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COMMENTATIONES MATHEMATICAE UNVERSITATIS CAROLINAE

26,2 (1985)

NONISOMORPHIC THIN-TALL SUPERATOMIC
BOOLEAN ALGEBRAS
Petr SIMON, Martin WEESE

Abstract: We shall construct & thin-tall space X satis-
fying the following: Whenever iM,N} covers the set of all iso~

lated points of X and IM!| = IN| = w,, then |MnN| = w,, too.
This in turn implies that there are nonhomeomorphic thin-~tall
spaces, since not all thin-tall spaces have the above property.

Key words: Scattered space, superatomic Boolean algebra,
thin-fah space, thin-tall sBA, Stone duality,.

Classification: Primary 54D30, 54G20
Secondary 54A25, 06E15

First, let us recollect the basic notions.

All spaces are agsumed to be Boolean, i,e, compact, Haus-
dorff and zero-dimensional.

A space is called scattered if each nonempty subspace has
an isolated point. If X is a scattered space, denote X = Xo,
X, = pooc Xp for e limit ordinal o« , X .4 = the set of all
non-isolated points of X, . The Cantor-Bendixson height of a
scattered space X, ht(X) = min {et:X = #].

The compactness of X implies that ht(X) is always a succe-
ssor ordinal and Xy¢(y)_q is finite. For o < ht(X), demote
At(X ) = X = 17 the get of all isoleted points of X, . The
width of a scattered space X, wd(X), is t'hen sup {1At(X 3",
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scattered, ht(X) = wy + 1, wd(X) = @, le'I =1,

Indeed, there is & Boolean counterpart to the notions just
mentioned. A Boolean algebra B is superatomic provided that
each homomorphic imege of 3 has atoms; denote }o =0, Fx=
= ﬂkj“ Jp for & limit ordinel « , let }“M be the ideal
generated by }x and the set of all atoms of .ﬁ/}Oc . Then

ht(B) = min{oc: } = B} and wa(PB) = sup f1ae(B/y |-
tol < ht(% )7, where At(ﬁ/}d‘ ) is the set of all atoms of
.'B/%c « A superatomic Boolean algebra (abbr. sBA) is called
thin-tall, if its height is @, and its width equals w .

The classical result of Mazurkiewicz and Sierpix;ski [MS]
says that any two countable superatomic BAs are isomorphic
provided that they have the same height.

The things are different in the case of thin-tall sBA ‘8.
It was the second author of the present paper, who showed in
[W] that there are nonisomorphic thin-tall sBA ‘s under the as-
sumption of CH., For this purpose, he constructed a thin-tall
space X such that each aitohomeomorphiasm of X moves countably
many points at most. Though the existence of this kind of spa~
ces is still open in ZFC, the different approach enabled us to

remove CH from the main result,

Theorem 1, There are nonhomeomorphic thin-tall spaces.

Here we shall adopt the different way of reasoning. The
reado:t can recognize that the basic idea goes back to Luzin
{L]. Instead of counting homeomorphisms, we derive Theorem 1
from the fo‘rthcc;ming

Theorem 2, There is a thin-tall space X satisfying the
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following: If MUN = A%(X) and M| = |F| = @,, then |NnF| =
= Wy, too.

Indeed, if Y is an arbitrary thin-tell space, then the
quotient space T = Yx<£0,1j/~ , where x~ y for x%y only if
x = (z2,0), y = (z,1) and {2z} = Ya)1' is thin-tall, too, never-
theless T does not have the property described in Theorem 2:
Consider M = At(Y)x {0%, ¥ = At(¥)x {1%.

Theorem 1 bein‘g proved, it remains to prove Theorem 2.

