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COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE
26,1 (1985)

SOME REGULARITY RESULTS FOR QUASI-LINEAR
PARABOLIC SYSTEMS
Michael STRUWE

Abstract: Regularity results for quasilinear parabolic equations .
and systems recently obtained by Giuquinta,Vivaldi,and this author
are surveyed.The presentation allows immediate extension to
variational inequalities.

Key-words: Quasilinear parabolic system,regularity

Classification: 35K55

Let @ be a domain in R’ , T>0 , Q = oax[0,T] .
Denote by P ’ gP , etc. the usual Lebesgue and Sobolev

spaces. In particular,
v = L2 (0,715 " (2: ) n L7 (05 K

denotes bounded and measurable functions u : Q_ - RN such

T

cthat

T 2

P jloulx,t) [Taxdt <o ,

o Q

i / 3 i ] i . . : .

where wu —\ o u ""’axn u ) is the spatial derivative
of u' and u = (ul,....uN) .

In this survey we shall be concerned with the regula-

This paper was presented on the International Spring School on
Evolution Fquations,Dobfichovice by Prague,May 21-25, 1984
(invited lecture).
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rity of weak solutions u ¢V of quasilinear parabolic
systems

) i_ ik k) _ i, .
(0.1) d.u °a(aap dgu )— £7(-,u,vu) , 1€igN

in the sense that for all ¢ ¢ C:(QT;RN) 1

(0.2) - [utolaxat + | alko u¥s otaxat= | £ (- u,0u plaxat.
t o apg B [+ 9
T T T
We assume that (0.1) is uniformly parabolic in the sense
ik

that the aaﬁ € Lm(QT) satisfy the condition

ik Pk 2
(0.3) RO BN

for all ¢ € RnXN and almost every (x,t) ¢ Q’l‘ , with a

uniform constant A >0 . Moreover we suppose that
£ : Qp X RNx YL & isa Carathéodory function and satis-

fies the growth estimate
2
(0.4) |£(x,t,u,p)| < alp|” +b
a.e. in QTx RNx R"XN , with constants a,be R .

Given a solution u of (0.2) we denote M = |u|m . Finally
remark that by density (0.2) also holds for ¢ in

7= 82001 L2 (iR 0 2 (f0,m1s 1P (0i M a 1P (ag i)

In the sequel, under suitable conditions relating A , a,
and M , we derive partial regularity in the interior of
QT of weak solutions to (0.1). For diagonal systems

; ik _ ik ik - 1,i,=k) i
(x.e. ao“3 aaB o) , o {O, iAK we obtain

1)

Repeated Roman indeces by convention are summed from
1 to N , Greek indeces from 1 to n . Moreover, for
brevity 9

0o, =2 3 @ = =
e " ot? ' % oxa’*"
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H8lder continuity in the interior. From here onwards higher
regularity is obtained in standard manner, cp. [16].

Our presentatiok summarizes results from [12], [13],
[20], [21}, [22]. D These results are well-known in the
elliptic (or stationary) case. The difficulty only consists
in conveying the methods.

Therefore in the following we first review elliptic regu-
larity theory for a particularly simple example of a system
of type (0.1). In the second main chapter the parabolic
analogues of fundamental estimates for solutions of elliptic
systems will be derived. Of course, we may concentrate on
those estimates where in the time-dependent case significant

changes have to be made with respect to the stationary case.

Even though our results well confirm the general ex-
pectation that any result for elliptic system of type (0.1)
will (with appropriate modifications) carry over to the
parabolic case there are regularity problems for evolution
equations that possess no stationary equivalent. Thus for
these problems elliptic reqgularity theory does not provide
any intuition. Some open problems of this kind will be men-~
tioned at the end of this paper.

