so»po 

for some t . j € ( t 0 , t + ) . 

There is a quite general class of problems for which eve-
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ry solution can he hounded a priori in the fJJ-norm. To describe 

this class we restrict ourselves to the real oase and introduce 

the following splitting asjwmjrtion: 

(SP) There are continuous functions g and h such that 

f(tfxfuf...fD
lcu) » g(tfxfuf...fD

ku) • h(xfu)f 

a constant c with 

l g ( t f x f u f . . . f . D * u ) U o ( 1 + . Z n l D 3 u | ) f 

and a function H £ C ° » 1 ( . . a x IR*, [R) such that h • VQ Hf where 

DІ1 Vc denotes the gradient with respect to P s ^ 

In addition we consider the following def initness assumption: 

(D)/^ u s For each t-j * (* 0 t*fc + (t o f u 0 )) there are constants 

A > 0 and c f o^^O such that o p o 

A 0 l l u ( t ) l l ^ 2 . c 0 l l u ( t ) » ^ 2 ^ 2 ^ t (A(<t)u(<c)|u(tf))d<C + 

+ c(1 + £ M*)il* f2d?) 

for t-jeit < t * . 

By taking the I^-inner product of u(t ) and the equation 

u + A(t)u * 7 ( t f u ) i t i s not d i f f i c u l t to deduce an a pr ior i 

bound for (lu(t)IV 0 on the basis of (ST) and (D)/.. „ v by means 

of Qronwall's inequality. Then Theorem (3 .2) implies the fol low

ing 

(3 .4 ) Theorems Let, ( t Q f u 0 ) « COfT)x i f * ^ ^ j i9JSi^SlJKSfl' 

flapppss ±h£t (SP) anjjt U>)/ t x Mr& JLaJfeiafie^ JtaWCfr-^ wafer 
v o* o 

j e_ t£at 

£ iJ H ( x t %} < CO 
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_i_for_l_ _-_ ._ree_eot_to x e -0- , and that 

l h ( . , | ) i _ o ( 1 + l£|*) V§ s BH, 

where 

° n-.cm n—._m 

lhei4.t"
f(tofu0) - f. 

It can be shown that (D)/t u \ is satisfied for every 
* O f O 

( t o , u 0 ) e [ 0 f T ) ^ l ^ : M t j i f ( J l ( t ) f A ) f 0_?t£Tf i s a strongly 

parabolic system and ({J5(t)f F ) f 0£t .4T f i s the Dirichlet boun

dary operator (of. Example (1.1.b)). Thus Theorem (3*4) genera

l izes a result of Pecher and von Wahl C111, where i t has been 

assumed that N - 1f f ( t f x f u f . . . fD u) « f(u) and that f *f(s)ds 4 
*> 

l o ^ 2 , that i s , H(£)_|o g2 for £ e IR. 

I t can also be shown that (D)/ t \ ia satisfied fpr every 
v*o» o' 

(t fu )cW^ in the situation of Example (1.1 .c) provided the ma
trices a.j_ are syrametric. Thus Theorem (3*4) generalizes consi
derably recent results of Cosner C6] and AlikakoB [23. These 
authors assumed the stronger e l l ipt ic!ty condition 

N n v _ _ , J _. N *n> , j *•> 
£ * -£> . aJk ( x ) f r ? 0 * c o 2 . - Z , ' fr> 

for a l l x e H and f £ e ! R f 1 £ j £ n f 1*Fr*Nf considered Diri

chlet boundary conditions and the autonomous case, assumed that 

g i s a linear differential operator and thet (h(*, £ ) | £ )<0 

for ^ s »F\ iOi and 

uniformly in x 6 SL 9 where (̂  i s a sufficiently large positive 

constant. Then Cosner proved global existence under the growth 

- 19 -



r e s t r i c t i o n 1 ** f -< n / ( n - 2 ) . Alikakos obtained global exis tence 

i f *$ s a t i s f i e d (8) (with m • 1) but he had to assume t h a t the 

matr ices a ^ k ( x ) , 1 4 j , k 6 n , commute fo r every x € H * 

I t i s na tu r a l to ask whether the equa l i ty s ign In (1) can 

be permit ted. Yon Wahl 115, 163 has shown t h a t t h i s i s the case 

i f H • 1 and & i s the D l r ioh le t boundary opera to r , provided 

p 0 m 2 and f s a t i s f i e s an appropr ia te mono t o n i c i t y condi t ion. 

By means of the cont inui ty argument employed i n 115, 16] s imi

l a r r e s u l t s can be obtained i n our general s e t t i n g . 

Deta i led proofs of the a s s e r t i o n s of t h i s s ec t ion a r e given 

i n 4 • 
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