We shall apply the standard trick. Instead of looking for
the space X we shall find a sBA 5 such that X will be its Sto-
ne space. And rather 'tha.n to construct the whole of 73 , we'
shall determine the set of its generators, which is often cal=-
led & representation sequence, Since we may w.l.0.Z. assume
that 5 is a subalgebra of P(cw), the representation sequence
is the family

(R, pt x< @q,n < wie P(w)

satisfying (0) - (3) below.
(0) R, o a{n¥for all n< W3
’

1) Rd’nan.m = @ for each x < W, B<M< @ .

Denote J = &, Jx = p[{x?ﬂ for a 1imit oc < w,, end

Fusr = Jquico:i(3Pelwl*)ue IR L

(2) Por each (3< o < @, and for each n,m & & , either
Rp‘,n" Rem & Jp oF R(a,n -~ Rm € Fa 3

(3) for each 3< ot <@, and for eachm ¢ @,

|{n e w:R -Ro(,me}ﬂ“'w

pon

The reader is invited to check that any thin-tall sBA

P c P(w) is generated by a suitable family ‘\'Ro( at € < @,
”

n < @} satisfying (0) - (3), and vice versa, any family
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.{nd’n: o < Wy,n < ¥ satistying (0) ~ (3) generates a sub-
algebra of P(co) which is superatomic and thin-tall.

Let a thin-tall sBA B3 ¢ P (w) be generated by -{Rac.n:

1 06< Wyen < % . The forthcoming description of the Stone
space of B is also very simple and the reader can verify it
after a moment of reflection: For o < wy, B < @ denote
chc’n the filter on <> generated by {Rd’n -QQe€e P §. Then
St(5) is homeomorphic to the quotient space 3w/~  , where
the equivalence relation ~s is defined as follows: For p,q €
e fw, P~aqitt (p 2 ﬂ,n if and only 1f q 2% for each
o<W, n< e ), Similar desoription is used in [R1.

We shall construct the desired representing sequence by an
induction to 6)1. Acocording to the previous, the sequence must
satisfy (0) - (3), but we shall want it to satisfy more. The
first additional requirement is of the technical nature.

(4) Por each o < @, and for each n,m < <,

|{p < R o~ R om€ Jadl< o

The possibility to pass with the transfinite induction
through is the statement of our first lemma. To make the life
easier, if (k) is eny of our conditions and if 7 < @,, then
the condition obtained by substituting 7~ in each occurence of

@, in (k) will be denoted by (K)y .

Lemma 1. Let 7 < c,, let {Rd’n: o« <y ,n< @) satis-
£y (0)y = (4)p « Then there is a family {Ra,.n:n <% such that
(O)T‘” = (4)y,q holds.

O Case y= o+ 1,

Choose an arbitrary partition {Zm:m < W} of w such that

each Z, is infinite and enumerate $R,:k < w3 the set {R ,n°

f
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(3<ct.,n<w§ Denote 8 B"n-u{nﬂ'ixﬂ<o§&ién&
&Ry~ B n € Js% - U{R 1k <nl. Define the B,

= Ui 8, msz i. We have to verify that this works.

(O)T” is olear, (1)1.“ follows by the fact that {R
in < % is pairwise disjoint, consequently -(Soc.nzn< wi is,
and by the disjointness of {Zn:n< w3

Let us verify (2),”1. According to our definition, R  n "

-8 S . » therefore R on- R?,’.e J OF R N RT" € Jc

If <& ,n6E 0 , then for some k < @ , ﬁn-nkin
our enumeration., The definition of 8 303 implies that R n,n
hsct.i*” only 1f j<k. By (1).3- . (2)?,- , there is at most one

Jo< @ mich that R, , - R,y © Jp - Thus Ron N U5,

i< w, I+Y,56 4pn becanso ann UAis, Jj<w.d¢339
SRy O u-(scc'3=:<k.a*iois Ryn N VAR, i<k, i dyd =
= u&k@.nnnd'jxj<k,j=|-j°§, which is a ﬁ.nite union of mem-

bers of }{5 .

Consequently Ra,nn R’X"’ & 2‘3 for each m < @ such that
j°¢ Z, &nd 1f J e I, but JoZ k, then R{S 2l g}p ,» too.