Ll. To motivate what we consider "basic estimates" we con-

sider a weak solution u eHl'Zf\ﬁm(Q;RF) »owun o= M , of
an elliptic system

i i .
(1.1) -au” = £ (-,u,pu) , 1Si<N,

with quadratic growth with respect to the gradient
2
(1.2) | £(x,u.p)| < alp|

Of the numerous results and methods for treating such prob-

") For reference we point out two more recent articles [2],

[23] on regularity theory for parabolic svstems and
inequalities.
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lems we shall indicate a method by Giaquinta-Giusti-Modica
(cp. [7], [8]) and the hole-filling technique of Hilde-
brandt-Widman [14]. :

By definition u weakly solves (1.1) iff

(1.3) | wulvet-tLix,ugwetlax =0 v eHi'zn (oY) .
Q

Step 1 in the elliptic case consists in observing that for
any n ecz(ﬂ) the function un is admissible as a testing
function in (1.3).

Step 2: Let wxoe Q , r>0 satisfy BZr = BZr(xo) cQ -
choose Teco(Bzr) satisfying 0<r <1, t=1 on B/

1)

ol Sf , and let u = u dx . Inserting

th\ Br
- .2 . .
¢ = (u-u)t° in (1.3) yields:

Caccioppoli's inequality: Suppose 2aM <A, then 2)

2 -
(1.4) i |gu]“ax < —2' S |u-u|2dx .
B r B,\B
r 2r r

Step 3 simply consists in applying the

Poincaré-Sobolev-inequality: Let 2+ = nz—:‘z- <2 , then
2/2%
* -2 2 ][ 2% 2 § 2
(1.5) [u-u|“ax< cr |gu]® ax Ser |ou| “ax.
BZr\ Br 2r\ Bt B2r\ B

Step 4 combines (1.4), (1.5) to obtain an
Inverse Holder inequality: Let 2aM< A, then -

+ 2/2%
(1.6) ‘}'|vu|2dx < c( § [Vulz dx) .
B B
r 2r

e——————

1 }denotes mean value.

2) The letter ¢ denotes a generic constant depending only

on the data a,M,A,...
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In Step 5 a variant (8, Proposition l.1, p. 122] )
{11, Proposition 5.1] of "Gehring's lemma" (6] is employed
to derive from (1.6) the

N.
LP-estimate: Let 2aM < A , then u eHic’,z(mR) for some
p>2 and

(1.7) } lvulpdx < c( X
B

/2
|vu[2dx) ) .
2r

r

2 n Lm(Br;RN) satisfY Av = O . Recall

the Campanato estimate [3] for v

1
Step 6: Let veu +H°’

(L.8) X lvv|2dx <c (%)ni [Vvlzdx , vo < r
B B
Q r

and the maximum principle: jyvy_ < jyun_ .
@ (o]
Subtract av =0 from (1.1) and test with u-v to obtain

(1.9) ‘} |9 (u-v) |2dx$a‘§' ]\7u]2|u-v|dx
B B

r r

",

1l 2
4 lu-viza:9 Z/F’Q IVU!de) ®
r

‘\Br
2
/ l- =
- 2 2
< c\rz 2 4 pul dx) P 4 jgul2ax
Br B2r

Together, (1.8), (1.9) yield

2
(1.10) glvuizdx Sc [(-S)n + (rz-nBirlvulzdx>l p]BIrlvulzdx .

If 1lim inf r2—n K ]Vulzdx < g, is sufficiently small
r-o B (x)

the usual iteration procedure [8, Lemma 2.1, p. 86] therefore
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gives

(1.11) x |VU|2dx < crPm2t2a

for some « >0 . Hence from (18, 3.5.2] we obtain

Partial reqularity: Suppose 2aM <A , then there exists

an open set ro Q such that u is HOlder continuous

on Qo (even cl’a) , and

(1.12)  ave ¢ {x |lin inf 20 X |vu]2dx > co} .

r-o Br(xo)

Hence also the (n-2-g)-dimensional Hausdor £ff measure

n-2-~¢
) (Q\Qo) =0,

for all €<p-2, cp. [8, Theorem 2.1, p. 100].

