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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE 

26,2 (1985) 

A SIMPLE GEOMETRIC PROOF OF A THEOREM ON WL 
Jiri TUMA 

Abstract: The congruence l a t t i c e of a 2-diraensional veotor 
space over a f i n i t e f i e l d has length two. A complete descr ipt ion 
of a l l sub la t t i c e s of these congruence l a t t i c e s which are again 
congruence l a t t i c e s of f i n i t e algebras i s given. 

Key words: Congruence l a t t i c e , f i n i t e algebra-vector space 
over a f i n i t e f i e l d . 

C lass i f i ca t ion: 06B10, 06B15 

I t i s a well-known fact that the congruence l a t t i c e of the 

2-dimensional vector space Am (AfP) over GF(p ) i s isomorphic 

to M ,̂ the l a t t i c e of length two with n • p* + 1 non- tr iv ia l e-

leraents. In a f ixed coordinate system In A the n o n - t r i v i a l con

gruences are described as fol lows: 

(1) any i e G P ( p ) defines a congruence (a tb)/N-^(c9d) i f f o - a+ 

+ fx and d • b + f for some f a GF(p ) t 

k giving thus p congruences; the last one is defined by 

(2) (atb)A./<JO(otd) iff b - d. 

The next idea how to construct finite algebras with congru

ence lattices of length two was to add a new set G of operations 

to A in order to damage some of the congruences of A • Algeb

ras 05 » (A.FuG) have obviously congruence lattices of length 

not greater than two. This idea was disproved by Quackenbush In 

111. As a consequence of a more general theorem on congruence 
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perrautable v a r i e t i e s he proved that the number of non- tr iv ia l 

congruences of 33 i s again some prime-power plus one, provided 

i t i s at l e a s t three. Here we sha l l give an elementary geomet

r i c proof of th i s resul t . Moreover, our method allows to charac

t er i ze completely the congruence l a t t i c e s of algebras obtained 

by adding further operations to the 2-dimensional vector spaces 

over f i n i t e f i e l d s , as pointed out e .g . by P. Pudl£k9 P. Palfy 

and H. Kurzweil. 

Theorem. Let A* (A9F) be the 2-dimensional vector space 

over GF(p ) and G a se t of operations on A. I f the congruence 

l a t t i c e of the algebra 5$« (A9PuG) i s isomorphic to M^ m>3 9 

then there i s a d iv isor 1 of k such that m » p + 1. Conversely, 

i f X i s a d iv i sor of k9 then there i s a se t H of operations on 

A such that the congruence l a t t i c e of the algebra ? » (A9FuH) 

i s Isomorphic to M 1 • 
p*+1 

Proof. Suppose $> has at l e a s t three non- tr iv ia l congru

ences P9 Q, R, and choose a coordinate system in (A9F) such that 

* mfsJoo* 0 mfs/
0*

 R mrv/1 ^ c f # ^1* a n d (2^m S e t 

K m ixGGF(p )s rss i s a congruence of & } • 

We prove that K i s a subf ie ld of GF(p&). We have 091tS K by 

the choice of the coordinate system. Let x , -y be elements of K 

and l e t us consider F igs . 1 and 2 . The horizontal , v e r t i c a l and 

cross f u l l l i n e s correspond to blocks of ^^ 9 />• andrx/-j 

r e s p . , the dashed and dotted l i n e s correspond to blocks of r\*> 

and rsj , resp. 
*t 

We say that two points M9H6A are 1-joined iff there exist 

U9Ve A such that Vr\^Mrv^x U r\sQ V rv Hrv U. 
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Fig. 1 

Now consider the least equivalence relation S generated by all 

1-joined couples. If M
f
 N is such a couple and g is a unary o-

peration from the clone generated by Iu6, then g(M)
f
 g(H) are 

also 1-joined, hence S is a congruence of J5 • But if M
f
 N are 

1-joined and M « (a
f
b)

f
 then there is f eGF(p

k
) such that U « 

« (a+fx,b+f)
f
 V « (a+fx

f
b) and N » (

a
+fx+fy

f
b+f)

f
 therefore 

MrN-»x H. By reversing the whole process we get also ^x+ySS, 

hence x + ye K. 

To prove that K is closed under multiplication, suppose 

x
f
y4s0 and use Fig. 2 in the same way. This simple figure was 

suggested by Peter Palfy. 

Fig. 2 

We say that Mf H are 2-joined i f f there are UfV€A such that 

V^-^M r^x U rN^ V r^f H rx-fQ Uf and l e t T be the l e a s t equi-
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valence r e l a t i o n generated by a l l 2-joined couples. By the sa 

me argument as above, T i s a congruence of -33 • I f M, H are 2 -

joined, then there i s f€GF(p k ) such that U - (a+fx fb+f) f ? « 

« (aqfx - f f h) and H « (a+fx" xy fb+fy ) f hence T g / v • Con-

verse ly , auppose Mrv^N and M « ( a , b ) , K « ( c f d ) . Then we can 

take f » (d-b)y and Uf V as above to get that M, H are 2 - j o i n -

ed. I t proves T mfs^jrv* n e n c e xyeK. 