So suppose j & Z and J,<k. Denote by R the family
{Rt1£3,3ULR g1 O < 0 &1L KRy g - R 4 & Frte R s

fini te, sawo =R, " UAR , and if for each R € R , R, N

B

NR edn then Ry - 80,3,€ (Rp,n - R""Jo) v U{Rp’nﬂﬁﬁ

tRe R}, which belongs to Jp » hence R(S a- R’b’ n€Fp 100
It tor some® e R, {,,'\Rf-}{; ,thenby(z)‘r.
R - R
R‘s'n -Res 2’(5 « Thence RF" ﬁ nn(R R)§
-K6}p . We have L Rym € }(, in this case. So ('z).f+1
is satisfied.
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(3)7“ follows easily by (3) and by the fact that each 2
wag chosen to be infinite.

Pinally, if n43 and if nﬂ”n -R.3€ dn » then ap'n N
r\Sd i # according to the definition of so(,:l’ ‘Thus for each

’
n,m < @ , the set {3< T:Rﬁ’n - Ren e Jplciniv iBey:

m-=4

:(33<n) R o Rc(,.‘] € }pi = {x} uikzo{ﬁ< r ‘Rfs,n - Rd'je
€ Jp} . which is a finite union of sets, each of them being

finite by (4)7 « Thus (4)7-” holds, too.

Case 5 is a 1imit ordinal.

Pick a sequence 7, 2% (L <w). Por each £ < @, 1let
{Rizk < w3 be an enumeration of {R(s’n: B< A m< w?. Let
m%,l o R'b’z - U{Rﬂ’ix f < Tt&ién&Rp’i - R&’ne Jat -
- U{Rlik4n,3223.

Let So,o - T'X’o ,0° then define 8‘ by en induction as fol-

,m
lows: form< £ < w , let

Seum = Ty, ,g(R)em " Uisy yi1< £ ,k41d

where g(£) is a natural number such that g(£) = £ end for
each n>g(2), R,x.:e a8y x € }7,1 whenever 1 < £ , k41. The

agsumptions (2).( .(3)7 guarantu‘the existence of g(L).

PFinall; t i \0.5
ni Y s le Rr.m = L-msl.ﬂf

Now we have to verify that (0),#1 - (4),,,1 agein hold.
But - modulo the more involved notation - one can step by satep
mimick the corresponding parts from the previous case, so we
leave it to the reader. 0O

Next comes the essential step of our construction. We
shall find sets A t,n® which will serve as a major tool for the
proof of Theorem 2. Their properties are listed belows
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(5) a

c(tng'
(6) for each n < ¢ and each 1 £ B<ax<ew,

%c.n for each 14 0¢ < @);, and each n < <,

HRg, 0 N Uda, pm < wll <@

(7) for each 1£ o¢ < €, and for each m,p < <,
H.({z,n): < x& nf&IAﬂ’nnAx’mlépil-f.w.
Our eim 1s to show that there are {R : o< @y,n <}
’

and {A ;i1 # & < W;n < w} such that (0) - (7) hold for them.
This will be done in the next two lemmas.

Lemme 2, Let 14 9" < < and suppose that {Rac.n“"’ <7,
n<cw§ and {A&nﬂ £ o <7y,n <w? satisty (0)y = (7)y « Then
there is a pairwise disjoint family {
(6)1 4 ond (7)’("‘1 hold.