For diagonal systems like (1.1) complete regularity may
be obtained under the condition aM < A cp. [10], [15]1,
[25). If 2aM< A , this fact may be directly inferred

from the above partial regularity; result and the following

estimatedue to Giaguinta and Giusti (cp. [10]).

Step 7: For any €,0, R>0 there exists k such that for

some r € ]akR ,R]

(1.13) rz‘“i lpullax < € .
B

r

A different approach to regularity for diagonal systems con-

sists in the hole-filling technique [14].

Step 8: For x°€ Q , >0 let Il =GQ(-,x°) be a mollified

Green's function satisfying

(1.13) vavGde = 3' w dx , VWEHI’Z(Q) .
Q By (%)) °

Q—-—G weakly in Hl'q((l) , for any q<—r-\- s

As Q~0 G )

where G 1is the Green's function for -A on Q .
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Harnack ineguality: With constants c= ci(dist(xo,on))
there holds (Br' Br(xo),etc.):

- 2-n .
2nsclsquSc2 inf G < e r n

B2r\ Br/2 BZr\ Br/2

(L.15) r

Moreover, since -4G =0 in 82 \{x_} , for any
r o
wiHl'z(B )
(] 2r

2 2
(1.16) S IVG|2|w| dx<c I 62|7wlzdx+—c§- \ G wzdx;
BZr\ B, BZr\ Br:/2 By Br/2
this estimate moreover also holds for G% , provided @<r/2 ,

Step 9 consists in deriving the following

weighted Caccioppoli inequality: Suppose 2aM < A , then for

any 6>0 , @ <r, Tt as in Step 2:

Flu-a)+2ax + | |9u)%6e@2ax
B
Q 2r
(1.17) ss | we¥?u-g)ilax+ <5 | ju-d)lax +
B, \B ér B, \B
2r 'r 2r °r
G]chdx

c
r2 By By
which is obtained on inserting ¢ = (u-v._x)GQr2 into (1.3).

Conclusion: Estimating the first term on the right of (1.17)

by (1.16) , we may let @ - O . Choosing ¢ = sup'l (G(x,xo))
B, \B
: . . - 2r¥\°r/2
and applying estimates (1.15), (1.5),

from (l1.17) we then obtain the following estimate for the

function 2(r) = I [vulzc dx :
B
r

(1.18) @(r/2) < c [e(2r) - a(x/2)]

Adding c, times the left-hand-side to (1.18) and dividing

by (cl+1) we infer that for some pu <1

¢(r/2) < pu e(2r)

- 135 -



i.e. by iteration:
2a

2-n S
Br(xo)

r |vulzdx Scelr) Scr

for some a>0 , uniformly in X, € Q, ZrSdist(xo,aQ) with

c depending only on the data and dist(xo,osz) ; i.e. uec®

Higher regularity may now be obtained by standard techniques
[17], [18]. N

2. The results of the preceding section clearly will carry
over to parabolic systems of type (0.1) if Steps 1-9 may be

performed (with appropriate modifications) in this case.

. 2 .
For r >0 introduce Ar= ]-x;0f ,Br= Br(o) , Qr— Br XA, the

standard parabolic cylinder centered at (0,0) with boundary
eQr= (Br x {0 v s, - Since we shall only be concerned with
interior regqularity for (0.1) and since we are free to shift
the origin in Rn+1, it will suffice to state estimates on
such standard regions Qrc Q indiscriminately denoting the

transposed domain Q,r by Q.

'In the following u will always denote a weak solution of
a system like (0.1), (0.3), (0.4). For éimplicity we con-
sider only the case b = 0 . Step 1 is by no means obvious

in the parabolic case, since V # J . An argument as in

(16, Lemma III. 3.1] however shows that testing functions

. 1) . .
like ¢ = u'"'l]—w.o[ may be inserted into (0.2).

o 2 N .
Lemma 2.l: u €¢C (lO,T[;Lloc(Q;R )) , and for any function

+
ne Cw(Rn l) vanishing in a neighborhood of Sr there
holds:

l 14 . : . :
3 {1u)2nax + ) [a::aaulopukn - £(,u,9u) u nldxdt
B _x{o} Q
r r

b 1A denotes the characteristic function of a set A .
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(2.1) 1 2 ik, ki
=3 S {]u] N 2aaﬁ°|3u u Oaﬂldxdt .