I t fol lows that K i s a subfield of GF(pk)f therefore IK I -

m p 1 for some div isor 1 of k. How rv_, x € K f and rxJ^ are a l l 

non- tr iv ia l congruences of $i> , hence m « p + 1. 

To prove the converse, the following lemma w i l l be used. 

I t I s s tated in a more general way than necessary, s ince the 

complete description of preserving mappings contained i n i t i s 

of in teres t by i t s e l f . 

Lemma. Suppose that K i s a subfield of GF(p ) . Let g:X~> 

—> X be a mapping preserving a l l equivalence re lat ions '"Vj.t 

x c K u ioo\ . Then g i s of the form 

(3) &, u v(atD) - (oC(a) + ufoC(b) + v ) f 

It where cC i s a l inear map of the vector space GF(p ) over Kf and 
k u f vcGF(p ) are arbitrary. 

Proof. A straightforward v e r i f i c a t i o n shows that any map

ping g , „ _. preserves a l l equivalences r>u f x € K u -CooJ • 

To prove a l l preserving mappings are of th i s form, take a 

bas i s a > | t . . . f a of the space GF(p ) over K, and se t k » ( 0 , 0 ) , 
k± m (& i»°)* We a n a 1 1 s h o w * n a t a n y mapping g : I — • » ! preserving 

/x/ 9 xfiKu-Coo'i -, i s uniquely determined by i t s values i n the 

points A l f i m 0 , 1 , . . . , q . 

The following simple observation w i l l be frequently used: 
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if Af B, Z are elements of Xf x,yeKu-Coo? are diffe-

(4) rent, and A ~ X Z rv/.3f then the values of g in Af B de

termine the value in Z. 

This is obvious, for g(Z) has to be the unique point in the in

tersection of the block of <^/x through g(A) and the block of 

rv through g(B). 

Let Y denote the set of all a6GF(p ) which can be expres

sed as linear combinations (over K) of ai s with at most r non-* 

zero coefficients, and set X^ » Y^xY^SX. Now we have * r r r 

( 0 f 0 ) r ^ 0 ( 0 f x a i ) r y - x - 1 ( a i > 0 ) f (OfO)rvo0(xajLfO) rvll (Ofxai) f and 

(xa i fO)rN>Q(xa i fya.) rvoo(otya^). Using (4) in these three cases, 

we conclude that the values of g in X.- are determined by g(Ai)f 

1 * 0,..•,q. 

Next we show that the values of g in Xr (r>:1) determine 

the ones in Xr+1. Let -S xiai6^r a n d 3 4 1* Tne*-

(0 f0)rv./o(0 f % xiai+xaj^rv-r-x""1^a3i ̂ * xiai' a n d 

(0f0),-vflO( X xiai+xa^f0)rv/-Bl(0t 2: x^+xa^). If X y±*± is 

another point of Y and k^J, then 

( Z xiai+xa;jf0)/^o( X. x^+xa.., X yiai+yak)^o(0f Z y^+ya^) 

Further applications of (4) prove that g is determined in XĴ -J 

by its values in Xr» 

The obvious induction on r gives that g is uniquely deter

mined by the values g(Ai), 1 » 0f...fq. 

Now set g(A0) » (uQfv)# Since g preserves r^co » we have 
k 

g(Ai) • («ifv) for some uiCSF(p ) t i « 1t...tq. Denote by cC 

the linear map of GF(p ) over K defined by o6(ai) » u^ Then g 

and g_ „ „ have the same values in the points A4t i » 0f...,qt oCfutv x 

hence g » «, „ „. by the previous part of the proof. O ~«ctutv 
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End of the proof of Theorem. Let 1 be a divisor of k and 

K the subfield of Gf (pk) of cardinal i ty p 1 . Consider the s e t H 

of a l l mappings of the form g . A A» The congruence l a t t i c e of 

the algebra *€* (A f fuH) i s a subset of -Crx/x:xcGP(pk) o» iooii* 

Al l equivalences r\^lf x&K u-ioo} are congruences of 1f by the 

lemma. Now, i f z^K u-Coo} f there i s a l inear mapping oC of 

GP(pk) over K with oc(x) - oC(D - 1. Then g^ rt rt((xf1)) -
GCf ° f O 

• (1 f 1) and g , _ ^ ( ( 0 f 0 ) ) • ( 0 f 0 ) f hence the l e a s t congruence 

of *£ containing r v x oontains also rx/-j and i s therefore equal 

to XxX. 

I t proves that a l l non- tr iv ia l congruences of i f are of the 

form rvx f x€K u -ioo} f hence the congruence l a t t i c e of i f i s 
isomorphic to M - . Q 

px+1 

Note. A reader famil iar with the graphical compositions 

defined i n 121 recognized that .Pigs. 1 and 2 defined two spec i 

a l graphical compositions and that we used the eas ier part of 

the conorete characterization of congruence l a t t i c e s given the

re in , namely that any congruence l a t t i c e i s c losed under the 

r e s u l t s of a l l graphical compositions. 
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