Af.n:n < ¢ such that

0O 1z 4= 1, there is nothing to prove: let {A.‘ ot < w? bve
»
an arbitrary partition of < into infinite sets.
So suppose 7" > 1 end let {R11¢k <o} and A 1€k <}
be an enumeration of {R . :1<£ & <4 ,n < w}and of {4, 1<

by

N

4 o <7 n< @Y ouch that A = A 1ff R, = R, n for each na-
9,

tural k and n, 1 £ ¢ < 9", Using an induction, we shall define
sets P, . and families €(k) for k < W , m<£k as follows.
»

€0 =4, 7, , = 0

Suppose €(i) and Pi,m are known for i<k, m<i. Our in-
Auctive assumptions are:

(a) each Pi,m is a finite subset of U € (1) - U €(i-1),

(b) each <€(i) is tinite,

(c) ‘f(i-1)5‘6(1)5(R‘,"n:1éo¢<7,n< w3

Let R, = Ry, If there is some R s €(k - 1) with R, -
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-R 6y , define C(k) = €(k = 1), By , = § for all m£k.

In the opposite case, for each R 6 €(k -~ 1), nnn‘.n €
€ J by (2) . We shall find the femily €(k) first, and to
do this, we need an induction again.

Let € (k) = €(x - 1) u{'lk} s further, let €, ,(x) =
=Ry 11 €< 7&JI4x&3IR 6 €, (k) with By~ Repi-
- G, T ¢ Fy ¢ m.

Claim. (k) is finite. Indeed, by (4), and by |€(k-1)|¢
<w » Cylk) < @ for each 8 < W . Define (3(s) = max{fB <7
t 3j<o with Ry g& C (0} IRy 4y -Roy6 Jp amd
(Bsd)*(t), them 3 < vy (2)1- and (3)7, hence [3(s) >
> (3(s + 1) it ‘f'(k) and ‘fﬁ, (k) are nonempty. Therefore
‘f.(k):t:ﬂ for finitely many indices s only, which proves the
claim.

Let = U (k) = U%(k - 1), Lot E(x) ‘{R{s.: €
€ €(k): YR&e€(k - 1), Ry gnR ss3,
let I ={£< @R, & €(K)3.

Por L I wehave [A, N M| = by (2),, (5), and
(6)7 » Hence we can find sets P, (£ ,m) (£ € I, m£k) such that
1P (L,m)| =k, Pp(L,m)ch, Ny, Pe(l NP (L m") =&
whenever (£ ,m)4(.£",m").

It remains to define P, . = U {P.(£,m): L6 I3, This
ocompletes the inductive definition.

)

As may be expected, we set A 7om 'h.‘;)mrk.n

Clearly A’J’-'“"l’vﬂ' = @ for m¥m . We have to verify
(6),,‘,*_1 and (7)r+1.

Let 1£ 3 <Y and n < @ be arbitrery, we have to check

that Rp.n n.}z)c "hl is finite. It suffices to show that for
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some k < @ , Ry , & €(k): Indeeq, it Rp,n € ¢(x), then by

(a) and (c) of our construction, Rp,n “mga"r. a€ Y (k) n

nmyo‘bl - U {Pl.l‘ £ <x,m=< £}, and the last set 1s f£i-
nite.

Let Ry ;, = Ry in our emumeration. If for each R & €(t - 1),
Rﬁ’nnR € dp » then Rﬂ,n € €,(t) < €(t) and we are done. If for
some R¢ Z(t - 1), Rp.n ~Rg ;f, » Pick the first k> max (n,t)+
+ 1 such that (k) +%€(k - 1). The exigtence of such a k fol-
lows by (1), (2)7 and (3)7 « The definition of ¥(k) guaran-

tees that Ry, € €;(k) G €(k). Thus (6) ) holde.

For (7)3._‘_1, it suffices to show that for each n€ém < @ and

for each p < @ , |4 < s | Lonlérilcw.