Qr
Proof: Let wQ(t) be a mollifier, Uy = Usy, , etc. Define
1°(t) =1 if t5~q,1°(t)=--;-,1f —Q<t<o,

1%¢t) =0 if t>0 . Then ¢= ¢(°)= (u ,,19) ¢ > and

1
[t agnt® 1 axa = - $ju |2 ]tnlqudt
o o,
=4[ 12 n 1%xat - 3 { [u 120119 axat
25 Ve e 23 1% nily .
r r

Hence from (0.2)

F§ [ Iugl e ][]

u®) Q° uQn1°
-e B x{t} r

k
ap B
- (fl(-,u,vu))quznlql axat

uls le] dxdt

1
=3S [Iu I nth— Z(a GBU )Q a

Qr
and (2.1) follows on letting Q—+O0. ged.
n+l

Step 2: Choose 7 cCO(R

) vanishing on S2r and such
2 c
that o< r<1, 7t=1 on Qr'IVT, ”"C'S;—Z'

sup v £ C } T dx , and let

Ber{t} B, x{t}

u(t) = S ufzdx/ S Tzdx (:=0, if 720 on Ber(t}).
le_x{t} Bzrx(t} :

Choosing ¢ = (u-u(t)) 721]_00 ol and taking account of
(2.1) yields the

Caccioppoli type inequality: Suppo‘se 2aM < A . Then

(2.2) X Ivu{zdxdt s—% X ( [ |u-G(t)|2ax)dt .
t

e Aor

2]
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Proof: Note that u(t) is absolutely continucus. (Insert
721] o, t[ into (0.2).) Therefore by Fubini's theorem
=,
- - 2 - - 2
X 9 u(u-u) r'dxdt = & °t“( E (u-u) 7 dx) dt =0 ,
B

2r r 2rx(t}

and (2.1) - with (u-u) instead of u - implies (2.2).
ged.

Step 3. Although there is no general equivalent of (1.5)
for functions in V , for solutions of systems like (0.1)

several Poincaré-Sobolev type inequalities can be stated.
A preliminary observation is needed. Let x ¢ c:(Br)

satisfy o< x £1 . sup x S cs x dx and let
~ - By
B, = suppx , u =§u dx , u =Sux dx/!xdx . Then
x x x
B B B
x X x

~ 2 - ~
(2.3) j Ju-u_]%ax < S Ju-u lzdx < ci Ju-u |2dx
B x B x B x
x x X
Proof of (2.3). The first inequality expresses the mini-
mizing property of the mean:
~ 2
3 Ju-a lzdx < ]Iu-c| dx , YvceR .
B x B
X x

To obtain the second we estimate

-2
Bj u-i [%ax = | 1 ] [W0-3) + (@ -u ) Ixty) ay) 2ax( | xax)

X By B} By
\,/l+_usu ZXI ~|2d
N \ 1 xax u—ux X . dged.
By, %

Poincaré—Sobolev—tme estimates: Let r,u be as in Step 2,

2+ = -nzfz- . For any solution u of (0.2)-(0.4) there holds
(2.4) sup I lu-8(t) |%ax < ¢ S IVulzdxdt .

tcAr Brx{t} Q2r

Moreover, for any € > O
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(2.5 Ylu-u(e) | “axae < er® ¥ |qu|“axae +

r QZr

R 272%

2, 2

c(e)r (s |ou| dxdt) .
QZr

Finally, if @ = S‘u dxdt , § = ‘} u dxdt

Qr QZr\ Qx:/2
(2.6.a) S Iu—G'lzdxdt < er? X IVU|zdxdt
Qr Q2r
(2.6.b ) | lu-g]axdt € cr? X lvu| 2axat . .
Q2::\01.-/2 Q4r\or/4

Proof: Introduce u(t) = ‘} u dx .

Brx{t}
Let t:o € At satisfy
- 2 - 2
S Iu—u(to)l dx = sup l Ju-u(t) | “dx .
B x(t,) tehr B x(t)

Testing (0.1) with o = (u—ﬁ(t))rzil_w,t [ »the “elliptic"
Poincaré inequality (1.5), (2.1), (2.3) ©
as in the proof of (2.1) yield

and a reasoning

- 2 2 -
. S |u-u(t%| dx < ¢ & Jpu| “axat + -c-z- ‘ |u-u(t)|2dxdt
rx(to} Co QZr r QZr

, 2 ~ 2
Sc k Jgu| “axdt + -% Ju-u(t) | “dxdt < ¢ } IVUlzdxdt .
QZr v 2r
This proves (2.4).
By (2.4) , (2.3) and the "elliptic" Sobolev-Poincaré inequality

+
- - 1-
{' |u-u(t) |2dxdt < sup ( § I}u—u(t) lzdx) %

Qr teAr Brx{t
2>
b ojeam ?a)
. &- Ju-u(t) | “ax at
A Brx{t}
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24-

1- 4
2 + +
<c ( ? § [vulzdxdt> ( 2 {’ |gul 2 dxdt) )
Qr

QZr

and (2.5) is a consequence of Young's inequality.

To prove (2.6.a) let ? ¢ C:(BZr) satisfy 0<e<1 , 0 =1
C :
on B_, lgel < ri and for any SeAy \NA let tszs satis
£y
j |u-T'(s) |2ozdx = sup I |u-d(s) Izozdx .
BZrX{ts} t>s B, x{t}
Testing (0.1) with o = (u-G(s»ozx]s e (s fixed!) like

(2.1) from Young's inequality we obtain®

t

s
§ S | u-a(s) Izozdx)dt < X lu-\';(s)[zozdx <
s \By x{t} B, x{t_}
< E |u-T(s) lzﬂzdx + c(8) X [vulzdxdt +
Byrx{s} t %

v 2 1% 1u-ie) | 2o%anat
r” s .
Choosing o <% and noting that ts- s<41:2 the last term
on the right is dominated by the left hand side of this in-
equality. Applying the Poincaré inequality (1.5) to the first
term on -t.'h-é :;ght and averaging with respect to s ¢ AZr\ Ar
there hence results

5‘ & |u-a(s) |202dxds$c X |9u] 2axat
AN A Ber{ts) Qr

and (2.6.a) is a consequence of (2.3) and the estimate

Xlu-ﬁ']zdxdt < S |u=-3d(s) Izdxdt < r? ‘ | u-a'(s) Izozdx ,
Q. Q. By x{tg}

for s « AZr\ Ar .

To obtain (2.6.b) introduce x(x) = 9(8x) and perform the

above calculations with ©9(1-x) instead of ¢ ,

&) = u dx instead of G(t) . ged.
Brx{t)\Br/4x{t} - 140 -



Step 4 combines estimates (2.2), (2.5) to obtain

Inverse HOlder inequality: Suppose 2a M<A , then, for any
€ >0

5 ,* 2/2* )
(2.7) &|vu| dxdt < c(a)( §’|v“| dxdt} + € %lvul axdt .
Q

Qr 4r Q4r

Step 5. A Gehring-type lemma [13, Proposition 1.3] now yields
the '

tP-estimate: Suppose 2a M<A , then |yu| e P (QT) for

- loc
some p>2 and

(2.8) (hvu["dxdt) e ¢ c(§' |vu|2dxdt)1/2 .
Qr Q4r

Step 6. Suppose that a;‘;(x,t) = A:‘;(x,t,u(x,t)) and that
the A" are uniformly H&élder continuous. Let A = A(0,u)
(omitting indeces) and let veV solve

°ik .k

i :
(2.9) otv - auAaBopv =0 in Qr , v=u on S

r
Recall the Campanato estimate for v (see [41])