Aﬁ’nn

Let k = max (p,n,m) + 1 and consider the family €(k - 1).
Since €(k - 1) is finite, by (4)y the set T"={3 < y: For so-
me R ¢ €(k - 1), R{s.n -RE€ }ﬁ?’ is finite. We claim that for
each B<y , it B¢, then IAﬂ'nnLT’ml > pe

Choose such & (3 and let aﬂ'n = R, 1in our enumeration.
Since P M, Rg,n € @) - ffik' - 1) for some k°Z k, more-
over, k> n implies that: Rp,n e €(x°) then. Now, by tl:e induc-
tive definition, we have !A,r.mnl{‘,nlz P, (2 ,m)] =k Zk>p,

The lemma is proved. 0O

Leuma 3. Let 1 £ y <@ and 1°t{a¢,n‘°°< 7 m<o}eand

{A‘.nﬂ €t <y ,n0 < satisty (0)y = (7). Then there are
g

B on
0 Applying Lemma 2, we obtain the collcction-[AT a0 < X%
»

:n <@} end {A in < @3 such that (0),.q = (7)yyq hold.

Por each oc <7, 1ot R =R . - oA, o Since (6)yy,

holds, it is clear that fR <y, n <w} ~ when viewed

as a collection of subsets of {n ¢ w 'Rc: €9} rather than ot
’
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w - satisties (0)y - (4)y + Using Lemma 1, find a femily
iR 7n’n<<"3 such that (1)r4q = (4)pyq holds for R’ ¢ <
<y +1,n<cw?}. We may snd shall @ssmume that each R

Yn
disjoint with U A
')’9

Let R, = R,x'nu A ne The validity of (0),.,q = (Thyyq for

(R pret<¥+1, n<owf snd fA l&cx <7 + l,n<wi is
9

obvious. [}

Having established the necessary lemmas, we know that the-
re are {Rd'nz & < W< w}c P(w) ana -{A“'nﬂ Lo0< D,
n < wicP(w) satistying (0) - (7): The trensfinite induction
was proved to work.

Let B be a subalgebra of P (@) generated by {R«_,n‘ € <
<@;,n < w} , X its Stone space. The conditions (0) - (3) meke
X to be thin-tall.

We have already described X as a quotient spece ﬁ;c.)/m N
Using this description, denote xac;n the point of X correspond-
ing to Zfec’n. Remind that ﬁc.n is the filter on co generated
by {R_, - Q& 3 . Of course one identifies @ with the
set of all isolated points of X.

Notice that for each 1 £ X < ¢, end each n < w , the
set A n converges to & point LR By (5), 2SR, n’ and by
(6), i Q e Fx 0 then cc.nnq is finite. Thus A - (%Gn - Q)

O
is finite, but this means that arbitrary neighborhood of x N
contains all but finitely many points of A
Let M & < be such that |W|= @, = lw - Ml. We have to

show that IMn(cw - M| = w,, too.

Suppose not. Then there is some Ky < &)1 such that for
each ¢ >o(, and each n < @ , x_ ¢nn(a) ¥). Let
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I «{k >yt for some 2 < w, xa(,n‘."

J --foc>oc°: for gome n < €U , xd’ne(w - M3,

Clearly |I| = |J| = w4 because |Hl= |~ Ml= ;. Since @

is countable and I as well as J is uncountable, there are some

W, < @ such that both I° ={fx ¢ Iix el end J° ={x € J:
y

:x € ( co - M)} are uncountable,

oI
If oc € I, then x T ¢ w-~ M, since & > «_.. We have
oLy o
shown that Ad‘n converges to xcr.,’ﬁ , therefore Acc'ﬁ N{(cw - N)
must be finite for o€ I, Similarly, ‘A‘oc‘ﬂ N M is finite for
]
% € J°. Thus there are Pyq < ¢co such that the set 1°° s{og e
o: - & X3 - ': N
€Itla 5 0(w=-Wlépdaswell asJ {xe d%la &
A M| £ q} is uncountable.

We mey w.l.0.8. essume that @ < @, Now, I " and J°° being
uncountable, there is some o € J°° such that I{p s 1% A<
<ad| = w.

Por e I'°, 3 <& we have:

lAﬂ'nn “ec.ﬁ‘ = \Aﬂ.ann\d.—ﬁ n(w - W + lAp’anAdc,ﬁnulé.

clhgznlo-ml+la snulip+a

But this contradicts (7).
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