+,
(2.10) I|vv|2dxdt < C(‘&)n 2 X Ivvlzdxdt , ve<r .
QQ Qr
It is unknown whether there holds a general maximum principle

for (2.9). In the case considered here, however, it is
possible to show that

(2.11) sup|v| < c-M ,
Q

r
cp. [20, (3.7)]. Substracting (2.9)

from (0.1) and testing with (u-v)J_]_m of like (2.1) we
obtain '
2
A g | V(u-v) | “dxdt < al [vulzlu-vfdxdt
Q

(2.12) r

Q
+ S |A-£| [vul [v(u-v) |dxdt ,
o

< c! |vu|26xdt .
r
o ~
Estimating [A-A| < m(r.[u-u[z) with aconcave function o ,

whence in pérticular ‘ |7 (u-v) |2dxdt <
Q

r

and applying (2.8) and Jensen's inequality we obtain from

(2.12), (2.11) - 141 -



2/p
'} |9 (u=-v) |2dxdt < c(% [vu]pdxdt) .
Q

QL’ r

-(2 -
(2.13) {(§ s axae) ) +(} 'u_vlzdxdt)l (z/p)]
Qr

o

< c[w(r,g Ju-u] zdxdt) 1-(2/p) , (rzé Ivlllzdxdt) 1-(2/p)] .

r r

. & Ivulzdxdt .
4r

Together, (2.10) and (2.13) yield for all go<r

(2.14)  J|pu)axat < ¢ [(%) n+2 x(r)] § Ivul2axat

Q‘2 Qe
with

x(e) = “’(t'{'l“'ﬁl zd"dtyl- @/p) 4 (rzhvulzdxdt) 1-@/p)

Q N Q.
By (2.6) therefore, if 1lim inf 2 {' lvulzdxdt < ey
r~+o Q. (x,,t))

is sufficiently small, the usual iteration procedure
([8, Lemma 2.1, p. 86]) yields that

3 Igu| 2axat € et

Q. (xo.to)
for some a>Q0 . Hence from (2.6) and [5, Theorem 3.1] we
have
Partial regularity: Suppose 2aM <A , then there exists an
open~set aoco such that u (and wu) is HSlder continuous
on Q and

(2.15) Q\Q¢ {(xo.t°)|1im inf 2 {' lvu]zdxdt 2 e} .
r-o Qr(xo,to)

Hence also the (n-¢)-dimensional Hausdor ff measure withlrgspect
to the metric &((x,.t,),(x,,t;)) = max{|x, -x,]| ety }
8 C(ang,8) =0
for all € < p-2 , cp. [13, Proposition 3.2].
2 -



Now we specialize to diagonal systems with coefficients

1
azg = aaablk » 8gp € ﬁm(Q).}

step 7 cannot be conveyed to parabolic systems immediately.

Due to anisotropy of space-time

A different weight function has to be employed like the

fundamental solution to the heat equation in Rn+1 .
Therefore wé turn to the parabolic analogue of the hole-

filling-technique, presented in [20] and further applied in

f12], [22].

. Q - Q.
Step 8: For (xo,to)e QT , >0 let G G ( ,(xo,to)) be
a mollified Green's function of the operator
e =0 °a(aup(')°p°) satisfying

(2.16) ! (w,G® +a_g K

<] wauGQ]dxdt = X
Qn Qq(xo,

w dxdt
t)

o

for all w ¢J vanishing on the time like boundary

S = oax [0,Tluex (0} of Q. .as ¢~0 G—G as a distri-

bution and uniformly outside a neighborhood of (xo.to) ’

where G is the Green's function for ¢ on QT , cp. [1].

The Harnack inequality for parabolic equations ([19], [24]
2

implies that on QE = {(x,t) e ert< -er’}

(2.17) sup G < cl(e) énf G

Q (x .t ) Q (x ,t)
with constants depending on € and dist((xo,to).s) .
Moreover the estimate [1; Theorems 7,8]
n/2 'x_xo,2
colt-t | exP(_CBIt—to € Gl(x,t),(x,,t))

(2.18)

n/2 [x-x, |
S cgle-t | / exP('c5TE:E:T_

for t< to , with constants again depending on
dist((xo,to),s) shows that there exists a function
v(e) - 0 (e - 0) such that

(2.19) sup c G < v(e) inf G('.(O.IZS) f
Q2r\(or/2uq2r) Q2r

1) si*%-0 if 1Ak, K ae1 if i=x.
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where for convenience we have again shifted (xo,to) to
(0,0) .

Again due to presence of time-derivatives an analogue of
(1.16) only will hold for solutions of (0.1) in general. We

return to this point below.

In the following we will state estimates again on our standard
domains Qr . To facilitate notation let Ge =G(-,(0,0)) .

Step 9. Suppose 2aM < A. Let Tt be as in Step 2,

~
~

u = {- u dxdt . Then for any 6>0 , >0 we obtain
QZr\Qr/Z
the following

weighted Caccioppoli inequality:

| lvul %6 grlaxar < < | |u-&| %6 jaxat +
2r r er\ Q!‘

(2.20)
I~ 2 - 2 =
+5 |u—u|2|vGe| 093/21 axdt + <— 5 E | u-ua] 2G3e/2dxdt.

QZr\ Qr br QZr\ Qr

Proof: Let ¢ e]O,VB[ . Testing (0.1) with ¢ = (u-\?)Gg'rzl]_w o’
by (2.1) and using Green's identity (2.16) we obtain _

g S R = il Q.2
er[aaﬁoau ogu £ (+,u,vu) (u-u) GgT dxdt

it

1 [ _®2,.02, _ _3 2 Q21
2Q§ [u-812(63:%) - ap0,1u-81%0 (627 axat
2r

[}

1 2 2,0 - (1322 Q
ZQX [|u u]“r (N aaﬂopUu ulr )aaceldxdt
2r

= 2

+ i Du—ul.ZGthT - aaaap[u—\?l oa*rva +

2r
= 2 Q

+ auﬁopflu-ul oaGeT]dxdt

= X |u-§lchdxdt +el |vu|2GQ72dxdt

2 ) e

€r Q2

N

Y% 2r
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—3/2 2

+_C;_ ] ]u-\?lz(Gg):’/zdxdt +6 i |u u| IVGQI (GQ) axdt

or Q2 \NQ QZr

Since 2aM <A the second term on the right is dominated by
the left hand side, if € 1is sufficiently small. By Fatou's
lemma we may then let @ - O to obtain (2.20). qed.

Estimating the second term on the right of (2.20) requires an
additional .

Step 10. For any 6 >0 (without any smallness assumption re-
lating a,M, and A)

3/2 2

| |u-512[vce| zc axdt < .
Q,NQ
2r “r
(2.21) S
1
< ¢ & ]\7u]2c;‘a /24xde + -32- [u-&) Gi/zdxdt,
0 Q::/2 r Q,nNQ /2
Proof: Let o(x,t) = 1(2x,2t) , 5 = 1(1-0) . Testing the
. . o -1/2, a2 2
equations (2.16), (0.2) with w = Gy Ju-u] “n 1]_00’0[ , resp.

and sv.;btracting, by (2.1) we obtain:

= 4(u-mG]é/2n21] oo, 0

-2 X -8 %G 1/2n2dx + 1 E lu-a] %6/ %y naxdt
B, x{o} Q 8 t
2r 2r

2 2

-3/2 | u~u| dxdt

L |
=3 ) 3339%:86%C %0

2r
-1 I [aaﬁaau o u'- f (+,u,9u) (u-0) ] 2/2 2dxdt
QZr
1/2
+4Q§[ ap % e/ ) nl -u] - oag, Blu u] 2, nG/ }dxdt =0 .
2r

Estimating the last term by Young's inequality we obtain
(2.21). qged.

Conclusion. (2.19) - (2.21) together now yield the following
estimate for the function Qe(r) =vau|2Gedxdt :
“r
= 1/2
e (%) <8 x lvulz 1/dedt + -%- X ]u—ulzse/ dxdt

QZr\Qr/2 I 00 Qr/2
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e 2 (o] - 3/2
+-‘-’2- S [u-U] “c gaxdt + —5 X | -3 G

dxdt
6r” Q,\Q
o QZr\Qr/Z T U\ Sr/2
1/2
<9 e‘ |pu| Gi/zdxdt + bv(e) S |jou| 2 / dxdt
20 U2 Q%2 r
(2.22)
= 1/2
+ & & |u-u|261/2dxdt sLele) & |u- ( G / dxdt
2 e [:] r2 2. \Q
o er\ Qr/z 2r ' *r/2
+ -5 X |u—:’|2G dxdt ssole) & [u-u[ G odxdt
2 %\a ° 2 o o
T Q%) 2r 9/2
2 3 2
+—% GS Ju- ulz 3/:',dxdt:+-—-'£-')- & |u-—u| / dxdt .
[
Y = 9,00 /2

Now choose .s=r-n/2 . Via 52.17). (2.18) from (2.22) we derive

. ¢
oe(:) < clg) \X

]vu]ZGedxdt + v(e) S }vulzc odxdt
Qo Q17/2 Qo r
+£J§)- . S [u-a] 2Gedxdt + c—‘%-g- & lu-3]%c ,dxat
L 02; Qr/2 E Q2r\Qr/2 o

Applying (2.17) again to draw the Green's function out of

the last integrals, then using the Poincaré type inequality
(2.6) , and moving Ge’ G

2 into the integrals again we
finally obtain that o

2, (F) < clo) (e 4x) -2 () + v(e)e ,(4r)

Choose € such that v(e) <1 . Adding c(e)
left to this inequality and dividing by c(e) + 1 there
results

times the

X € viE
0g® < oHE eun + H @ ,0n)

< p sup 06(41')
>0
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. _c(e)+v(e)
with a constant B = o (€) #1 <1 . Now we also pass to

the supremum with respect to >0 on the left hand side
yielding c
sup @e(a—) < p sup 09(41:)
6>0 >0

for all r such that Q4r(x°,t°)c Q. . Iterating, (2.6)
implies that

{ Iu-glzdxdt Ser ™ E lvulzdxdt
Qr(xo,to) \ QZI(xo.to)
S ¢ 5 [Vulzc 2dxdt < ¢ r2a
Q0 (x° ,to) r ‘

for some a>0 , for all r such that Q4r(xo,t°)< QT , with
a uniform constant c¢ depending only on the data and
dist((xo,to),s) . But from Da Prato's result [5] again, we
now infer H8lder continuity of u .
The preceding results may be strengthened to assert
Hblder continuity of weak solutions ef diagonal quasilinear
systems under the assumption a M <A [12], which in genera

is bestpossible.

3. The above results well confirm the impression that

* apart from technical complications all results of elliptic
regularity theory have a parabolic analogue. This method of
extrapolation, however, does not provide an answer for truly
time dependent problems. For instance, does the parabolic
"flow" conserve the regqularity of the initial data, if only
assimptions (0.3), (0.4) are imposed and no smallnes con-
dition is required? In this generality the question has
found a negative answer [21], even for diagonal systems.
However, if the elliptic system associated with the evolution
problem has a variational structure and either n =2 or a
one-sided condition is satisfied, it is believed that regu-

larity of initial data is retained.

Somewhat related is the problem of conveying the regu-
larity theory for minima or quasi-minima of regular varia-
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tional integrals to the associated parabolic problems. In the

elliptic case the notion of quasi-minimum has proved a power-
ful and elegant tool (cp. [9]) and it would be highly de-
sirable to make it available in the time-dependent case,

perhaps by a time-discrete approximation of the evolution

equations related with a functional in variation through a

sequence of variational problems.
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